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Abstract

In this work, we consider the combine effects of slip boundary ohmic heating on MHD flow of a third grade fluid down an
inclined plane. The couple non-linear ordinary differential equations arising from the model were solved using both the
regular and homotopy perturbation. Effects of the various thermo physical parameters are studied and depicted graphically.
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1. Introduction

Non-Newtonian fluid flow play an important role’s in several industrial manufacturing processes. An example of such
non-Newtonian fluids includes drilling mud, polymer solutions or melts, certain oils and greases and many other emulsions.
Some of the typical applications of non-Newtonian fluid flow are noticed in the drilling of oil and gas wells, polymer sheet
extrusion from a dye, glass fibber and paper production, drawing of plastic films, waste fluids e.t.c.

Because of the complexity of non-Newtonian fluids, it is very difficulty to analyse a single model that exhibits all its
properties. The normal stress differences is describe in second grade of non-Newtonian fluid, but it can not predict shear
thinning or thickening properties due to its constant apparent viscosity. The third grade fluid model attempt to include such
characteristics of visco-elastics fluids.

Several researchers discussed the slip effect on fluid flow. Asghar et. al. (2006) examines the effects of partial slip on the
rotating flow of an incompressible third grade fluid past a uniformly porous plate. Miccal and James (2008) discuss the
effect of replacing the standard no slip boundary condition of fluid mechanics applying for the so called Falkner-Skan
solutions, with a boundary condition that allows some degree of tangential fluid slip. Ellahi (2009) discuss the slip condition
of an Oldroyd 8 — constant fluid and Sajid (2008) investigate the effect of slip condition on thin film flow.

In this paper, we examine the effects of slip boundary condition on a thin film flow of an MHD third grade fluid down an
inclined plane. The heat transfer analysis is also carried out.

Many analytical and numerical techniques have been proposed by various authors for the solution of governing nonlinear
differential equations of non-Newtonian fluids. We have solved the governing nonlinear equation of present problem using
the traditional perturbation method (Nayfeh,1979) and homotopy perturbation method (He 2003 & 2009). We noticed that
the solution obtain from the two methods are in a complete agreement. It is also observed that homotopy perturbation
method is powerful analytical technique that is simple and straight forward and does not require the existence of any small
or large parameter as does in traditional perturbation method. The plan of the paper is as follow: Section 2 contains the basic
equations. Section 3 deals with the formulation of the problem with slip condition and also include solutions of the problem
by traditional perturbation method and homotopy perturbation method. Results and discussion are presented in section 4
while section 5 concludes the paper.

2. Basic Equation

The fundamental equations governing the MHD flow of an incompressible electrically conducting fluid are the field
equation:

Vov=0 (1)

108



Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) pLay
Vol.2, No.9, 2012 nst
Dv .
p—=-Vp+divt+JxB+ pf ()
Dt
where p is the density f the fluid, v is the fluid velocity, B is the magnetic induction so that
B=B,+b 3)
and

is the current density, O is the electrical conductivity, FE is the electrical filed which is not considered (i.e E =0),
B,and b are applied and induced magnetic filed respectively, D/ Dt denote the material derivative,  p is the pressure,
fis the external body force and 7 is the Cauchy stress tensor which for a third grade fluid satisfies the constitutive
equation

T=—pl+pd, +a, A, + a, AT+ B A, + By (A A, + A, A+ By (trA}) 4, (5)
DA
A = T"t-‘ + A, Vv+(Vv)'4,,, n=xl (6)

where pl is the isotropic stress due to constraint incompressibility, £ is the dynamics viscosity, @,,Q,,f,,[3,,; are
the material constants; _L indicate the matrix transpose, A,,4,,A; are the first three Rivlin-Ericken tensors and A, =
is the identity tensor.

3. Problem Formulation

We consider a thin film of an incompressible MHD fluid of a third grade flowing in an inclined plane. The ambient air is
assumed stationary so that the flow is due to gravity alone.

By neglect the surface tension of the fluid and the film is of uniform thickness & , we seek a velocity field of the form

v =[u(»),0,0,] (7)
In the absence of modified presence gradient, equation (1)-(4) along with equation (5)-(7) yields

d’u du d*u

268 | S+ K-Mu=0 ()

dy dy ) dy
Subject to the boundary condition
3
du d’u
u—A y — [+28 —; =0 at y=0 9)
dy dy

du

—=0 a y=1 (10)

dy
where

+
p= M is third grade fluid parameter
o
'pg
K = f,sina while f =——=isthe gravitational parameter.
S5’oB;
M = O isthe magnetic parameter.

Y7,
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Equation (9) is the slip conditions where A is coefficient of slip and equation (10) comes from 7 = 0 aty=0.
In the sequence, we take & = /3 and solve the system of equation (8)-(10) by the traditional perturbation method and also by
the homotopy perturbation.

Heat Transfer Analysis

The thermal boundary layer equation for the thermodynamically compatible third grade fluid with viscous dissipation, work
done due to deformation and joule heating is given as

AT (duY du)'
k +u — | +2(B,+ B — | +oBeu’ =0 11
L0 g2 s .
with boundary condition
IT'(y)=T, a y=0 (12)
T(y)=T; at y=0 (13)

where k is the thermal conductivity, 7" is the temperature, and 7 is the temperature of the ambient fluid.
Introducing the following dimensionless variable

u= 1' , T = ﬂ (14)
u T,-T,
where I,=T, and T, =T}
The system of equation (11)-(13) and (14) after dropping the caps take the following form:
) 2 4
T
d ~+B, du +ZBrﬂ@ +B.Mu’ =0 (15)
dy dy dy
T(y)=0 at y=0 (16)
T(y)=1 at y=1 (17)
,u3
where B = — . isthe Brinkman number
k6*(T, =T))
B2S5?
M = oByo is the magnetic parameter
Y7
+
p= (ﬂzé‘—;[)’}),u is third grade fluid parameter

Again, in the sequence, we take & = £ and solve the system of equation (15)-(17) by the traditional perturbation method
and also by the homotopy perturbation.

(A) Solution of the problem by Regular perturbation method
Let us assume & as a small parameter in order to solve equation (8) by this method, we expand
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u(y,&) =uy(y) + eu, (y) + &, (y) +-- -

Substituting equation (18) into equation (8) and rearranging based on powers of & — terms.
We obtain the following problems of different order with their boundary conditions:

Zeroth — order problem and its solution

—=0 at y=1

The solution of system of equation (19)-(21) is given by
- K
U, = cleym +c,e M 2
First order problem and its solution

d’u, N 6d2u0 (duo

2
—Mu =0
aVy2 a’y2 dyj !

3
u, — Ay(%j — ZA/J{%) =0 at y=
dy dy

—=0 at y=1

The solution of system of equation (23)-(25) is given by

u; = (¢ "'Csy)eym +(¢y "'Cloy)e_ym +cpe’ w +epe
Second order problem and its solution

2 2 2 2
diy  gdu)duy | ppdididuy gy g

dy dy” \ dy dy dy dy

2
d
u, —Au du, —6A,uﬂ auy =0 at y=0
dy dy ) \ dy

% =0 at y=1

dy

The solution of system of equation (27)-(29) is given by
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u, = (czs tCpuyt ("27)’2 )ey\/ﬁ + (‘728 tCyy+ Caoy2 )e_ym + (‘731 + Cazy)ewm
+ (‘733 + C34y)e_3ym e Sy

M —
+c 36€
Next, we find the approximate solution for temperature distribution, for which we write

T(y,e)=T,(») + [, () + & T, (y) +----- 31)
Substituting equation (31) into equation (15) —(17) and collecting the same power of &, yields different order problems.
Zeroth —order problem with boundary conditions:

(30)
+ c35e5y

2 2
d fo +B, duy +Mu, | =0 (32)
dy dy
7,000=0 at y=0 (33)
T,()=1at y=1 (34)

with the solution

T, =c4leym + c4ze’ym + c43e2ym + c44e’2ym + c4se4ym + c%e’”m 35)
+ C47y2 TV +Cy
First —order problem with boundary conditions:
d’T, duy du, (du,\’
L +2B,| —>—L+| = | +Mugu, |=0 (36)
dy dy dy \ dy
T,(0)=0 at y=0 37)
Ii(H)=1a y=1 (38)
with the solution
M M N
T, =(Cso +051y)ey " +(Csz +cs3y)e e +(6'54 +cssy)ezy "
+ (056 + cs7y)e_2ym + csge3ym + csge_3ym + c6oe4ym
+ 061ei4ym + cezy2 TCRY T Cy %)
Second—order problem with boundary conditions:
2 3
d’T. du, du, (du du, \ du
Z+B | 2—C— 24| — | +8| = | —-+2Mugu, + Mu; |=0 (40)
dy dy dy \dy dy ) dy
T7,(0)=0 at y=0 (41)
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T2(1)=1 at y=1
with the solution

T, = (Ces T Ce) T 067y2)€ym + (068 tCe0l +c70y2)€—yx/ﬁ
+ (071 tCpy+ C73y2)ezym + (074 tCpy+ C76y2)e_2ym
+ (C77 + c78y)esy\/ﬁ + (079 + Cxoy)e_sym + (081 + Cszy)e4ym

—4y«/ﬁ Sy\/ﬁ —Sy\/ﬁ 6y«/ﬁ
+ (083 + cg4y)e

4 3 2
1T Cq)V TCo)Y +Coy +TCi)Y+Cq

+ cgse + cge€ +cg,e +cge

(B) Solution by Homotopy perturbation method
The problem under consideration i.e equations (8)-(10) can be written as
2
av) d’v
L(v)—L(u,)+qL(u,)+q 6£(—J -Mv+K|=0
u\dy) dy

2

where L = and equation (28) is the initial guess approximation.

2

Let v=v,+qv, +c]2v2 Foeee
Substitute equation (45) into (44) and equating the coefficient of like powers of ¢, we have

Zeroth —order problem with boundary conditions:

2 2
dv, du,

_ =0

aVy2 a’y2
d

Vo —Ay(ijzo at  y=0
dy

dvy _

dy

with the solution

0 = cle}’m + cze’ym

v +e,y+c,

First —order problem with boundary conditions:

d’v, +d2u0 +6£d2v0 (afv0

2
-Mv, +K =0
dy Ay’ dy dyj ’

3
oAl ol oad Pl S0 w0
1 dy dy
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—1=0 a y=1 (52)
dy

with the solution

v, = c;e}’m + c;e’ym + cl*oezym + cl*le’zym + c;e”m + c;e’”m )
e,y +ey+e,
Second —order problem with boundary conditions:
2
d’v d*v, dv, dv dv,\ d*v
—21+6£ 2—20—0—1+ —2 21 -Mv, =0 (54)
dy pu| ody” dy dy \dy ) dy
d dv, \'(d
v \% v
v, = Apl —L |- 6Au —2 | | —L|=0 at y=0 (55)
dy dy ) \ dy
dv
—2=0 aa  y=1 (56)
dy
with the solution
* * m * * _ m * 5 2 \/M * * 2 m
Va :(cn +clsy)€y + (c19 +C20y)€ Y +(021 +022y)€ g +(cz3 +6’24y)€ Y
+ c;e”m + c;e’”W + cé}e”m + c;ge"wH + c;esym (57)
M

* _Sy * 4 * 3 * 2 *
+C3€e T CyY FTCynY FCuY OV FCp

Next, we find approximate solution of temperature profile using homotopy perturbation by written equation (15) as

2 4
L(T)-L(6,)+qL(6,)+q| B, 4 +2B.3 U +B MV |=0 (58)
dy dy
Let T =T,+qT, +q°T,+--- (59)
Substitute equation (55) into (54) and equating the coefficient of like powers of ¢, we have

Zeroth —order problem with boundary conditions:

2 2
de"—dez‘):O (60)
dy dy
7,(000=0 at y=0 (61)
T,(H)=1 a y=1 (62)
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Using equation (35) as 6, to serve as initial guess approximation, we have
— * * * * * *
1, = c34eym +c;€ wm +c36e2ym +cye M +c3se4ym +c3ge4ym
* 2 * *
Ty +CpY+Cy

First-order problem with boundary conditions:

207 2 2
AT A0 g Do) L ani=0
dy dy dy

T(0)=0 a y=0

T(H=1 a y=1
with the solution

7= e+ el (e + iyl 4 e 4 e
I, = (c45+c46y)e +\Cyy T CY +Cye +C50€

*  4yIM aymM

* . * 4 * 3 * 2 * *
+C5e +C5e tC3y +tCy Y +Cs5Y T CsV+Cy

Second order problem with boundary conditions:

CT g Do
dy dy dy

3

d

+4B ﬁ(ﬂj D 2B Mgy, =0
dy ) dy

7,(00=0 at y=0

T,)=1 a y=1

with solution

- % % % 2 ym ( * % % 2%_},\/& ( % * k
T, = (Css tCsoy +Cqp) )e TG +Co YV T Ci3) +\Cos T Cos5)

* * “29IM * * 3pIM * * 3yIM ayM
+ (066 + cs7y)€ s (068 + 069y)€ T (070 + c71y)e ! !
* —4y«/ﬁ * Sy\/ﬁ

Sy M -6y M
+ ¢y +cye wim M

2y«/ﬁ

.
+c e

* * GyW *

+cose + e e +ce
* 3 * 2 * *

1 Cop Y T Cq Y T C Y +C

4. Results and Discussion

x5 x4
tCRY T CpYy

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

Approximate analytical solutions for velocity and temperature distribution of a thin film flow of an MHD third grade fluid
down an inclined plane have been found. The governing nonlinear ordinary differential equations are solved using
traditional regular perturbation method as well as the recently introduced homotopy perturbation technique and the results

are compared.

Figure 1-6 shows that the solution obtained by two method are the same for identical value of & and . Therefore, we
discuss only solution obtained by homotopy perturbation method. Figure 1 and 2 illustrates the effect of magnetic parameter
M on the velocity and temperature distribution of the fluid down an inclined plane. Increase in the value of M reduces
the velocity distribution and increases the temperature distribution as slip parameter A is constant. Figure 3 and 4 shows
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the effect of parameter K on the velocity and temperature distribution. Clearly, increase in value of parameter K
increases the velocity and temperature distribution due to fact that increase in parameter K correspond to the increasing in
angle of inclination. In figure 5 and 6, we find out that increase in slip parameter A, the velocity and temperature
distribution increases.

5. Conclusion

A thin film flow of an MHD third grade fluid down an inclined plane with slip boundary condition has been discussed. It
was found that the solutions obtained by traditional perturbation and homotopy perturbation technique are identical at the
same values of & and 3, this is illustrated in Figures 1-6. The effect of slip parameter, Magnetic parameter and other
parameters involved in the problem are discussed and results are displayed in graph to see their effects.
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Figure 1: Velocity profile for different values of magnetic parameter M when 0 =1, K =+1, f=0.001,
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Figure 2: Temperature profile for different values of magnetic parameter M when o=1, K =+1,

£=0.001, A=1
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Figure 5: Velocity profile for different values of slip parameter Awhen 0=1, M =5, =0.001,
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Figure 6: Temperature profile for different values of slip parameter Awhen 6 =1, M =5, [=0.001,
K=+1
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