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Abstract 

Although the idea of Bayesian inference dates back to the late 18th century, its use by statisticians has been rare 

until recently. But due to advancement in the simulation techniques Bayesian inference and estimation is gaining 

currency. This paper seeks to focus on the Bayesian estimates of the Power Function distribution using Weibull 

and Generalized Gamma distributions as priors for the unknown parameters. Furthermore, the statistical 

performance of the obtained estimators is compared with the Maximum likelihood of Power Function 

distribution and the Bayesian estimator of Gamma distribution as prior of the unknown parameter. The 

comparison has been done using Monte Carlo simulation using MSE as yardstick of the comparison.  

Keywords: Squared error loss function, Bayesian estimator, Prior distribution, Monte Carlo simulation. 

1. Introduction 

The Power function distribution is a simple yet very powerful distribution and is used to model insurance related 

data. The distribution is just the inverse of the Pareto distribution and appears as a special case of the Beta 

distribution and has the density function 

                                         1; ;0 1, 0f x x x      ;    (1) 

where θ is shape parameter of the distribution. The distribution has also been used in reliability theory; see 

Zarrin et al. (2013). 

Estimation of parameters for the Power function distribution has been done by various authors. Mood et al. 

(1974) has discussed the maximum likelihood estimation for the parameters of the distribution. Zaka and Akhtar 

(2013) have discussed various methods, including methods of moments and least squares, for parameter 

estimation of the distribution. 

Bayesian estimation for parameters of power function distribution has also been considered by number of 

authors. Rahman et al. (2012) have considered Bayesian estimation for the distribution under conjugate prior and 

under various loss functions. Omer and Low (2012) have discussed Bayesian estimation of generalized Power 

function distribution under non-informative and informative priors. 

This paper will focus on the Bayesian estimation for parameters of Power function distribution under two 

different priors which has not been considered so far. Parameter estimation has been done under squared loss 

function.  

The rest of the paper is structured as follows: Section 2 discusses various available estimators of Power function 

distribution: Section 3, discusses the posterior distribution of θ under two different priors namely Weibull 

distribution and Generalized Gamma Distribution.: Section 4, discusses the Bayes estimators under the squared 

loss functions for both Weibull and GG distribution: Section 5, empirically compares the estimates of the 

parameter θ using Monte Carlo simulation. Finally Section 6 concludes the paper with brief discussion. 

2. Various Available Estimators 

The density function of Power function distribution is given in (1). The maximum likelihood estimator for 

parameter θ is 
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Rahman et al. (2012) have obtained the Bayesian estimator of parameter θ under square loss function using 

Gamma prior.  
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The estimator is: 
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where   is shape parameter and   is scale parameter of the prior distribution. 

Omer and Low (2012) have obtained Bayes estimate for parameter of generalized Power function distribution. 

The estimator is given as: 
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where a is location parameter of generalized Power function distribution. 

The proceeding section will give posterior distribution for parameter θ under different priors. 

3. Posterior Distribution of   

The density function of Power function distribution is given in (1). In this section we derive the posterior 

distribution of parameter θ under two different priors, namely the Weibull distribution and the Generalized 

Gamma distribution. The Weibull distribution is found to be useful in diverse fields ranging from engineering to 

medical sciences (see Lawless (2002), Martz and Waller (1982)). Habib, Roy and Atik-ur-rehman (2012) have 

studied the power function using different loss functions.  Generalized Gamma (GG) Distribution was introduced 

by Stacy &Mihram (1965). Despite its long history and growing use in various applications, the GG family and 

its properties have been remarkably presented in different papers.  

The density function of the Weibull distribution is given as: 

    1 exp ; 0f         

and the generalized Gamma distribution with density function is given as: 
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Generally the posterior distribution of parameter θ is expressed as 
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The posterior distribution when prior distribution of θ is Weibull is obtained as under: 
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where                    
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Similarly, the posterior distribution of θ when prior distribution is generalized Gamma is 
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The proceeding section will focus on the Bayesian estimator for the parameter of Power function distribution. 

4. Bayesian Estimator of the Parameter   

The posterior distribution of parameter θ under different priors was obtained in previous section. We now obtain 

the Bayesian estimator of the parameter θ under squared error loss function. Under the squared error loss 

function the Bayes estimator is simply expected value of the posterior distribution. The posterior distribution of 

θ when prior distribution is Weibull is given in (5) as; 
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The expected value of the posterior distribution is: 
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Similarly, the Bayesian estimator of   under generalized Gamma prior is expected value of the posterior 

distribution given in (6) and is expressed as; 
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Empirical comparison of Bayesian estimator of parameter θ under various priors will be discussed in the 

following section. 

 

5. Empirical Comparison 

This section provides the empirical comparison of Bayesian estimators of the parameter θ under various prior 

distributions. The empirical study has been conducted by generating 10000 random samples of different sizes 
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from the power function distribution by using various values of θ. After drawing the samples, the Bayes 

estimator has been computed by using different values of parameters of prior distribution. The mean square error 

has been computed to see the performance of the estimates. Results of the empirical study for various values of 

parameters of prior distribution have been given in tables below. 

 

Table 1: Estimated Value of Parameter   under various Prior Distribution 

for 2.5, 1.5 1.5and      

n Criteria ˆ
MLE   ˆ

BG  ˆ
BW  ˆ

BGG  

5 
Estimated Value 1.873 1.699 2.415 2.203 

MSE 1.136 0.266 6.057 18.576 

10 
Estimated Value 1.665 1.645 8.012 26.167 

MSE 0.351 0.192 87.039 21.599 

15 
Estimated Value 1.603 1.599 14.003 27.678 

MSE 0.195 0.137 1.673 0.184 

20 
Estimated Value 1.579 1.580 1.524 2.843 

MSE 0.138 0.107 0.137 0.00005 

25 
Estimated Value 1.567 1.570 1.567 2.918 

MSE 0.110 0.090 0.00001 0.00003 

30 
Estimated Value 1.553 1.557 1.607 2.993 

MSE 0.087 0.074 0.00001 0.00002 

 

Table 2: Estimated Value of Parameter   under various Prior Distribution 

for 3.0, 2.0 2.5and      

n Criteria ˆ
MLE   ˆ

BG  ˆ
BW  ˆ

BGG  

5 
Estimated Value 3.149 2.103 2.141 4.612 

MSE 3.158 0.196 0.0006 0.011 

10 
Estimated Value 2.789 2.267 2.777 5.709 

MSE 1.011 0.229 0.000006 0.922 

15 
Estimated Value 2.674 2.333 3.321 9.914 

MSE 0.551 0.209 0.030 3.125 

20 
Estimated Value 2.633 2.376 3.852 19.531 

MSE 0.391 0.189 0.386 2.146 

25 
Estimated Value 2.602 2.398 2.565 4.143 

MSE 0.290 0.163 0.105 0.992 

30 
Estimated Value 2.582 2.413 2.812 16.485 

MSE 0.239 0.148 0.458 0.129 

 

Table 2: Estimated Value of Parameter   under various Prior Distribution 

for 3.5, 2.5 3.0and      

n Criteria ˆ
MLE   ˆ

BG  ˆ
BW  ˆ

BGG  

5 
Estimated Value 3.751 2.104 1.421 4.867 

MSE 4.439 0.123 0.000003 0.0005 

10 
Estimated Value 3.343 2.392 1.298 5.5.10 

MSE 1.416 0.179 0.000009 0.00002 

15 
Estimated Value 3.211 1.852 1.101 6.076 

MSE 0.790 0.100 0.000001 0.007 

20 
Estimated Value 3.164 2.636 3.599 6.669 

MSE 0.552 0.184 0.0000002 0.249 

25 
Estimated Value 3.127 2.695 3.909 8.603 

MSE 0.433 0.177 0.00004 1.378 

30 
Estimated Value 3.102 2.737 3.191 6.986 

MSE 0.343 0.163 0.0002 1.398 
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The empirical results have also been plotted below for immediate comparison. In these plots we have given the 

mean square errors of various estimators given in the above tables. 

 

 
 

Figure 1: Mean Square Errors for 2.5, 1.5 1.5and      

 

 
 

Figure 2: Mean Square Errors for 3.0, 2.0 2.5and      
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Figure 3: Mean Square Errors for 3.5, 2.5 3.0and      

 

The results of empirical study are given in above tables. From the tables we can see that the Bayes estimate of 

the parameter θ under Weibull prior has better performance as compared to other methods as it has smallest 

mean square error.  

 

6. Conclusion 
The present paper studied Bayesian Estimation for parameters of Power function distribution under various 

priors. The authors worked out the Bayes estimators under two different priors – Weibull and Generalized 

Gamma Distribution. Monte Carlo simulation was used to compare the efficiency of estimators. Results of the 

findings revealed that the performance of Bayes estimator with Weibull prior outclass other competing method 

for θ =3.0 irrespective of sample size. For   θ =2.5 Bayes estimator with Gamma prior performs better than 

the other estimators for large sample sizes. Again for small sample sizes the Bayes estimator with Weibull prior 

performed better as compared to other estimators. For θ =1.5 Bayes estimator with Gamma prior performs 

better for small sizes for large sample sizes the behavior pattern for all the estimators is the same. 
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