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Abstract 

This paper investigates the properties of solution for a reactive temperature dependent viscous Couette flow through parallel 

plates with non-uniform temperature. We showed that the problem has two distinct solutions and the solution breaks down 

for some values of the Frank-kameneskii parameter. Effect of various parameters in the model are presented and discussed.  
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1. Introduction 

Studies on combustion problem has been an area of active research over the past few decades, this is because it has many 

practical applications. Safety speaking is the major interest on the study of combustion which is to prevent unwanted 

thermal ignition, pressure build up and detonation as described in (Williams, 1999). However, in many cases of interest, 

exposure of reactive fluids to sufficiently hot surfaces cannot be avoided. This has led to significant amount of work in 

literature (Kobo and Makinde (2010), Chinyoka and Makinde (2011), Makinde and Anwar Beg (2010) and Lacey (1998)) in 

order to ensure safety of lives, properties and quality of the final product from the study of reactive hydromagnetic channel 

flow. Other notable work on combustion includes (Goldshtein and Zinoviev (1991), Boling and Peicheng (1999) and 

Palymskiy, Fomin and Hieronymus (1999)) and many more. 

It is known that combustion models have multiple solutions, single solution or no solution depending on the value of the 

Frank-kameneskii parameter as described in Buckmaster and Ludford (1983). Based on the fact by using asymptotic 

techniques, multiple solutions were presented for the steady reactive-diffusive problem for a non-isothermal permeable 

pellet with first-order Arrhenius kinetic as stated in Kapila and Matkowsky (1979) and Kapila et al (1980). Recently, 

Mohammed (2006) applied the maximum principle to proof the existence of multiple solutions to a steady reactive-diffusive 

problem for a non-isothermal permeable pellet with first-order Arrhenius kinetics. 

In this paper attention is focused on the properties of solution for a reactive temperature dependent viscous Couette flow 

under Arrhenius kinetics. In order to prove the existence of multiple solutions of the coupled non-linear problem, the 

original problem is modified by using a suitable transformation and analytical solution in the form of Adomian 

decomposition method is applied to the modified problem, we showed the upper and the lower branches of the solutions 

exist.  

The rest of the paper is organized as follows: section 2 provides adequate information on the formulation and 

non-dimensionalization of the problem. In section 3, the main results are presented. Section 4 presents the results and 

discussions while section 5 concludes the work. 

 

2. Mathematical Formulation 

Consider a reactive, incompressible. The flow is considered steady and is fully developed between two infinite parallel 

isothermal plates. Neglecting the reactant consumption, the dimensionless flow governing equations are following [2],   
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For many cases of interest and by Frank-Kameneskii approximation, we take 0=β . A good example of such 

approximation is the Bratu – type equation for combustion in Aregbesola (2003) such that (1) and (2) reduce to  
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Upon integration of (5) we get  
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a constant to be determined by using the boundary condition (3).  

Substituting (7) in (6) leads to 
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Where λ is the Frank – Kameneski parameter such that ( )λγ += 2Brm  (9) 

 

3. Method of Solution 

To show that (8) has two solutions if cγγ < , one solution if cγγ = and no solution if cγγ > , we introduce the 

transformation 

   
Teyw −=)(    (10) 

that is, 

    )(ln ywT −=    (11a) 
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and  
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Substituting (11a), (11b), and (11c) into (9), we have  
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Writing (12) in a better form, we have  

   0)())(()()( 2,,, =−− ywywywyw γ   (13) 

Subject to the following boundary conditions 

   
1)1(1)0( == wandw   (14) 

Introducing a series solution )(yS that satisfies (14) in the form  

   )(1)( ySyw += ,   (15a) 

   )(')(' ySyw =  and   (15b) 

   )()( '''' ySyw =    (15c) 

where )( yS is a series solution that is needed to seek the two solutions. Using (15a), (15b) and (15c) in (13), we deduced 

as follows: 

   ( )[ ] ( ) ( )[ ] ( )[ ] 011
2'''' =+−−+ ySySySyS γ  (16) Subject to  

   ( ) ( ) 010 == SS    (17) 

Simplifying (16) in a proper way, we have  
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Where ( ) AS =0'
, is a constant to be determined by using the boundary condition. 

Integrating (19a) again, we have 
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We define a series of the form 
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We let the nonlinear terms be represented as  
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Using (22) and (23) in (21) and taking the Taylor’s expansion we obtained few terms for nB and nC  
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Then the zeroth component of (21) can be written following new modification in Wazwaz and El – Sayed (2001) 
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To obtain other terms of the series, we use the recurrence relation 
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Obtaining few terms of the series leads to  
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Where A is a constant to be determined later and required to seek the two solutions of the problem. Then the partial sum  
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It is important to note that the accuracy of the series can be drastically improved by computing more terms of the series. 

Invoking the boundary condition ( ) 01 =S  gives 
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Back-solving, (15a) becomes 
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Therefore, (39) and (40) give the two solutions of temperature distribution with the channel.  

To find the velocity of the fluid flow, we reconsider (8) and integrate to obtain  
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Where m is to be evaluated using ( ) 11 =u , the two solutions of the velocity are as follows: 
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It is obvious that (41) cannot be solved in algebraic way therefore the exponential function needed to be Taylors’ expanded 

to be able to get the two solutions for velocity profiles. 

4. Discussion of Results 

Figure 1 displays the upper and lower solutions for γ = 0.5. It showed that the maximum values of the upper and lower 

solutions occurred at the centre line of the channel, that is, when y = 0.5. In general, the temperature is maximal at the 

centre and decreases as we move towards the boundaries in the channel. 

The lower and upper solutions of velocity profile are shown in figure 2. The two solutions satisfy the boundary conditions. 

It is observed that the fluid velocity is zero at the lower region and increases gradually towards the upper moving plate. The 

lower solution increases linearly while the upper solution increases nonlinearly across the channel. 

The temperature profile of the upper solution with various values of γ is shown in figure 3. It is noticed that the temperature 

is almost the same before the centre line and decreases as γ increases after the centre line. The fluid behaviour as secondary 

solution is highly noticed. 

Figure 4 shows the typical variations of the fluid temperature of lower solution which is similar to [2]. The fluid temperature 

increases with increasing values of γ. This is due to an increase in heat generation within the fluid due to exothermic 

reaction as shown in figure 4. 
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The upper solution of the velocity profiles for various values of γ is shown in figure 5. It is observed that, the parameter γ 

increases causing the velocity profile to increase nonlinearly across the channel to a maximum of y = 1. 

Figure 6 displays the lower solution of the velocity profiles for various values of γ. It is good to note that, the velocity 

remained unchanged for various values of γ as the profile maintain a linear flow that is equivalent to y = u(y) which is 

standard Couette flow. 

 

5. Conclusion 

We have studied the multiplicity and properties of solutions for a reactive variable viscous Couette flow through parallel 

plates with non-uniform temperature under Arrhenius Kinetics. It is shown that there exist two distinct upper and lower 

solutions and the solution breaks down for some values of the Frank-kameneskii parameter for temperature and velocity 

profiles using Adomian decomposition method with suitable transformation to the modified problems. 
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Nomenclature 

L Channel characteristic length     E Activation energy    

G Reaction Kinetic      R Universal gas constant      

ρ  Fluid density       ε Channel aspect ratio 

λ Frank – Kamenettski parameter   β Activation energy parameter 

T  Fluid temperature (k)     To  plate surface temperature (k) 

Co Reactant species initial concentration  Cp Specific heat at constant pressure 

µ Viscosity        Re Reynolds number 

U Velocity scale (ms
-1

)      Pe Peclet Number 

k Thermal conductivity coefficient (Wm
-1

k
-1

) Q  Heat generation term (W) 

Br Brinkman number      Qo  Dimensional heat generation coefficient 

A Reaction rate constant     u Axial velocity (ms
-1

) 

v Normal velocity (ms
-1

)     x, y  Coordinate system (m) 
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Figure 1: Graph showing upper and lower solutions for temperature when γ = 0.5 
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Figure 2: Graph showing upper and lower solutions for velocity when γ = 0.5 
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Figure 3: Upper solution of temperature profiles for various values of γ  
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Figure 4: Lower solution of temperature profiles for various values of γ 
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Figure 5: Upper solution of velocity profiles for various values of γ 
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Figure 6: Lower solution of velocity profiles for various values of γ 
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