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Abstract: In this paper the dynamics of bilharazia disease in the humans, which represents its main 

host, is formulated mathematically. The proposed system is studied analytically. The local stability is 

investigated for all possible equilibrium points.  Using suitable Lyapunov functions the basin of 

attraction of each point is specified. The conditions of occurring local bifurcation in the system are 

established. Numerical simulations are performed to study the global dynamics of the system and 

specify the set of control parameters. It is observed that the system has no periodic dynamics and the 

disease is controlled under some conditions on the parameters.   
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1. Introduction 

It is well known that, Bilharzia or Schistosomiasis, which has other names as Snail fever or Katayama fever, is a 

disease caused by parasitic worms of the Schistosoma type. It may infect the urinary tract or the intestines. Signs 

and symptoms may include abdominal pain, diarrhea, bloody stool, or blood in the urine. Also it may cause liver 

damage, kidney failure, infertility, or bladder cancer. Further, it may cause poor growth and learning difficulty in 

children [1]. The disease is spread by contact with water contaminated with the parasites, which are released 

from infected freshwater snails. The disease comes from contaminated water and is especially common among 

children, farmers, fishermen, and people using unclean water.  

Population of the environment plays a key role in spread of parasites disease (such as cholera, HIV and 

bilharzias). In deed the parasites need to the host to complete their life cycle and then it become a serious disease 

on the host life. Parasites and disease are frequently cited as important drivers of population and community 

dynamics [2]. Some parasites exploit their hosts in a prudent way, taking the resources that the need without 

causing noticeable damage. Prudent exploitation yields sustainable benefits to the parasite as long as the host 

remains healthy. Other parasites attack their host more quickly and vigorously. Rapid exploitation may allow the 

parasites to achieve higher reproductive rates, but damage to the host reduces the parasites opportunity for 

sustainable yield [3]. 

There are number of mathematical models has been developed to study the transmission dynamics of these 

disease. Ebert et al. [4] proposed and studied an epidemiological micro-parasite model using mass action 

incidence function.  However, Hwang and Kuang [5] studied the same system with standard incidence function. 

Later on many researcher have been used the framework of Hwang and Kuang model in some host-parasites 

models, see for example [6-7] and the references therein. Recently, Wang and Kuang [8] studied the fluctuation 

and extinction dynamics in host-microparasite systems. They proposed models involving SI type of diseases 

caused by parasites with different infection rate function and then studied the stability through the computing the 

reproduction number. 

 Keeping the above in view, in this paper the model of Wang and Huang with mass action incidence function is 

modified so that its suite the parasite disease caused by bilharzias, which is SIS type of disease. The local as well 

as global stability analysis of the model is investigated analytically as well as numerically. The local bifurcations 

that may occur in the system are also investigated analytically as well as numerically.  

 

2. The model construction 

Bilharzia disease is a parasitic disease caused by parasitic worms affects many people, which represents the main 

host for it, in developing countries. Such as many parasitic diseases, bilharzia is not a directly deadly disease, but 

it leads to the speed of the body of the patient consumption, which leads then to death. It is an SIS type of disease 

that means the person which has the disease may recover and return back to incidence with disease when the 

humans down to the water canals and drains that contaminated by parasite worms. Therefore in order to 

formulate a mathematical model that describes the dynamics of bilharzia disease in the humans the following 

hypotheses are adopted. 

 

1. Bilharzia disease divides the host population (humans) in to two compartments namely susceptible 

population, which denotes to its population size at time t  by )(tx , and infected population, which denoted 

to its size at time t  by )(ty . 
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2. It is assumed that the host population grows logistically with intrinsic growth rate 0r  and carrying 

capacity 01 
L

. Since the disease causes weakness in the body of the patient, then it is assumed that the 

relative fecundity of the infected person is given by 10   . 

3. The natural death rate of the host population is given by 01 d , while the disease death rate is assumed to 

be 0e . The disease transmitted to the susceptible persons due to contact of them with the parasite 

represented by schistosomes type’s worms with contact rate 0 . However the infected person will be 

recovered and return back to be susceptible compartment with recover rate 0 . 

4. Since the parasite that denoted to its population size at time t  by )(tz  is released from the infected person 

due to urinate and defecate in waterways or on the shores of canals. It is assumed that the parasite population 

is grows exponentially with growth rate 0  and facing natural death with death rate 02 d . 

Consequently the dynamics of the interaction between the humans and bilharzia disease can be described in the 

following set of nonlinear differential equations:  

),,(

),,()(

),,())(1)((

32

21

11

zyxfzdy
dt

dz

zyxfyyedxz
dt

dy

zyxfxzyxdyxLyxr
dt

dx













          (1) 

with 0)0(,0)0(  yx  and 0)0( z . Clearly, the right hand side functions are continuous and have 

continuous partial derivatives, therefore they are Lipschitzain. Thus system (1) has a unique solution of the 

domain  0,0,0:),,( 33  zyxRzyxR . More over in the following the boundedness of the 

solution of system (1) is established.  

 

Theorem (1): All solutions of system (1) which initiate in 
3
R  are uniformly bounded.  

Proof: Let  )(),(),( tztytx  be any solution of the system (3.1) with non-negative initial condition

 )0(),0(),0( zyx . According to the system (1), we have 

 
 

    yxLyxr
dt

yxd



1  

which implies that 

     0,
1

 t
L

tytx  

Consider the function        tztytxtM  , by taking the derivative of  tM  with respect to time along 

the solution of system (1) gives 

  21 ,min0;
1

ddM
Ldt

dM
   

Thus, 
L

M
dt

dM 1
  

Now, it is easy to verify that the solution of the above linear differential inequality can be written 

   te
L

M
L

tM 














11
0  

here  )0(),0(),0(0 zyxM  . Therefore,   0,
1

 t
L

tM


, hence all the solution of system (1) are 

uniformly bounded and therefore we finished the proof.                            ■ 

 

3. Existence and stability analysis of equilibrium points 
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System (1) has three non negative equilibrium points. The existence and the stability analysis of each of them are 

summarized in the following. The trivial equilibrium point  0,0,00 E   always exists. The disease free 

equilibrium point  0,0,~
1 xE  , where 

rL

dr
x 1~ 
                         (3a)  

exists under the condition. 

1dr                            (3b) 

The endemic equilibrium point  zyxE ˆ,ˆ,ˆ2   can be written in as 

 
y

d
z

edd
x ˆˆ,ˆ

2

12 







                                                   (3c)  

while ŷ  represents a positive root of the following quadratic equation  

032
2

1  AyAyA                                                                   (3d) 

here  

   xrdxrLArx
d

rLArLA ˆˆ;ˆ1; 13
2

21 







 


 . 

Clearly 2E  exists uniquely in the interior of 
3
R  if the following condition is satisfied 

rdxrL  1ˆ                         (3e) 

In the following the local stability conditions of each equilibrium point of system (1) are established.  

 

Theorem (2): The trivial equilibrium point 0E  of the system (1) is locally asymptotically if the following 

condition is satisfied 

1dr                           (4a) 

Proof: The Jacobian matrix of system (1) at 0E  can be written as: 

   )(

0

0)(0

0

2

1

1

0 ijb

d

ed

rdr

EJ 






























                  (4b) 

Clearly,  0EJ  has the following eigenvalues: 

   0;0; 211  deddr zyx    

Therefore, 0E  is locally asymptotically stable if and only if the eigenvalue 0x , which is satisfied provided 

that condition (4a) holds and hence  the proof is complete.   ■ 

 

Theorem (3): The disease free equilibrium point  0,0,~
1 xE   of system (1) is locally asymptotically stable if 

the following sufficient condition is satisfied 

 
 





rL

dr
ded 1

21


                                  (5a) 

Proof: The Jacobian matrix of system (1) at 1E  is given by  

  )(

0

)(0

))(1(

2

)(
1

)(
11

1
1

1

ijrL

dr
rL

dr

c

d

ed

drrdr

EJ 







































                 (5b) 

Then the characteristic equation of the Jacobian matrix  1EJ  is given by: 
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    021
2

1  dr                                      (5c) 

here  
 





rL

dr
dedddded 1

22212211 ;0


 . 

Consequently equation (5c) has the following roots, which represent the eigenvalues of  1EJ : 

 2
2

1
1

1 4
2

1

2
,; 


 


 zyx dr  

where zyx  ,,  describe the dynamics in the  zyx ,,  direction respectively. Clearly y  and z  have 

negative real parts provided that condition (5a) holds, while 0x  under existence condition (3b). Hence 1E  

is locally asymptotically stable in the 
3
R . However, it is a saddle point otherwise.                ■ 

 

Theorem (4): The endemic equilibrium point  zyxE ˆ,ˆ,ˆ2   of system (1) is locally asymptotically stable if 

the following conditions hold 

  zyrLxrLdr ˆˆ1ˆ21                          (6a) 

  yrLxrLr ˆ2ˆ1                              (6b) 

  2)(ˆ2ˆ)1( dryrLxrL                                                               (6c) 

Proof: The Jacobian matrix of system (1) at the endemic equilibrium point can be written 

    
332 

 ijdEJ              (6d) 

 here   zyrLxrLdrd ˆˆ1ˆ2111   ,   yrLxrLrd ˆ2ˆ112   , xd ˆ13  , 

zd ˆ21  ,   edd 122 , xd ˆ23  , 031 d , 32d , 233 dd  . 

Hence, the characteristic equation of  2EJ  is given by  

 0ˆˆˆ
32

2
1

3  AAA             (6e) 

here     3322111
ˆ dddA  ,  

 2112221133112
ˆ ddddddA    

 
  yrLxrLredzd

ddddddddddA

ˆ2ˆ)1()(ˆ

)()(ˆ

12

211323113222112112333

 


. 

with 

 
)(

ˆ)(ˆˆˆˆ

32131222121121

3223113311122112211321

ddddddd

dddddAddddAAA




 

Now according to Routh-Hurwitz criterion 2E  will be locally asymptotically stable provided that 0ˆ
1 A  , 

0ˆ
3 A  and 0ˆˆˆˆ

321  AAA . Clearly, 1Â  and 3Â  are positive provided that the conditions (6a) and (6b) 

are satisfied respectively. While ̂  is positive provided that conditions (6a)-(6c) hold. Hence the proof is 

complete.             ■ 

 Now the stability analysis of the above equilibrium point is investigated using the suitable Lyapunov 

functions. The objective is to specify the basin of attraction for each of them. 

 

Theorem (5): Suppose that the trivial equilibrium point 0E  is locally asymptotically stable, then it is a globally 

asymptotically stable in 
3
R , if the following condition holds 

 





ed
r 1

                                     (7) 
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Proof: Consider the following function   zyxzyxV ,,0 . It is easy to check that 

   RRCzyxV ,,, 31
0   in addition,   00,0,00 V  while     3

0 ,,;0,,  RzyxzyxV  with 

   0,0,0,, xyx . Furthermore 

      zdxyrLyedryrLxdrrLx
dt

dV
21

2
1

20 1    

So due to condition (7), it is obtained that 
dt

dV0
 is negative definite and hence the proof is complete.  

          ■ 

Theorem (6): Assume that the free disease equilibrium point 1E  is locally asymptotically stable then it is 

globally asymptotically stable in the region  0,0,:),,( 3
1  zyHxRzyx  provided that  

    edxr 1
~

                                                          (8) 

here    1~,~max
1





xxH

rL

r




  .                     

Proof: Consider the following function  

  
 

zy
xx

zyxV 



2

~
,,

2

1 .  

It is easy to see that    RRCzyxV ,,, 31
1  , in addition,   00,0,~

1 xV , while 

    3
1 ,,;0,,  RzyxzyxV  and    0,0,~,, xzyx  . Furthermore, by differentiating the function with 

respect to time and then simplifying the resulting terms we get: 

          

    xzxxzdyedxr

yxxLxyrxxrLxxrLx
dt

dV

1~~

~~1~

21

221








 

Then according to condition (8), its easy to check that 
dt

dV1  is negative definite in the region 
3

1  R  and 

hence 1V  is Laypunov function with respect to 1E . So 1E  is a globally asymptotically stable.   

       ■ 

Theorem (7): Assume that the endemic equilibrium point 2E  is locally asymptotically stable then it is globally 

asymptotically stable in the interior of region that satisfy the following conditions 

     zyrLxxrLdr ˆˆ1ˆ1                        (9a) 

 2211
2
12 qqq                         (9b) 

   211
2

dqx                         (9c) 

   222
2

23 dqq                        (9d) 

here        zyrLdrxxrLq ˆˆ1ˆ 111   ,  edq 122  

       zryyLxrLq ˆˆ112   ,   xq23  

Proof: Consider the following function 

  
     

2

ˆ

2

ˆ

2

ˆ
,,

222

2

zzyyxx
zyxV








  

It is easy to see that    RRCzyxV ,,, 31
2  , in addition   0ˆ,ˆ,ˆ2 zyxV ,

 
while   0,,2 zyxV ; 

  3,,  Rzyx   and    zyxzyx ˆ,ˆ,ˆ,,  . Furthermore by differentiating the function with respect to time and 

then simplifying the resulting terms we get: 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.13, 2015 

 

106 

 

      
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ˆ
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ˆˆˆ
2
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d
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q
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d

zzxxxxx
q
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q

yyxxqxx
q

dt
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  

By using the above conditions, we obtained that  

 

       

   
2

222

2

211

2

22112

ˆ
2

ˆ
2

ˆ
2

ˆ
2

ˆ
2

ˆ
2








































zz
d

yy
q

zz
d

xx
q

yy
q

xx
q

dt

dV

 

Clearly, 11q  is positive provided that condition (9a) holds. Consequently, due to conditions (9b)-(9d), 
dt

dV2  is 

negative definite and hence 2V  is Laypunov function with respect to 2E . So 2E  is globally asymptotically 

stable and hence the proof is complete.■ 

 

4. Local bifurcation analysis 

In this section, the occurrence of local bifurcation (such as transcritical, pitchfork and saddle-node) around each 

one of the system’s equilibrium points is studied. Recall that the general Jacobian matrix  zyxJ ,,  of system 

(1) is given by: 

   ),,(,),,(;)()( 32133
zyxfffFaDFJ T

ij 


              (10) 

here    zyrLrLxdra   12111 ,   yrLxrLra  2112  , xa 13 , 

za 21 ,   eda 122 , xa 23 , 031 a , 32a , 233 da  . Therefore, it is easy to verify 

that for any non-zero vector  TvvvV 321 ,, , we get  

  

  

















 



0

2

12

,).( 21

2
23121

2
1

2 vv

LvvvvvrLrLv

VVFD 



            
(11)

 

 

Theorem (8): The system (1) at equilibrium point 0E  with the parameter r  passes through the value 1
* dr  , 

has transcritical bifurcation but neither saddle node bifurcation nor pitchfork bifurcation can occur. 

Proof : According to the Jacobian matrix at 0E   that given by Eq.(4b), system (1) has zero eigenvalue (say 

0x ) at 1
* dr  , so that Jacobian matrix  0EJ  with 1

* dr   becomes 

 33
**

0
*
0 )(),(  ijbrEJJ  

where 3,2,1,;*  jibb ijij  with   1
*
12

*
11 ,0 dbb . 

Now, let  TkkkK 321 ,,
 
be the eigenvector corresponding to the eigenvalue 0x  of the matrix 

*
0J . 

Thus   0*
0  KIJ x , which gives that 1k  be any nonzero real number while 032  kk  
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Let  T321 ,, 
 
be the eigenvector associated with the eigenvalue 0x  of the matrix 

T
J *

0 . Then 

we have 0*
0 








 IJ x

T
 . By solving this equation for   we obtain 

T

ed

r













0,, 11

1

*





, where 

1  be any nonzero real number. Now, consider  

     T
T

r yxLyx
r

f

r

f

r

f
rF

r

F
0,0,)(1)(,,, 321 

























  

So,    Tr rEF 0,0,0, *
0  and then   0, *

0  rEFr
T

 

Thus, according to Sotomayor's theorem [? ?], the saddle-nod bifurcation can’t occur, while the first condition of 

transcritical bifurcation is satisfied. Now, since 

  














 



000

000

02)1()1(21

,

yLxLyLLx

rDFr



 

where  rDFr ,  represents the derivative of  rFr ,  with respect to the vector  . Moreover, 

   0, 11
*

0  kKrEDFr
T

. Now, by substituting K  instead of V  and 0E  instead of   in Eq. (11) 

we get that 

 
    TLkrKKrEFD 0,0,2,, 2

1
**

0
2   

Further, it is observed 

 
    02,, 2

11
**

0
2  kLrKKrEFDT   

Thus, according to Sotomayor's theorem, system (1) has transcritical bifurcation at 0E  with the parameter 

1
* dr   , while pitchfork can’t occur. Hence the proof is complete.  ■ 

 

Theorem (9): The system (1) at equilibrium point 1E  with the parameter 2d  passes through the value 

 
 








edrL

dr
d

1

1*
2 ,  has a transcritical bifurcation, but neither saddle-nod bifurcation, nor pitchfork bifurcation 

can occur. 

Proof: According to the Jacobian matrix  1EJ  given by Eq. (5b), system (1) has zero eigenvalue (say 0z

) at 
*
22 dd  , so the Jacobian matrix  1EJ  with 

*
22 dd   becomes: 

 
  )(, **

211
*
1 ijcdEJJ   

where 3,2,1,;*  jicc ijij  with 
*
2

*
33 dc  . 

Now, let 
TmmmM ),,( 321  be the eigenvector corresponding to the eigenvalue  0z . Thus 

  0*
1  MIJ z , which gives  

 
  

  31
1

1 mm
edrL

erd








 , 

 
  32

1

1 mm
edrL

dr








  

while 3m  be any nonzero real number. Let  TnnnN 321 ,,  be the eigenvector associated with the 

eigenvalue 0z  of the matrix 
T

J *
1 . Then we have 0*

1 







 NIJ z

T
 . By solving this equation for N , 

we obtain that 

  T
ed

n
nN 3,,0

1

3






  
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where 3n  be any nonzero real number. Now, consider 

    T
T

d z
d

f

d

f

d

f
dF

d

F


























,0,0,,,

2

3

2

2

2

1
2

2
2

 

So,    Td dEF 0,0,0, *
212
 , and hence   0, *

212
dEFN d

T
, thus according to Sotomayor's theorem 

saddle-node bifurcation can’t occur, while the first condition of transcritical bifurcation is satisfied. Now, since 

 




















100

000

000

, 22
dDFd  

where  2,
2

dDFd   represents the derivative of  2,
2

dFd   with respect to vector  . Furthermore we 

have     0, 33
*
212

 mnMdEDFN d
T

. 

Now, by substituting M  instead of V  and 1E  instead of   in Eq. (11) we get  

    TuuMMdEFD 0,,,., 21
*
21

2   

where 

 
 

 

 

 




















































2

1

1

1

1
2

2
1

11
22

1

12
31

)(

)(

)(

)(

)(

)()(
1

)(

)(
2



















edrL

dr
L

edrL

erd

edrL

drerd
rL

edrL

erd
rLmu

 

 

 
2
32

1

11
3

2
)(

)()(
2 m

edrL

drerd
u








  

So,      

 
3

2
3

1
2

1

11
3

*
21

2

)(

)()(
2,, nm

ededrL

drerd
MMdEFDN T






















 

Since rd 1  due to existence condition of 1E  and 10   then we obtain that 
 

    0,, *
21

2 MMdEFDNT
. Thus, according to Sotomayor's theorem, system (1) has transcritical 

bifurcation at 1E  with the parameter 
*
22 dd   while the pitchfork bifurcation does not occur.              

                           ■ 

Theorem (10): The system (1), at equilibrium point 2E  with the parameter 1d  passes through the value 

eyrLxrLrd  ˆ2ˆ)1(*
1  , undergoes saddle node bifurcation but neither transcritical bifurcation 

nor pitchfork bifurcation can occur provided that the following conditions are satisfied. 

  yrLxrLdr ˆ1ˆ21                                      (12a) 

 eyrLxrLr  ˆ2ˆ)1(          (12b) 

Proof: Consider the characteristics equation of the Jacobian matrix )( 2EJ  that is given in Eq. (6e). Clearly this 

equation has zero root if and only if 0ˆ
3 A , and hence 2E

 
becomes a nonhyperbolic equilibrium point. Now 

since  

   yrLxrLredzdA ˆ2ˆ)1()(ˆˆ
123    

Thus 0ˆ
3 A  at eyrLxrLrd  ˆ2ˆ)1(*

1  , which is positive under condition (12b).   
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The Jacobian matrix of system (1) at 2E
 
with parameter 

*
11 dd   becomes    

33

**
122

*
2 ,


 ijddEJJ  

where ijij dd *
 for all 3,2,1, ji  with   zyrLxrLdrd ˆˆ1ˆ2*

1
*
11    and 

  *
12

*
22 ˆ2ˆ)1( dyrLxrLrd   , which are negative under the conditions (12a)-(12b) 

respectively.  

Let  TpppP 321 ,,
 
be the eigenvector corresponding to the eigenvalues 0 . Thus   0*

2  PIJ  , 

which gives 

01 p , 32 qpp   and 0; 33  pRp  

where 0
*
21

*
12

*
22

*
11

*
23

*
11

*
21

*
13 





dddd

dddd
q  due to conditions (12a)-(12b).  

Let  TwwwW 321 ,,  be the eigenvector associated with the eigenvalue 0  of the matrix 
T

J *
2 . Then 

02 





  WIJ

T

  gives  

211 whw  , 222 whw   and 0; 22  wRw  

here 0
*
11

*
21

1 
d

d
h  and 0

*
33

*
11

*
11

*
23

*
21

*
13

2 


dd

dddd
h . 

Now, consider 

   T
T

d yx
d

f

d

f

d

f
dF

d

F
0,,,,,

1

3

1

2

1

1
1

1
1


























 

So,    Td yxdEF 0,ˆ,ˆ, *
121

  and hence     0ˆˆ, 21
*
121

 wyxhdEFW d
T

.
 

So, the pitchfork bifurcation and transcritical bifurcation can’t occur. While the first condition of the saddle-node 

bifurcation is satisfied. Also, we have 

    02,, 2
2
31

2*
12

2  wphLqPPdEFDW T   

Hence, the system (1) has saddle-node bifurcation at 2E  with parameter 
*
11 dd 

.         ■ 

 

5. Numerical simulation  

In order to confirm our obtained analytical results and understand the effects of each parameter on the bilharzia 

epidemic system, this section deals with the global dynamics of system (1). Consequently, system (1) is solved 

numerically for different sets of initial conditions and different sets of parameters. It is observed that, for the 

following set of biologically reasonable hypothetical parameters, system (1) approaches asymptotically to the 

endemic equilibrium point as shown in Fig. (1) below. 

2.0,5.0,2.0,05.0

,5.0,05.0,25.0,05.0,1

2

1





de

dLr




                                                (13) 
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Fig. (1): The trajectories of system (1), for the data (13) started at different initial points, approaches to 

)43.20,17.8,6(2 E  asymptotically. (a) Phase portrait. (b) Time series of phase portrait with respect to 

x . (c) Time series of phase portrait with respect to y . (d) Time series of phase portrait with respect to z . 

 

Obviously, Fig. (1) shows that, system (1) approaches asymptotically to the globally stable endemic equilibrium 

point 2E  from different sets of initial conditions. This is indicates to the existence of globally asymptotically 

stable of system (1) in the interior of positive octant, which represents the persistence of all the species too. 

Now to investigate the effect of the parameters values of system (1) on the dynamical behavior of system (1), the 

system is solved numerically for the set of parameters values (13) with varying one parameter each time. It is 

observed that, for the data given in Eq. (13) with any initial point used in Fig. (1), varying the parameter value 

  doesn’t has any effect on the dynamical behavior of system (1) and the system still approaches to a endemic 

equilibrium point. However, for the data given by (13) with the varying the  parasite growth rate in the range 

11.0 , the trajectories of system (1) approach asymptotically to the disease free equilibrium point 1E  as 

shown in the following typical figure, Fig. (2), for 1.0 . Otherwise the solution of system (1) still 

approaches to the endemic equilibrium point for all other values of   . 
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Fig. (2): The trajectories of system (1), for the data (13) with 1.0  started at different initial points, 

approaches to )0,0,19(1 E  asymptotically. (a) Phase portrait. (b) Time series of phase portrait with 

respect to x . (c) Time series of phase portrait with respect to y . (d) Time series of phase portrait with 

respect to z . 

 

Clearly Fig. (2) shows the approaching of the solution of system (1) asymptotically to the free disease 

equilibrium point from different initial values as the parasite growth rate reduced to 1.0 .    

Now for the data given by Eq. (13) with 23.0L , the solution of system (1) approaches asymptotically to 

disease free equilibrium point as shown in the following typical figure, Fig. (3), for 25.0L . However the 

system still approaches to the endemic equilibrium point for other values of L. 
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Fig. (3): (a) The trajectory of system (1), for the data (13) with 25.0L , approaches to )0,0,8.3(1 E  

asymptotically. (b) Time series of the trajectory in (a). 

 

Again Fig.(3) shows clearly the approaching of the solution of system (1) with decreasing of carrying capacity of 

the host or equivalently increase the value of L. Now by varying the natural death rate of the host population in 

the range  161.0 d , keeping the rest of parameters values as in Eq. (13), system (1) approaches 

asymptotically to the disease free equilibrium point )0,0,ˆ(1 xE   as shown in the typical figure, Fig. (4) for 

8.01 d . However as the intrinsic growth rate of the host population satisfies the condition 1dr   for the 

data used in Fig. (4), its observed that the solution of system (1) approaches asymptotically to the trivial 

equilibrium point  0,0,00 E  as shown in the typical figure, Fig. (5) for the date (13) with 8.01 d  and 

7.0r . 
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Fig. (4): (a) The trajectory of system (1), for the data (13) with 8.01 d , approaches to )0,0,4(1 E  

asymptotically. (b) Time series of the trajectory in (a). 

 

 

Fig. (5): (a) The trajectory of system (1), for the data (13) with 8.01 d  and 7.0r , approaches to 

)0,0,0(0 E  asymptotically. (b) Time series of the trajectory in (a). 

 

Clearly, Fig. (4) explains the approaches of the solution of system (1) to the disease free equilibrium point as the 

natural death rate of the host increases. While, Fig. (5) shows the approaches of system (1) to the vanishing 

equilibrium point as the intrinsic growth rate of the host becoming less than its death rate.    
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Now varying the parasite natural death rate in effects the stability of the endemic equilibrium point too so that for 

the data in Eq. (13) with 66.02 d  the solution of system (1) approach asymptotically to the disease free 

equilibrium point as shown in the typical figure, Fig. (6) below for 75.02 d  . 

 

Fig. (6): (a) The trajectory of system (1), for the data (13) with 75.02 d , approaches to )0,0,19(1 E  

asymptotically. (b) Time series of the trajectory in (a). 

 

Clearly Fig. (6) indicates to the qualitative change in stability of system (1) as the natural death rate of parasite 

cruses a specific value. Finally, it is observed that the parameters values    and e  have similar effects on the 

dynamical behavior of system (1) as that of the parameter 1d . While the parameter   has effect similar likes the 

effect of   on the dynamics of system (1). 

  

6. Conclusions and discussion 

In this paper the effects of parasitic disease, represented by bilharazia, on their main host, which represented by 

humans, are formulated mathematically and studied analytically as well as numerically. The objective of this 

study is to understand the effects of all factors, which helping the spread of this type of disease and hence get the 

capability of control the disease.  

The existence and uniqueness of solution of the proposed model are discussed. The boundedness of the solution 

is also studied. All possible equilibrium points with their local and global stability are investigated. The 

qualitative dynamical behavior as a function of varying the parameters values is studied analytically as well as 

numerically. Finally, for the biologically feasible set of hypothetical data as given in Eq. (13), the system (1) is 

solved numerically and the obtained results are explained in some typical figures and we will summarize as 

follows.     

 

1. System (1) has no periodic dynamics, instead of that the solution approaching asymptotically to one of their 

three possible equilibrium points depending on there set of parameters values.  

2. For the data given in Eq. (13), the trajectories of system (1) approached asymptotically to the global stable 

endemic equilibrium point 2E  in the 
3. RInt , which indicates to the persistence of all the species.  

3. It is observed that varying the relative fecundity of the infected person parameter value )1,0(  keeping 

other parameters fixed as Eq. (13) do not has any effect on the dynamical behavior of system (1) and the 

system still persists in the form of a globally asymptotically stable endemic equilibrium point. 

4. Decreasing the parasite growth rate   below the value 0.12 in Eq. (13) caused destabilizing to the endemic 

equilibrium point and the trajectories of system (1) approached asymptotically to the free disease equilibrium 
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point, which means losing the persistence of system (1). Otherwise the system still has a globally 

asymptotically stable endemic equilibrium point. 

5. Increasing the inverse of host carrying capacity L  above 0.23 in Eq. (13) caused destabilizing to the endemic 

equilibrium point and the trajectories of system (1) approached asymptotically to the free disease equilibrium 

point. Otherwise the system still has a globally asymptotically stable endemic equilibrium point. 

6. Similarly increasing the natural death rate of host 1d  above 0.61 in Eq. (13) caused destabilizing to the 

endemic equilibrium point and the trajectories of system (1) approached asymptotically to the free disease 

equilibrium point, which indicates to occurring of the bifurcation as shown analytically. Otherwise the system 

still has a globally asymptotically stable endemic equilibrium point. Since the bifurcation parameter 
*
1d  

depends on different other parameters the system undergoes bifurcations as shown in above points (4) and (5) 

as varying those parameters. 

7. As the intrinsic growth rate 1r  of the host population becomes below its death rate  1d , then system (1) 

completely collapse and the trajectory approached asymptotically to the vanishing equilibrium point, which 

indicates to occurring of the bifurcation. Otherwise the system still approaches to the endemic point. 

8. Further increasing the parasite natural death rate 2d  above 0.66 in Eq. (13) causes bifurcation in the system 

and the trajectory transferred from the endemic point to the disease free equilibrium point asymptotically an 

hence the system will losses the persistence. . Otherwise the system still approaches to the endemic point. 

9. Finally, its observed that the disease death rate e  and the recover rate   have similar effects on the 

dynamics of system (1) as that of host natural death rate  1d . While the effects of contact rate   on the 

dynamics of system (1) are similar as those happened with varying parasite growth rate. 

According to the above discussion, it’s observed that system (1) is sensitive to varying in many of its parameters 

and hence there is higher possibility to control this type of disease and keep the humans safe of it.    
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