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ABSTRACT 

 In this paper, we developed a new Numerical Integrator for solving oscillatory and exponential problems that 

can be represented by  Ordinary Differential Equation. This integrator was applied in solving some physical 

problems including the dynamic and aerospace routing problem. The results obtained showed that the numerical 

integrator is suitable for the simulation of these  problems. 
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Introduction 

Differential equations originate from the mathematical formulation of a great variety of problems in Science and 

Engineering  (Shepley ,1984). Such problems give rise to some of the types of ordinary differential equations . In 

literature, Some of these  problems involved Orthogonal and Oblique Trajectories, Mechanics, Frictional Forces, 

Rate and Population  among others.  The usual approach to the study and analysis of such system is to solve the 

resulting equation and  interpret the solution in terms of the quantities involved in the original problems.  

Unfortunately not all of these problems have solutions that can be expressed in explicit form hence we find 

approximate solution using numerical methods. In this paper we tried to use a new  algorithm  generated from 

non-polynomial integrating function to solve some dynamical problems including the dynamic and aerospace 

routine problems. (Gerald, 1981) 

 

THE DERIVATION OF THE SCHEME 

We assume that the theoretical solution 𝒚(𝒙) to the initial value problem  

 𝒚′ = 𝒇(𝒙, 𝒚),   𝒚(𝒙𝟎) = 𝒚𝟎   can be locally represented in the interval [𝒙𝒏,   𝒙𝒏+𝟏  ],  𝒏 ≥ 𝟎 by the polynomial 

interpolating function; 

𝑭(𝒙) = (𝜶𝟏 + 𝜶𝟐)𝒆
−𝟐𝒙 + 𝜶𝟑𝒙

𝟐 + 𝜶𝟒𝒙 + 𝜶𝟓              (1) 

Where 𝜶𝟏, 𝜶𝟐, 𝜶𝟑𝒂𝒏𝒅 𝜶𝟒 are real undetermined coefficients, and 𝜶𝟓 is a constant. 

(Ayinde, et. al. 2015) 

 We shall assume 𝒚𝒏  is a numerical estimate to the theoretical solution 𝒚(𝒙) and                    𝒇𝒏 = 𝒇(𝒙𝒏,  𝒚𝒏). 

We define mesh points as follows: 𝒙𝒏 = 𝒂 + 𝒏𝒉, 𝒏 = 𝟎,  𝟏,  𝟐,  …      (2) 

We can impose the following constraints on the interpolating function (1) in order to get the undetermined 

coefficients. 

a. The interpolating function must coincide with the theoretical solution at 𝒙 = 𝒙𝒏 𝒂𝒏𝒅 𝒙 = 𝒙𝒏+𝟏. Hence we 

required that 
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𝑭(𝒙𝒏) = (𝜶𝟏 + 𝜶𝟐)𝒆
−𝟐𝒙𝒏 + 𝜶𝟑𝒙𝒏

𝟐 + 𝜶𝟒𝒙𝒏 + 𝜶𝟓             (3) 

𝑭(𝒙𝒏+𝟏) = (𝜶𝟏 + 𝜶𝟐)𝒆
−𝟐𝒙𝒏+𝟏 + 𝜶𝟑𝒙𝒏+𝟏

𝟐 + 𝜶𝟒𝒙𝒏+𝟏 + 𝜶𝟓        (4) 

b. Secondly, the derivatives of the interpolating function are required to coincide with the differential equation as 

well as its first, second, and third derivatives with respect to 𝒙 𝒂𝒕 𝒙 = 𝒙𝒏  

We denote the ith total derivatives of 𝒇(𝒙, 𝒚) with respect to 𝒙  with 𝒇(𝒊) such that  

𝑭𝟏(𝒙𝒏) = 𝒇𝒏,  𝑭𝟐(𝒙𝒏) = 𝒇𝒏
𝟏 ,  𝑭𝟑(𝒙𝒏) = 𝒇𝒏

𝟐        (5) 

This implies that,  

𝒇𝒏 = −𝟐(𝜶𝟏 + 𝜶𝟐)𝒆
−𝟐𝒙𝒏 + 𝟐𝜶𝟑𝒙𝒏 + 𝜶𝟒             (6) 

𝒇𝒏
𝟏 = 𝟒(𝜶𝟏 + 𝜶𝟐)𝒆

−𝟐𝒙𝒏 + 𝟐𝜶𝟑              (7) 

𝒇𝒏
𝟐 = −𝟖(𝜶𝟏 + 𝜶𝟐)𝒆

−𝟐𝒙𝒏                (8) 

Solving for 𝜶𝟏 + 𝜶𝟐 from equation (8), we have 

(𝜶𝟏 + 𝜶𝟐) = −
𝟏

𝟖
𝒇𝒏

𝟐𝒆𝟐𝒙𝒏                (9) 

Substituting (9) into (7), we have  

𝜶𝟑 =
𝟏

𝟐
(𝒇𝒏

𝟏 +
𝟏

𝟐
𝒇𝒏
𝟐   )              (10) 

Substituting (10) and (9) into (6), we have 

𝜶𝟒 = (𝒇𝒏 −
𝟏

𝟒
𝒇𝒏
𝟐) − (𝒇𝒏

𝟏 +
𝟏

𝟐
𝒇𝒏
𝟐)𝒙𝒏              (11) 

Since 𝑭(𝒙𝒏+𝟏) ≡ 𝒚(𝒙𝒏+𝟏) and 𝑭(𝒙𝒏) ≡ 𝒚(𝒙𝒏) 

Implies that  𝒚(𝒙𝒏+𝟏) = 𝒚𝒏+𝟏 and 𝒚(𝒙𝒏) = 𝒚𝒏      (12) 

𝑭(𝒙𝒏+𝟏) − 𝑭(𝒙𝒏) = 𝒚𝒏+𝟏 − 𝒚𝒏 and 

Then we shall have  

𝒚𝒏+𝟏 − 𝒚𝒏 = (𝜶𝟏 + 𝜶𝟐)[𝒆
−𝟐𝒙𝒏+𝟏 − 𝒆−𝟐𝒙𝒏] + 𝜶𝟑[𝒙𝒏+𝟏

𝟐 − 𝒙𝒏
𝟐] 

        +𝜶𝟒[𝒙𝒏+𝟏 − 𝒙𝒏]        (13) 

Recall that 𝒙𝒏 = 𝒂 + 𝒏𝒉,  𝒙𝒏+𝟏 = 𝒂 + (𝒏 + 𝟏)𝒉 with 𝒏 = 𝟎, 𝟏, 𝟐……  

Substitute (9), (10) and (11) into (13), we have  

𝒚𝒏+𝟏 = 𝒚𝒏 −
𝟏

𝟖
𝒇𝒏
𝟐(𝒆−𝟐𝒉 − 𝟏) +

𝟏

𝟐
(𝒇𝒏

𝟏 +
𝟏

𝟐
𝒇𝒏
𝟐)𝒉𝟐 + (𝒇𝒏 −

𝟏

𝟒
𝒇𝒏
𝟐)𝒉    (14) 

Hence we have a new scheme for the solution of first order ordinary differential equation. 

 

IMPLEMENTATION AND APPLICATION OF THE DERIVED SCHEME 

For the implementation of scheme (14), see (Ayinde, et. al. 2015). We shall consider some typical examples of 

applications of the scheme (14) to the first order differential equations on problems in physics and engineering.  

Problem 1:  (Dynamics and Aerospace problems). (Amos, 2011) 
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An Airplane uses a parachute and other means of braking as it shows down on the runway after landing. Its 

acceleration is given by  

𝒂 = −𝟎. 𝟎𝟎𝟒𝟓𝒗𝟐 − 𝟑          (15) 

Consider an airplane with a velocity of 300km/h that opens its parachute and starts decelerating at t = 0.  By 

solving the differential equation, determine the velocity as a function of time using numerical integration. 

 

Fig 1 

 

Formulation 

Since the acceleration is the rate of change in velocity. We shall calculate the reduction in the speed of the 

aircraft as its decelerating. 

Since  𝒂 =
𝒅𝒗

𝒅𝒕
 ,  

Then   
𝒅𝒗

𝒅𝒕
= −𝟎. 𝟎𝟎𝟒𝟓𝒗𝟐 − 𝟑 ,  and  the analytical solution is  

𝒗(𝒕) =
𝟐𝟎

𝟑
∗ 𝟏𝟓

𝟏

𝟐 ∗ 𝒕𝒂𝒏 (
𝟏

𝟑𝟎𝟎
) ∗ (−𝟗 ∗ 𝒕 + 𝟐𝟎 ∗ 𝟏𝟓

𝟏

𝟐) ∗ 𝒂𝒕𝒂𝒏 (𝟑 ∗ 𝟏𝟓
𝟏

𝟐))) ∗ 𝟏𝟓 ∗ (𝟏/𝟐)).  (16) 

The initial condition will be v(0)=300. Then we can now obtain the different velocity in  time as the airplane 

decelerate. The results using the scheme is compared with the analytic solution as shown below.  

Table 1: Result from the problem of an airplane braking using parachute 

tn Scheme(14) Result Theoretical Result Error of Deviation 

0.000     300.00000000000000       300.0000000000000         0.000000000000000 

0.100     263.99841227728026       264.0514381499183         0.053025872635715 

1.000     125.93899221271901       126.0495820054564         0.110589792737329 

2.000     78.266881760922431       78.37739396979794         0.110512208875534 

3.000     55.537920929738412       55.64804898109734         0.110128051358892 

4.000     41.945514001769929       42.05545828945492         0.109944287685053 

5.000     32.695537431026430       32.80538980795871         0.109852376932281 

6.000     25.834654601702653       25.94445671497935         0.109802113276732 

7.000     20.414105921491149       20.52387821522128         0.109772293730089 

8.000     15.913947704251353       16.02370097527729         0.109753271025877 

9.000     12.021673942110606       12.13141420914740         0.109740267036804 

10.00     8.5340968756101890       8.643827588705030         0.109730713094841 

11.00     5.3088116283568750       5.418534731580277         0.109723103223403 

12.00     2.2377468519998570       2.347463304790785         0.109716452790927 

12.10     1.9355733376167090       2.045289148280883         0.109715810664174 

12.20     1.6339555655536190       1.743670735455116         0.109715169901497 

12.30     1.3328107738469600       1.442525303668002         0.109714529821042 

12.40     1.0320567149976403       1.141770604739996         0.109713889742353 
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12.50     0.7316115655988028       0.841324814583711         0.109713248984883 

12.60     0.4313938369430682       0.541106443810105         0.109712606866424 

12.70     0.1313222864047087       0.241034249106394         0.109711962701607 

12.80     -0.168684170620124       - 0.05897285481983         0.109711315800341 

 

 

Fig 2: The solution curves of the Dynamic Aerospace problem    

 

 

Fig 3: The Absolute Error of deviation of the scheme from the Analytic solution 

 

NOTE: We can conclude from the result above  that the velocity of the airplane is 0 between the interval of 

12.70s and 12.80s. If we  find  the average we have 12.75s as the time the airplane finally came to a stop. 

Problem 2: Problem of a falling body under air resistance (Shepley, 1984) 

A body weighing 8kg falls from rest toward the earth from a great height. As it falls, air resistance act upon it, 

and we shall assume that this resistance is numerically equal to 2v, where v is the velocity. (meter per seconds). 

The problem is to find the velocity and distance fallen at time t seconds. 

 

Formulation. 

We choose the positive x axis vertically downward along the path of the body B and the origin as the point from 

which the body fell. The forces acting on the body are: 

1. F1, its weight, 8kg, which acts downward and hence, is positive. 

y(
t n

) 

tn 

Solution curve  

Scheme(14) Result

Theoretical Result

A
b

so
lu

te
 E

rr
o

r 

tn 

Error of Deviation  
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2. F2, the air resistance, numerically equal to 2v, which acts upward and is a negative quantity -2v. 

The figure below shows these forces as indicated. 

 

 

Fig 4 

From the   Newton’s second law, F = ma, the force acting on the body can be represented thus  

𝒎
𝒅𝒗

𝒅𝒕
= 𝑭𝟏 + 𝑭𝟐           (17) 

 taking 𝒈 = 𝟑𝟐 and using 𝒎 = 𝒘
𝒈⁄ = 𝟖

𝟑𝟐⁄ = 𝟏
𝟒⁄ , 

Hence,  
𝟏

𝟒

𝒅𝒗

𝒅𝒕
= 𝟖 − 𝟐𝒗         (18) 

Since the body was initially at rest, we have the initial condition v(0) = 0 

Analytic Solution. 

From equation (18), we have  
𝒅𝒗

𝟖−𝟐𝒗
= 𝟒𝒅𝒕        (19)  

Integrating and applying the condition  v(0) = 0 to (19), we have 

The velocity at time t given by 

 𝒗 = 𝟒(𝟏 − 𝒆−𝟖𝒕)          (20) 

The result using scheme (14) and Analytic solution (20 ) is as shown below : 

Table 2 : THE BODY FALLING  PROBLEM 

tn Scheme(14) Result Theoretical Result Error of Deviation 

0.00     0.000000000000000     0.000000000000000     0.00000000000000000000 

0.10     2.202720091710861     2.202684143531114     3.594817974672537e-005 

0.20     3.192466028759494     3.192413928021379     5.210073811534599e-005 

0.30     3.637187545392783     3.637128186842350     5.935855043315286e-005 

0.40     3.837013803782256     3.836951184086535     6.261969572030068e-005 

0.50     3.926801529467819     3.926737444445063     6.408502275556671e-005 

0.60     3.967145755240555     3.967081011803920     6.474343663454008e-005 

0.70     3.985273584415130     3.985208545134068     6.503928106127432e-005 

0.80     3.993418943119835     3.993353770907304     6.517221253110606e-005 

0.90     3.997078888708984     3.997013656766493     6.523194249119513e-005 

1.00     3.998723408269282     3.998658149488390     6.525878089203019e-005 
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Fig 5: The solution curves of the Falling Body  problem    

 

Fig 6: The Absolute Error of deviation of the scheme from the Analytic solution  

In conclusion from table2 and Fig 5 we can see that as 𝒕𝒏 → 𝟏 , the velocity 𝒗 approaches the limiting velocity 

(4m/sec). We also observe that this limiting velocity is approximately attained in a short time. 

Furthermore, to determine the distance fallen at time t, (20) can be written as  

𝒅𝒙

𝒅𝒕
= 𝟒(𝟏 − 𝒆−𝟖𝒕)          (21) 

By solving, we obtain 

𝒙 = 𝟒(𝒕 +
𝟏

𝟖
𝒆−𝟖𝒕 −

𝟏

𝟖
)          (22) 

Again applying scheme (14) and comparing with Analytic solution (22) we have: 

Table 3 

A BODY FALLING TOWARDS THE EARTH (FINDING THE DISTANCE) 

tn Scheme(14) Result Theoretical Result Error of Deviation 

0.00     0.000000000000000     0.000000000000000     0.000000000000000 

0.10     0.119384098495418     0.124664482058611     0.005280383563193 

0.20     0.393295246157544     0.400948258997328     0.007653012839783 

0.30     0.736639872749838     0.745358976644706     0.008719103894868 

0.40     1.111182972504879     1.120381101989183     0.009198129484304 

0.50     1.499744449888177     1.509157819444367     0.009413369556191 

0.60     1.894604790369782     1.904114873524510     0.009510083154729 

0.70     2.292295392482466     2.301848931858242     0.009553539375776 

y(
t n

) 

tn 

Solution curve  

Scheme(14) Result

Theoretical Result

A
b

so
lu

te
 E

rr
o

r 

tn 

Error of Deviation  
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0.80     2.691257713122024     2.700830778636587     0.009573065514563 

0.90     3.090791453729911     3.100373292904188     0.009581839174277 

1.00     3.490581949880243     3.500167731313951     0.009585781433708 

  

From Table (3), we can conclude that as  𝒙 increases as  𝒕 increases. Hence it implies that as the body 

reaches the earth’s surface its motion ceased. 

 

 

Fig 7:  The solution curves of the distance travelled by the  Falling Body    

 

 

Fig 8: The Absolute Error of deviation of the scheme from the Analytic solution  

 

CONCLUSION 

The application of the new scheme on the selected  problems shows the effectiveness of the scheme. Even 

though  it may not  solve every problem,  it is a signal that this  method can be employed and can compare 

favourably with other methods . It can also be  better than the finite element method that is widely use for this 

class of problems.  

The new scheme compared favourably with the existing standard schemes like that of Fatunla (1976), Ibijola 

(1997) and Ogunrinde (2010) .From the graphs we can infer  that the results shows a measure of convergence 

towards the theoretical solution . The analysis of the schemes properties and stability analysis will be  available 

in another article. 
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