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Abstract 

Maternal mortality is defined as the death of a woman while pregnant or within 42 days of termination of 

pregnancy, irrespective of the duration and site of the pregnancy, from any cause related to or aggravated by the 

pregnancy or its management. Maternal mortality which accounts for 14% of all female deaths is still the second 

largest cause of female deaths in Ghana. Maternal mortality is very high in the northern regions of Ghana hence 

the need to model and forecast maternal mortality data to give insight to public health workers so as to combat 

any expected high maternal mortality. This study therefore models and also forecast future maternal mortality 

trends in the Bawku Municipality of the Upper East Region of Ghana using Box-Jenkins Approach. Analyses 

were based on monthly data available at the Biostatistics department of the municipal hospital. Results show that 

SARIMA (3, 0, 0) × (1, 1, 2)12  adequately models the maternal mortality data. The forecasted values also 

revealed that, maternal mortality cases increased during the months of May to July and from September to 

December, which is an insight for public health workers. 
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1. Introduction 

Maternal mortality is defined as the death of a woman while pregnant or within 42 days of termination of 

pregnancy, irrespective of the duration and site of the pregnancy, from any cause related to or aggravated by 

the pregnancy or its management (WHO–ICD 10). 

 Of all the health statistics compiled by World Health Organization, the largest discrepancy between 

developed and developing countries occurred in maternal mortality (Ujah et al., 2005). While 25 percent of 

females of reproductive age lived in developed countries, they contributed only 1 percent to maternal deaths 

worldwide (WHO, 2005). A total of 99 percent of all maternal deaths occur in developing countries. More 

than half of these deaths occur in sub-Saharan Africa and one third in South Asia (Ujah et al., 2005).

 An estimate of 529,000 women die each year worldwide from pregnancy-related complications, of which 

90% occur in developing countries, the worst affected being Africa, including Ghana (Sarpong, 2013).  

Maternal mortality which accounts for 14% of all female deaths is still the second largest cause of female 

deaths in Ghana (Asamoah, 2011). 

 Maternal hemorrhage, obstructed labour, postpartum sepsis, eclampsia, unsafe abortion and anemia are 

among the leading causes of death among pregnant women in developing countries (WHO, 2005). 

Contributory factors include lack of access to good quality maternal and neonatal health services and strong 

adherence to negative cultural beliefs and practices (AbouZahr and Wardlaw, 2001; WHO, 2005). 

 Accurate predictions for maternal mortality will aid health related policy makers to see ahead of time the 

possible future requirements to design strategies and effective policies to combat any expected high maternal 

mortality in the Bawku municipality. 

 A wealth of research has been made into maternal mortality in different countries using time series analysis. 

Sarpong (2013) modeled and forecasted maternal mortality in Kumasi, Ghana using ARIMA. Liu et al. 

(2011) conducted a study to explore the feasibility of applying time series autoregressive integrated moving 

average (ARIMA) model to predict maternal mortality ratio (MMR) in China so as to provide the theoretical 

basis for reducing the MMR. Additionally, Elard Koch (2009) used ARIMA models to analyze MMR and 

abortion mortality ratio (AMR) from 1960 to 2007 in Chile. 

 In this study, seasonal ARIMA (SARIMA) model was used to develop a model for forecasting maternal 

mortality in the Bawku Municipality of Ghana. 
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2. Materials and Methodology  

Time series is a time dependent sequence  Yt, where t belongs to the set of integers and denotes the time steps. If 

a time series can be expressed as a known function, Yt =  f(t), then it is said to be a deterministic time series. If it 

is however expressed as Yt  =  X (t), where X is a random variable then {Yt} is a stochastic time series. 

 

2.1. Data and Source 

Data was obtained from the Biostatistics department of Bawku Municipal Hospital in the Upper East (UE) region 

of Ghana. The data covered monthly reported cases of maternal mortality for the period January, 2000 to 

December, 2014. It is important to mention that, UE region is one of the poorest regions in Ghana. Also, Bawku, 

the district capital of the Bawku municipality, is known to be one of the major municipalities in the UE region. 

 
2.2. Stationarity and Non Stationarity 

Stationarity refers to the statistical equilibrium or stability in the data set. A time series is strictly stationary if the 

joint distribution of Xt1
, Xt2

, … , Xtn
 is the same as the joint distribution of  Xt1+T

, Xt2+T
, … , Xtn+T

 for 

all t1+T, … , tn+T. Thus shifting the time position by T periods has no effect on the joint distribution. However it 

is difficult to investigate strict stationarity empirically, therefore a weaker version of stationarity is assumed. The 

time series is said to be weakly stationary if it’s mean, variance and covariance do not change with time or are 

time invariant. If a time series is not stationary, then it is said to be non-stationary. A simple non-stationary time 

series is given by: 

                                                                         

𝑌𝑡 = 𝜇𝑡 + 𝑒𝑡                                                                                                  (1) 

2.2.1. Unit root test 

Unit root test was derived in 1976 by Dickey and Fuller to test for the presence of unit root versus a stationary 

process. The test is based on the assumption that a time series data yt follows a random walk: 

 

Yt =  ρyt−1 +  et                                                                                 (2) 

 Hypothesis 

   H0: 𝜌 = 1 (series has unit root or non-stationary) 

H1: 𝜌 <1 (series has no unit root or stationary) 

where 𝜌 is the characteristic root of an AR polynomial and et  is purely a random process with mean zero and 

variance  σ2. If the test statistic value of the Augmented Dickey-Fuller (ADF) test is less than the critical value, 

we reject the null hypothesis that the data has a unit root. Similarly, the unit root test as proposed by 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test the hypothesis below:  

H0: Series is level or trend stationary 

        H1: Series is level or trend non-stationary 

If the test statistic value of the KPSS is less than the critical value, we do not reject the null hypothesis that the 

data is level or trend stationary.   

                                                                  

2.3. SARIMA model 

Seasonality in a time series is a regular pattern of changes that repeats over specific time periods. The SARIMA 

model incorporates both non-seasonal and seasonal factors in a multiplicative model. The model is written as: 

ARIMA (p, d, q) × (P, D, Q)s where p, d, q, are the non-seasonal orders AR, differencing and MA respectively. P, 

D, Q, are the seasonal AR order, seasonal differencing order and seasonal MA order respectively. S=time span of 

repeating seasonal pattern. This model can be written more formally as:  

 

𝜑(𝐵)𝛷(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑦𝑡  = 𝜃(𝐵)𝛩(𝐵)𝜀𝑡                           (3)                                       

The non-seasonal components are:   

AR:φ(B) = 1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋯ − 𝜑𝑝𝐵𝑝                                       (4)                                                                         

MA:  θ(B) = 1 +  𝜃1𝐵 + 𝜃2𝐵2  … + 𝜃𝑞𝐵𝑞                                          (5)                                                                                
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The seasonal components are:  

Seasonal AR: Φ(B) = 1 − 𝛷1𝐵𝑆 − 𝛷2𝐵2𝑆 − ⋯ − 𝛷𝑃𝐵𝑃𝑆                                (6)                                               

Seasonal MA:  Θ(B) = 1 +  𝛩1𝐵𝑆  + 𝛩2𝐵2𝑆  … + 𝛩𝑄𝐵𝑄𝑆                           (7)                                                                       

2.4. The Box - Jenkins Methodology  

Box and Jenkins (1976) proposed a three step iterative approach to modeling as follows:  

 

 Model identification 

 Model parameter estimation 

 Model diagnostics (goodness of fit testing). 

 

2.4.1. Model Identification  

In the identification stage of model building, we determine the possible models based on the data pattern. The 

values of p, d, q, P, D and Q are determined. But before we can begin to search for the best model for the 

data, the first condition is to check whether the series is stationary or not.  

 

2.4.2. Parameter Estimation  

The second step is the estimation of the model parameters for the tentative models that have been selected. Here, 

the model with the minimum values of Akaike Information Criterion (AIC), modified Akaike Information 

Criterion (AICc), and Normalized Bayesian Information Criterion (BIC) were considered as the best model. In 

general, the AIC, AICc and BIC are computed as follows:  

 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑜𝑔 𝐿                                                                                               (8) 

or 

                                                     

𝐴𝐼𝐶 = 2𝑘 + 𝑛𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑛
)                                                                                          (9) 

 

                                                      

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘+1)

𝑛−𝑘−1
                                                                                              (10) 

 

                                                       

𝐵𝐼𝐶 = −2𝐿𝑜𝑔 𝐿 + 𝑘𝑙𝑜𝑔 𝑛                                                                                    (11)  

  

where k: is the number of model 

parameters  

L: is the maximum value of the likelihood function for the estimated model   

RSS: is the residual sum of squares of the estimated model  

n: is the number of observations 

σ2
t: is the error variance  

 

2.4.3. Model Diagnostics (Goodness of fit)  

Ideally, a model should extract all systematic information from the data. The diagnostic check is used to 

determine the adequacy of the chosen model usually based on the residuals of the model. One assumption of 

the ARIMA model is that, the residuals of the model should be white noise. A series {Ԑt} is said to be white 

noise if {Ԑt } is a sequence of independent and identically distributed (i.i.d) random variable with finite mean 

and variance. In addition if {Ԑt} is normally distributed with mean zero and variance δ2, then the series is 

called Gaussian White Noise. For a white noise series, all the ACFs are zero. In practice, if the residuals of 

the model is white noise, then the ACF of the residuals are approximately zero. If the assumptions are not 

fulfilled then different model for the series must be search for. An overall check of model adequacy is 

provided by the Ljung-Box Q statistic. The test statistic is given by; 

𝑄𝑚 = 𝑛(𝑛 + 2) ∑
𝑟𝑘

2

𝑛−𝑘

𝑚
𝑘=1                                                         (12) 

rk
2 = the residuals autocorrelation at lag 𝑘.  

n= the number of residuals. 
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m= the number of time lags included in the test. 

When the p-value associated with the Q is large the model is considered adequate, else the whole estimation 

process has to start again in order to get the most adequate model.  

ARCH LM-test for conformity of the presence of, or otherwise ARCH effect was also performed. 

The hypothesis is given by: 

     H0 = There is no conditional heteroscedasticity in the residuals of the model 

H1 = There is conditional heteroscedasticity in the residuals of the model 

The test statistic is given by 

                                                                         

𝐿𝑀 =  𝑇𝑅2                                                                                                  (13) 

Where T = number of observations 

R
2 
= coefficient of determination computed from the auxiliary regression  

Normality test of the residuals were carried out by Jarque Bera test and Shapiro Wilk test. The null hypothesis is 

that the residuals follow a normal distribution against the alternative hypothesis that the residuals do not follow a 

normal distribution.  

All statistical tests were controlled at 5% significance level (α). 

 

3. Results and Discussion  

3.1. Pattern of maternal mortality recorded from January, 2000 to December, 2014 

Figure 1 shows that the series has a slightly noticeable decreasing trend hence appears to be non-stationary since 

the series is not constant in size overtime. From Figure 2, we observed existence of seasonal variations in the 

series which is constant over time, the random effect is also constant over time and the pattern (trend) of the 

series which seems not stationary thus not constant over time.  

  Figure 1. Time series plot of maternal deaths                                Figure 2. Decomposed time series plot  

 

3.2. Model Identification  

Figure 3 shows the ACF and PACF of the series with 95% confidence limits. From the correlogram, many 

spikes in both the ACF and PACF were outside the confidence interval. Also, the ACF shows a seasonal 

movement with significant spikes at the seasonal lags. KPSS test is used for verifying whether or not the 

series is stationary, while ADF test is used for verifying whether or not there is unit root. From Table 1, the 

KPSS test with a p-value of 0.01 indicates that the series is not stationary; this is confirmed by the ADF test 

with a p-value of 0.1. 

 

Table 1. Unit Root and Stationarity test of the series 

Test type Test  

Statistic 

Lag order Alpha value P-value 

            KPSS 0.4885 3 0.05 0.01 

           ADF -5.8827 5 0.05 0.1 
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Table 2 shows the stationarity and unit root test for the first seasonal differenced series. Both the KPSS test 

and ADF test with p-values of 0.1 and 0.01 respectively showing the non-existence of unit root hence the 

first seasonal differenced series is stationary. 

 

 

      Table 2. Unit Root and Stationarity test for first differenced series 

Test type Test  

Statistic 

Lag order Alpha value P-value 

            KPSS 0.0117 3 0.05 0.1 

           ADF -8.3774 5 0.05 0.01 

  
                                                                 Figure 3: Correlogram of the series 

 

 
                                                     Figure 4. Correlogram of the first seasonal differenced series 

 

The significant spikes in the PACF at lags 12 and 24 and also at lag 12 of the ACF of the seasonal differenced 

series is suggestive of a seasonal AR (2) and a seasonal MA (1) terms. In the non-seasonal lags, the PACF 

truncates after lag 3 suggesting a possible AR (3) term. The pattern in the ACF is not indicative of any simple 

model. From these plots, SARIMA (3, 0, 0) (P, 1, Q) has been identified. Consequently, other models while 

varying P and Q were fitted as shown in Table 3. 

 

 

Table 3. Tentative SARIMA Models for the series 

      Models AIC AICc BIC 

       SARIMA(3, 0, 0) × (1, 1, 1)12 559.71 560.08 575.33 

       SARIMA(3, 0, 0)×(1, 1, 2)12 557.17* 557.69* 575.21* 

       SARIMA(3, 0, 0) × (1, 1, 3)12  558.96 559.06 580.83 

       SARIMA(3, 0, 0) × (2, 1, 1)12 561.22 5561.75 579.97 

       SARIMA(3, 0, 0) × (2, 1, 2)12 558.92 559.62 580.79 

       SARIMA(3, 0, 0) × (2, 1, 3)12         564.31 565.21 589.30 

       SARIMA(3, 0, 0) × (3, 1, 1)12 562.45 563.15 584.32 

*:Best based on the selected criterion 
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Among those possible models, comparing their AIC, AICc and BIC as shown in Table 3, SARIMA (3, 0, 0) 

(1, 1, 2)12 has the least values indicating that it is the appropriate model that fit the data well. 

 

3.3. Model Estimation and Evaluation 

Parameters of the model were estimated using the method of maximum likelihood. From Table 4, we 

conclude that the parameters are significant at 5% significant level.  

 

  Table 4. Parameter estimates of SARIMA (3, 0, 0) × (1, 1, 2)12 

    Type Coefficients Standard error T-value P-value 

    AR(3) 0.1704 0.8693 2.2217 0.0010 

    SAR(1) 

    SMA(2) 

0.8693 

0.9996 

0.0964 

0.3111 

9.0204 

3.2132 

0.0000 

0.0000 

   𝜎2 =1.182   

 

 3.4. Model Diagnostics (Goodness of fit)  

Diagnostic checks are performed on the residuals to see if they are randomly and normally distributed. From 

Table 5 and Figure 5, the Ljung-Box test statistic had p-values greater than the alpha (α) value of 0.05 showing 

that there is no serial correlation in the residuals of the model since the p-values are all greater than the alpha (α) 

value, hence the model is adequate.  

 

Table 5. Ljung-Box test statistic for model Diagnostics 

              Lags  Test statistic  P-value 

               12  15.4149  0.2195 

               24  31.3413  0.1442 

               36  48.1773  0.0844 

               48  62.1794  0.0802 

 

The ARCH-LM test in Table 6 indicates that there is clearly no evidence of heteroscedasticity in the model 

residuals, since the p-values are all greater than the alpha (α) value. This makes the model adequate for 

predictions.  

 

Table 6. ARCH-LM test of residuals of SARIMA (3, 0, 0) × (1, 1, 2)12 of the series 

       Lag  Chi-square  Df  P-value  

       12  8.9209  12  0.7097 

       24  19.4524 24  0.7275  

       36  

 

       48 

29.0896 

 

35.1220 

  

36  

 

48 

0.7862 

 

 0.9169 

 

The Jarque Bera test shows that the residuals are normal since its p-values are greater than the 5% significant 

level. This is confirmed by the Shapiro Wilks test with a p-value of 0.2676 as shown in Table 7. 
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   Table 7. Normality Test for Residual of Maternal Deaths 

     Normality test Test statistic P-value 

      Jarque Bera 0.9385 0.6255 

      Shapiro-wilk 0.9904 0.2676 

 

The fitted model is therefore given by 

  

 (1 − 0.07B − 0.17B2 − 0.22B3)(1 − 0.86B12)(1 − B12)yt = (1 − 1.93B12 0.99B24)εt          (14) 

 

 

       Figure 5. Diagnostic plots of SARIMA (3, 0, 0) × (1, 1, 2)12 of maternal mortality 

 

3.5. Forecasting  

Finally we made a two year forecast with our model as shown in Figure 6. The forecasted maternal mortality 

cases generally showed a decreasing trend but increased during the months of May to July and from 

September to December for the forecasted period, which is an insight for public health workers. 

 
Figure 6. Time series plot of actual and forecast maternal deaths 

4. Conclusion  

Maternal mortality is one of the most sensitive indicators of health disparity between richer and poorer nations. 

The Health of a pregnant woman is very significant to the growth of our economy thus calling for major 

attention. In this study, we model maternal mortality cases from January, 2000 to December, 2014 at the Bawku 

Municipal Hospital, UE region of Ghana using SARIMA. The appropriate model identified was SARIMA (3, 0, 

0) × (1, 1, 2)12. The forecasted maternal mortality cases generally showed a decreasing trend however, increased 

during the months of May to July and from September to December, which is an insight for public health 

workers. Future research could integrate maternal mortality data from other regions of the country for an in-

depth analysis. 
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