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Abstract
The purpose of this paper is to characterize regional boundary gradient strategic sensors notions for
different cases of regional boundary gradient observation to be achieved. Then, the characterizations based
on how to a cross from internal gradient region to the boundary gradient region. Thus, the obtained results
are applied in two dimensional linear infinite distributed systems in Hilbert space where the dynamics are
governed by strongly continuous semi-group. Moreover, we give the relation between the regional gradient
observability on a subregion « of the spatial domain Q with the regional boundary gradient observability
on a subregionT' of the boundary 9Q of Q. Finally, sufficient conditions of regional boundary gradient
strategic sensors notions are explored, analyzed and discussed in connection with the regional boundary
gradient of exact (weak) observability, positive definite observability operator and rank conditions.
Keywords: wg-strategic sensors, T'g-strategic sensors, exactly T';-observability, weakly T';-observability

1. Introduction

One of the first steps in engineering designing is to identify its physical part. The physical part can be
belong to a large array of system classes (Curtain & Pritchard 1978). So, we focus our interest on
distributed parameter systems whose dynamics can be involves partial differential equations where the
states depend not on time only but also on spatial variables (Curtain & Zwart 1995). The analysis of
distributed parameter systems refers to a many concepts such as controllability and observability (El Jai &
Amouroux 1988). The study of these concepts are related to the notions of sensors and actuators where the
characterization of sensors and actuators are playing a fundamental role in the understanding of any real
systems because they are intermediates between a system and it’s environment (El Jai & Pritchard 1988).
The regional analysis is one of the most important notion of system theory, is focused on a state
observation on a sub-region o of the spatial domain Q. These concepts are introduced and developed by El
Jai et. al. as in ref.s (El Jai et al. 1994), (El Jai & El Yacoubi 1993), (Zerrik 1993), (Bourray et al. 2014)
(Bourray et al. 2014), (Al-Saphory et al. ), (R. Al-Saphory & El Jai 2002) & (Al-Saphory & .El Jai 2001)
and it has been extended to the case where the sub-region T is a part of the boundary 9Q of Q in (Zerrik
& Badraoui 2000) & (Zerrik et al. 1999). In the same direction one may be concerned with the regional
gradient observability for a diffusion system where one is interested in knowledge of the state gradient only
in a critical sub-region of the system domain without the knowledge of the state itself, this concepts has

10


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper)  ISSN 2225-0522 (Online) lL,i,l
Vol.6, No.1, 2016 IIS E

been introduced by (Zerrik & Bourray 2003). Thus, the concept of regional strategic sensors which was
introduced in (Al-Saphory & Al-Joubory 2013) gives a characterization of a regional strategic sensor to
achieve of regional observability. In addition, the result in (Al-Saphory et al. 2015) has been extended to
the regional gradient strategic sensors for various types of regional gradient observability. The introduction
of this concept is motivated by real situations. This is the case, for example, of energy exchange problem,
where the aim is to determine the energy exchanged between a casting plasma on a plane target which is
perpendicular to the direction of the flow from measurements carried out by internal thermocouples (Figure

1).
Eg : atwt;:l;l c(!F E;lem;) I——* J: 7] hZ 2]
caprobe [ of stee R ey N IR SRV P o S - - =
T: fgce of exchange m 1|_ E—

hl, bl Hensorslocation /4 ™ (k1]

Figurel. The Estimation Profile of Energy Exchanged on T.

More precisely let the considered system with suitable state space, and suppose that the initial state y, and
its gradient Vy, are unknowns. Suppose now that measurements are given by means of an output function
(depending on the number and the structure of the sensors) (El Jai & Pritchard 1988). The problem
concerns the reconstruction of the initial gradient Vy, on the subregion I' of the system domain boundary
Q.

The main objective of this paper is to extended these results in (Al-Saphory et al. 2015) to the case of
regional boundary gradient strategic sensors for different cases of regional boundary gradient observation.
More precisely, we discuss and analyze the relation between the regional gradient strategic sensors and the
regional boundary gradient strategic sensors. This paper which organized as follows:

Second section is present the problem statement and basic definitions with characterizations on the regional
boundary gradient observability. Third section is devoted to the mathematical concepts of regional
boundary gradient strategic sensors in various situations are studied and we develop an approach to cross
internal region to the boundary region. In the last section we gives an application about different sensors
locations.

2. Regional Boundary Gradient Observability

In this section, we present some notions and preliminary material as in (Zerrik & Bourray 2003).

2.1 Problem Statement

Let Q be a regular bounded open subset of R™, with boundary 0Q and T be sub-region of 9Q, [0,T],
T > 0 be a time measurement interval. We denoted Q = Q x]0,T[, 2 = 0Q x ]0,T[. We considered

distributed parabolic system is described by the following equation:
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T = Ax(E 6) + Bu(®), Q
x(§,0) = x0(8), Q 1)
x(n,t) =0, Xz
with the measurement is given by the output function
y(.,t) = Cx(.,t). )
where A =Z§szlai(aij ai) with  a;; € D(Q) (domain of Q) is a second order linear differential
Xj xj

operator, which is generated a strongly continuous semi-group (SA(t))t>Oon the Hilbert space X and is
self-adjoint with compact resolvent. Suppose that —A is elliptic, i.e., there exits @ > 0 such that
|2

Dij=1ai$i&; = 0(2?=1|fj

, almost everywhere (a.e.) on Q, V&= (&,..,&,) € R". The operator

B € L(R?,X) and C € L(X,R?), depend on the structure of actuators and sensors (El Jai & Amouroux
1988). The space X,U and O be separable Hilbert spaces where X is the state space, U = L?(0,T,RP) is
the control space and O = L?(0,T,R%) is the observation space where p and q are the numbers of
actuators and sensors. Under the given assumption, the system (1) has a unique solution (Curtain &
Pritchard 1978) & (Curtain & Zwart 1995) given as follows:

X(€,£) = S4(t)x0 (&) + f, Sa(t — D)Bu()de @3)

The problem is that, how to give sufficient conditions for regional boundary gradient strategic sensors.
These conditions which enable to achieve the regional boundary gradient observability with different type
of strategic sensors depending on the domain region, dimensional systems and structure sensors.
2.2 Definition and Characterizations

In this sub-section we are recall and introduced some basic concepts about the regional boundary

gradient observability and sensors structures. For this purpose, we give the linear autonomous system of (1)

ZED = AxE D), Q
x(§,0) = x0($), Q 4)
x(n,t) = 0. s
The solution of (4) is given by the following form
X(E ) t) = SA (t)xO (f)! vVt € [0: T] (5)

The measurements are obtained through the output function by using of zone, pointwise which may located
in Q (or 0Q) given by the following form ((El Jai & Pritchard 1988):

y(.,t) =Cx(§,t) (6)
e  We first recall a sensor is defined by any couple (D, f), where D is spatial support represented by a

nonempty part of Q and f represents the distribution of the sensing measurements on D.
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Depending on the nature of D and f, we could have various type of sensors. A sensor may be pointwise
if D={b} with be Q and f = §(.—b), where § is the Dirac mass concentrated at b. In this case the

operator C is unbounded and the output function (2) can be written in the following form

y(©) = x(b,t)
e Asensor may be zonal when D c Q and f € L?(D). In this case the output function (2) can be

written by the form

y(®) = [, x@§Of()d¢

e In the case of boundary zone sensor, we consider D; =T; € dQ and f; € L?>(T;), the output function

(2) can be written as

y(, o) =Cx(,6) = [, x(n,0) fi(m)dn

e  Now, we define the operator

K:x€X - Kx=CS,(.)xe O
we note that K*: 0 — X is the adjoint operator of K defined by

K'y* = [ Si(s)C*y* (s)ds

e  Consider the operator

{ H'\(@) ~ (H ()"

and the adjoint of V denotes by V* is given by

()" - H' ()
x->Vx=v

where v is a solution of the Dirichlet problem

{Av = —div(x) inQ
v=20 in 0Q

e  The trace operator of order zero is given by

Yo: HY(Q) » HY2(0Q)
Thus, the extension of the trace operator of order zero which is denoted by y is linear, subjective and
continuous, defined as an operator y: (H'(Q))™ —» (HY?(0Q))" and the adjoints are respectively given

by ve, 7"
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e For T c dQ, we consider a gradient restriction operator yp : (H/?(aQ))" - HY%(I))*, and

v+ H2(0Q) - H3(D),

where the adjoint are respectively given by xr, #r.

e Also, if wc Q we consider the operator

(H ()" - (H (0))"
Xa)-{ X = XX =Xy

It’s adjoint is denoted by yx;,
e  Finally, we introduced the operator H = yyyVK* from O into (H/?(T))® Now, let us denoted
the system (4) together with the output (6) by (4)-(6).

Definition 2.1: The systems (4)-(6) are said to be exactly regionally gradient observable on w
(exactly wg-observable), if

Imy,VK* = (H'( )"
Definition 2.2: The systems (4)-(6) are said to be weakly regionally gradient observable on w
(weakly wg-observable), if

Imy,VK* = (H'(w)"

Definition 2.3: The systems (4)-(6) are said to be exactly regionally boundary gradient observable on T
(exactly T'; —observable) if

ImH = ImyyVK* = (HY?(I)"
Definition 2.4: The systems (4)—(6) are said to be weakly regionally boundary gradient observable on T
(weakly T'; —observable) if

ImH = ImyyVK* = (H?(I"))"

Remark 2.5: The definition (2.4) is equivalent to say that the systems (4)-(6) are weakly T'; —observable
if
ker H* = ker KV*y*xr* ={0}

Proposition 2.6: The systems (4) -(6) are exactly I';-observable if and only if there exists ¢ > 0 such that,
forall x* € (HY?()",

el sz < UKy 2" llo %
Proof: The proof of this property is deduced from the following general result (Curtain & Pritchard 1978).
Let E,F,G be reflexive Banach space and f € L(E,G), g € L(F,G), then the following properties are
equivalent:
aImfcimg.

b. Thereexists ¢>0 suchthat |[f*x*|lz- < cllg*x*||z+, Vx* € G*.
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If we apply this result, considered E = G = (HY?(T)),F =0, f = Id 12y and g = xryVK™. We
obtain the considered inequality (7).0
Remark 2.7: From the previous proposition 2.6, we can get the following results:
1. The regional state reconstruction will be more precise than the boundary of the domain 9Q if we
estimate the state in whole the boundary domain.
2. From (7) there exists a reconstruction error operator that gives the estimation X, of the initial state
XoinT, andifweput e =x,—X%, ,we have
llellyizqy < llellyizgan,
and then
lIxo = Zoll1/2(ry < 11X = Zolly1/2(0)
where, x, is the exact state of the system and %, is the estimated state of the system.
3. If a system is exactly observable in dQ then it is regionally exactly observable in T.
Now, we can deduced that :
Proposition 2.8: If a system is exactly regionally boundary observable (exactly I'g-observable) then it is
exactly T'g-observable.
Proof: Since the system is exactly T'z-observable then there exists y > 0 such that Vx, € L?(T), we have,
llxoll 2y < VIIKYoXr X0l 207,00 VY >0
since (L*(I))™ < L(T), then

1720 ll 12 a0yym = lIxoll g2y < lxoll2qry » ¥ %0 € L?(T) where,
L2(T) = {xo: J. 1%|*> < o0} and

a .
LPO)" = {Vxo = gi: J; 19:1* < o0, gi =50 ¥i=12,..}. (®)

To prove that [Ixgllzqyyn < clIKV*Y xrxoll2¢0r,0)- Thus, from (8) and since a system is exactly

I'g-observable, then

there exists y > 0 and ¢ > 0 which allow to choose y = % where ¢ is given by
and then
%ol 2ryyn < llxoll 2y < VIIKYorXollo (10)
substitute (9) in (10), we obtain
ol 22 ryyn < IKVY X %0 lo-
Therefor, this system is exactly ['g-observable with y = 1.0
3. Boundary Gradient Strategic Sensors

The purpose of this section is to link the regional boundary gradient observability notion with the sensors
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structure. Consider now the system (4) observed by q sensors (D;, f;)1<i<q » Which may be pointwise or
zonal.
3.1 T';-Strategic Sensors
Definition 3.1:A sensor (D, f) is boundary gradient strategic on T' (I';-strategic) if the observed system
is weakly T';-observable.
Definition 3.2: A suite of sensors (D;, fi)1<i<q are boundary gradient strategic on T' if there exists at least
one sensor (D, f;) which is weakly T';-observable.
Corollary 3.3: Asensor is I';-strategic if the corresponding observed system is exactly I'; —observable.
Proof: Since the system is exactly I'; —observable, then we have

Im H = ImypyVK* = (HY2(I)".
From decomposition subspace of direct sum in Hilbert space, we represent (H'/2(39))" by the unique
form [6]

kerxr + Imxt xryVK* = (H'/*(0Q))"
we obtain

ker K(t) V'y™xr = {0}
this is equivalent to

Im xryVK* = (HY*(D)"™.
Finally, we can deduce this system is weakly T';—observable and therefore this sensor is I';-strategic.o
Corollary 3.4: A sensor is T;-strategic if and only if the operator N. = HH* is positive definite.

Proof: Since a sensor is I';-strategic this means that a system is weakly ;- observable. Let x* €

(H%(F))" such that
< Nyx*, x* >y1/2@yn=0 then ||[H*x*|lp =0
and therefore x* € kerH", thus, x* = 0, i.e., N, is positive definite.
Conversely, let x* € (HY?(I'))™ such that
H*x* =0,then < H*x",H'x* >,=10
and thus,
< Npx™, X" > a2 qym= 0.
Hence x* = 0 thus the system is weakly T';- observable and therefore a sensor is T';-strategic.o
Thus, from previous corollaries we can obtain the following results:
Remark 3.5: We can deduce that:
1. If the system is exactly [';—observable then the system is weakly T';—observable and therefore the
sensor is ';-strategic.
2. A sensor which is regional boundary gradient strategic in 't (I'z-strategic sensor) for a system where

I't c I, is regional boundary gradient strategic sensor in T'2(T'%-strategic sensor) for any 'z c I'z.
16
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3.2 Crossing Approach from Internal to Boundary Case

In this approach we deal with the regional boundary gradient strategic sensors in T' (I';-strategic sensor) as
an internal regional gradient strategic sensors. In this case, we introduced the following extension operator
(Zerrik & Bourray 2003)

e Let R:(HY?2(0)™ — (H'(Q))", which is continuous and linear defined by

YRR(E,t) = h(§, 1), Vh(E,t) € (H*(9Q)" (11)
o Let E=UyrB(x,r) and &, = E N Q, where B(x,r) isaball of radius r, (r >0 isan

arbitrary and sufficiently small real) and centered in x(&,7) and T isa part of @, (Figure 2).

SEnsors

Figure 2. The Domain £, Subregion @, and the Region T.
3.3 Is-strategic sensors and ;. .-strategic sensors
In this subsection we explain the link between the T';-strategic sensor and the regionally gradient strategic
sensor on @, (@, .-strategic sensor).
Remark 3.6: From the above results we link the internal regional gradient observability in @, to the
boundary gradient case on T, so we can deduced the following corollary.
Corollary 3.7: If a sensor is @, .— strategic then it is I';-strategic.
Proof: Since the sensor is @, .— strategic in @,, this mean that the system is weakly @, .— observable in
.
Thus, the system is weakly T';— observable (Zerrik & Bourray 2003)
Therefor, the sensor is T';-strategic.o
Corollary 3.8: A sensor is I';-strategic if the system is exactly @, .—observable.
Proof: Let x(& t) € (HY2(I))™ and %(&,t) be an extension to (H'/2(0Q))™. By using equation (11)
and trace theorem there exists Rx(¢,t) € (H*(Q))", with bounded support such that
YRx(, 1) = X(, 0).

Since the system is exactly @, .—observable, then the system is weakly @, .—observable (Al-Saphory et al.
2015).

since a system is weakly @, .—observable then a system is weakly TI'z—observable (Al-Saphory R. (2002)
& ( Zerrik & Bourray 2003) . Thus, a sensor is T';-strategic.o
Remark 3.9: We can deduce that:

1. If the system is exactly @, .—observable then it is exactly I';—observable.
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i.e., there exists an operator y; VK*: 0 - (H'(w,))" given by
Hg,y(.,t) = xa,VK"y(.,t) = x5,Rx(§,t).
Hence,

1 (Y2, VK 'y (,0) = (5, 6).

Where x(&,t) € (HY?(I))™ and x(&,t) be anextensionto (HY2(Q))™.

2. If the system is weakly @, .—observable then it is weakly T';—observable.

3. An extension of these results can be applied for different cases of regional exponential general
observability (Al-Saphory & Jaafar 2015). And, to the regional exponential reduced observability in
distributed parameter systems (Al-Saphory & Al-Mullah 2015 ).

The concept of boundary gradient strategic on I' can be characterized by the following main result may be
called rank conditions:

assume that there exists a complete set of eigenfunctions (¢,;)nesg j=1,.n, Of A4 in H(Q) associated
with eigenvalue A,, of multiplicities 7, and 7, = sup,¢; 1, is finite. For x = (xq,..,x,_;) and
= (ny,..,Np_1). Suppose that the function z;(%) = xryVe,;(x), n €I, form a complete set in
(HY2 @)™

Theorem 3.10: Assume that sup r,, = r < oo, then the suite of sensors (D, fi)1<i<q, ['c-Strategic sensor if
and only if

q=r, rank G, =1, Vn=1, whereG, = (G,);; for 1<i<q,1<j<mn,

and

0YPgj . . .
P :;"] (b)) in the pointwise case
k

(Gn)ij = n al/’ﬁj
Zk:l < H’fl >L2(Di) in the zonal case
Proof: First, we know that if a system is weakly T'; —observable then is equivalent to [KV*y*X;"x* =

0 = x* = 0] which allows to say that the sequence of sensors (D;, f;)1<i<q IS Tg-strategic if and only if
{x* € V2| < Hy ,x* >p1/2pyn= 0, vy € 0} = {0}

Suppose that the suite of sensors (D;, fi)1<i<q 1S T-strategic on T, but for a certain n € N, rank G, #1,,
then there exists a vector  x,, = (xp, Xn,, ...,xnm)” # 0, suchthat G,x, =0.

So, we can construct a nonzero x, € H/?(I') considering < X0, Ypj >y1/20ry= 0 if p#n, and
< X0, Wnj >przry= Xnj, 1 S j <15

Let xO = ijlxn} wn]', XU = (xo,xo, ...,xo) theﬂ
~ [ * ~x
< Hy,xo >y/2qyn= Li=1 <Xryoa_§k(K Y, XrXo > y/z
a .. -
= Yk=1 <a(x(T): YoXrXo >12(50)
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where X is the solution of the following system:
0% .
(&0 =A%)+ IL, fivi(T = 0) Q
%(,0)=0 Q 12)
¥(n,t) =10 z
Consider the system:
a
L&) = —Ap(,t) Q
V0 = ¥iix 0 (13)

multiply (12) by :ka and integrate on Q, we obtain:
Jo :;,, 3 t) (E t)dg de=[, A%, 65 "’1/’ (5, 0)d¢ dt

+fQ (Z?=1 6biyi (T - t)) g_g:c (f; t)dfdt

but we have

Jo 58 €05 € 0dE di=fyy [FE € 03 0] +[, ATEE 02 Ot ae

= s EOEEDAE + [, ATEE,O(E DS dt

then

foo s (6 DR, 0dE = [, ATEE, O OdE + [, AFEDIE(E0dEde + [, (T, 6,i(T -

0) 2 ¢, dsdt.

Integrating by parts we obtain

hase @OEE DA = [ TR @ Odde +

+Jy (B 8T = D) 32 G, O)dgdt

the boundary conditions give

foa e € ORE DdE= [, (S, 8,31 (T = D) 32 (€, O0déd.

Thus,
fa ¥ 0 5 (€, 1dE = =L, [ S8 (b ) yi(T — Ddt

and we have

<XryVK*,xO >(H1/2(F))n= k 1 ") 6{ (f t)lp(f t)df

19
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T oy
= —Yk=1J; Z'ﬁna(bi, O yi(T —t)dt
but
Y, t) = T, e T OTT <0,y > 1200 Yp)
’ p=1 j=1 0 ¥pj ~L%*(w) ¥pj-
Then,
oY o - - 7 P
1’:=1a_gk(bi't) =3 e Ap(T—t) Z,'il < X0, Ppj >12(w) Zﬁzla(bi)
= 25:1 elp(T—t) (prp)i
therefore,
* T oo —
< Xr¥VK™y, xo >y1/2qyn= - Yoy fo Yot et t)(prp) yi (T —t)dt
thus,

* T -
< xr¥VK™y, %o >y1/2qyn= -Xi, fg e (Gyxy); y; (T — t)dt = 0.

This is true for all y € L?(o, T:R%), then X, € ker H* which contradicts the assumption that the suite
of sensor is I';-strategic.o

Corollary 3.11: If the systems (4)-(6) are exactly I'; —observable, then the rank condition in theorem
(3.10) is satisfied and the sensor is I';-strategic.

Remark 3.12: From the above results, we can deduce that:

1. The theorem 3.10 implies that the required number of sensors is greater than or equal to the largest
multiplicity of the eigenvalues.

2. By infinitesimally deforming the domain, the multiplicity can be reduced to one (El Jai & EI Yacoubi
1993). Consequently, T';-observability can be achieved using only one sensor.

3. We can show that various sensors which are not gradient strategic in usual sense for the system but may

be I';-strategic and achieve the T';-observability as in (Al-Saphory 2002)

4. Applications to Sensors Locations
In this section, we explore various results related to different types of measurements and we consider a two

dimensional diffusion system defined on Q =]0, a;[X]0, a,[ by

a a2 a2
a_’;(fl'fZ't) = é(gl'fbt) +a_f:26(€1'€21t) Q
x(§1,§2,0) = x0(§1,$2) Q (16)
x(§nt)=0 b)
Let T =]0, a,[% {a,}, the eigenfunctions and the eigenvalues of the system (16) are given by:
Oinm (&1, &) = 2_sinnmtsinmn2 @an
mmBSUS27 T Vayag ay az
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associated with eigenvalue

I S
Anm - _(E + a_%)n (18)

2
if we suppose that Z—%e Q, then multiplicity of 4;; is ;; =1 and then one sensor (D,f) my be

sufficient to achieve I';-observable of the observed systems. Now, the result bellow give information on
the location of internal or boundary (pointwise and zone) T';-strategic.

4.1 Case of Zone Sensor

We applying the previous results which are established and discussed the characterization of sensors in the
case of (internal and boundary) zone sensor.

4.1.1 Internal Zone Sensor

Consider the system (16) with the output can by written by the form

y@®) = [, x (1,62, 0f(§1,82)dé1dE,,

with the zone sensor is located inside the domain Q, over the supports D =]& — 13, & + 1 [X]&, — 15, &, +
l,[c @ (Figure 3). We have

D
F N f
ds
Q r
a-DZ L : N
0 @0] a’

Figure 3: Location of internal zone sensor D.
Corollary 4.1: If the function f is symmetric with respect to the point &, = (,,,$o,) then the sensor

(D, f) is not I';-strategic if one of these conditions are satisfied:

1. ™ € Q and o € Q.

2. Thereexist iy, j, € N such that i°§°1 and foafoZ €0
1 2
4.1.2 Boundary Zone Sensor

Here the measurements are given by the output y(t) = fro x (&, 0)f(&)dE, with T isan open part of 9Q
(Figure 4). In the case where T < 0Q and f < L*(I"), thesensor (D, f) may be located on the

boundaryin I, =[r, —I,77, +1]x{@,}then we have
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Figure 4:  Locations of boundary zone sensors T, T.

Corollary 4.2:

1. One side case: Suppose that the sensor (D, f) is located on T, =[r, —1,77, +1] x{&,}
c 0Q and f is symmetric with respect to h =10, then the sensor (T, f) is not ['g-strategic if
N 77, la, € Q forevery n,m=1...,J.

2. Two side case: Suppose that the sensor (D, f) is located on 1_"=[0,501 +1,]x {0} U {0}

X [O,ﬁ02 +1,] <0Q and f, is symmetric with respect to 7 =501 and the function f‘ is

‘ n 2

symmetric with respect to 7, =502, then the sensor (T, f) is not I';-strategic if n7701/ a, and

m7702 la, eQ forevery n,m=1..,J, where T=1 UL.

This shows that the regional boundary gradient observability depends on the geometry of the sensors
support and measurements function.

4.2 Case of Pointwise Sensor

In this subsection we discuss and characterize the sensors in the case of (internal and boundary) pointwise

Sensors.
4.2.1 Internal Pointwise Sensor
In this case the out put function is given by

y(©) = f, x (§1,82, 081 — by, §; — by)d§,dé, (19)

with b = (b, , b,) € Q is location of pointwise sensor (Figure 5).
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Figure 5: Locations of Internal pointwise sensors b, o.

Corollary 4.3:
1. Internal pointwise case: If nb,/a, and mb,/a, Q@ for every n, m=1, ..., J, then, the sensor
(b, 8,) isnot T';-strategic.

2. Filament case: Suppose that the observation is given by the filament sensor where o =Im(y) is
symmetric with respect to the line b=(b,,b,), if nb/a and mb,/a,¢e Q for every
n, m=1 .., J, then,thesensor (a,8,) isnot [';-strategic.

4.2.2 Boundary Pointwise Sensor

Here we have b = (b, ,b,) € 0Q with b = (b,,0) or b = (0,b,) (Figure 6).

b
P S

9] T

0 ar
Figure 6: Location of boundary pointwise sensor b.
Corollary 4.4: The sensor (b, §,) isnot T';-strategic if mb2 /a2 eqQ forevery m=1 ..., J.

This shows that there are some sensor locations to be avoided. We note that in real applications a sensor is
considered as pointwise if the support area of measurement distribution is very small with respect to system
domain.

Remark 4.5: These results can be extended to the following:
(1) Case of Neumann or mixed boundary conditions (El Jai & Pritchard 1988 ) & (Al-Saphory et al.2001 ).

(2) Case of disc domain with circular strategic sensor in various case of pointwise zone internal or
boundary as in (Al-Saphory & El Jai 2002) & (Al-Saphory & El Jai 2001).
5. Conclusions

We have been characterize of regional boundary gradient strategic sensors notion in order to achieves
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regional boundary gradient observability. Also, we have introduced the links between the regional
boundary gradient strategic sensor on I' with a regional exactly gradient observability in w. Thus, we
have been shown that there exists a link between the exactly regional gradient observability on w and
weakly regional boundary gradient observability on T'. Many interesting results concerning the choice of
sensors structure are given and illustrated in specific situations. Various questions still open and is under
consideration. For example, these result can be extended to the regional exponential general or reduced
observability notions (Al-Saphory & Al-Mullah. 2015), (Al-Saphory & Jaafar 2015), observability or
controllability notions for linear or non-linear (parabolic or hyperbolic) as in (Bourray et al. 2014),
(Al-Saphory et al.  2010), (Ben Hadid 2012) and (Boutoulout et al. 2010, 2013).

Acknowledgements. Our thanks in advance to the editors and experts for considering this paper to publish
in this esteemed journal. The authors appreciate your time and effort in reviewing the manuscript and
greatly value your assistant as reviewer for the paper.
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