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Abstract 

 

The purpose of this paper is to introduce and investigate the notion of endo strongly S-coprime modules, where 

an R-module M is called an endo strongly S-coprime module (briefly endo SS-coprime) if, for all )(, MEndgf  , 

)Im( gf   is small in M  implies 0f  or 0g . We give some properties of endo SS-coprime modules. Several 

of various relations between such modules and other classes are obtained. Moreover, we give some equivalent  

statements for endo SS-coprime modules. We also introduce the notion of semi-endo strongly S-coprime 

modules as generalization of endo strongly S-coprime modules, where an R-module M  is called semi-endo 

strongly S-coprime (briefly semi-endo SS-coprime) if, for each )(MEndf  , )Im( ff   is small in M  implies 

0f . Some results of such modules are given .                          
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1.  Introduction                                                                   
 

Throughout this article, let M be a left module as a 

commutative ring with identity. We denote the ring of 

all endomorphisms of M by )(MEnd and the Jacobson 

radical of M  by )(MRad .We will denote the left 

annihilator of M  in )(MEndS   by )(Ml
S

, and the 

direct summand  N of M  by MN  . Recall that a 

submodule MN  is called small and denoted by    

N ≪M  if, MKN  for every  proper submodule K 

of M, [2]. Following [10], an R-module M is called  

Τ-noncosingular if, for every nonzero endomorphism 

 of M, Im  is not small in M. Hadi I.M-A in [7] 

introduce the notion of strongly S-coprime module 

(briefly, SS-coprime), where a module M is called 

strongly S-coprime (briefly SS-coprime) if, for all 

Rba , , abM ≪M implies 0aM  or 0bM . In 

section 3 of this paper we further investigate the 

notion of endo strongly S-coprime module (briefly 

endo SS-coprime), where an R-module M is called 

endo SS-coprime if for each )(, MEndgf  with  

)Im( gf  ≪ M  implies 0f  or 0g .We show that 

in general the direct sum of endo SS-coprime modules 

is not endo SS-coprime module. We also prove that 

endo SS-coprime is inherited by direct summands. 

We prove some results concerning these types of 
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modules. It is shown that a divisible R-module M 

over no zero divisor ring )(MEndS  , is faithful endo 

SS-coprime. For a multiplication module M, we prove 

that the concepts endo SS-coprime module and a  

SS-coprime module are coincide. In section 4, the 

concept of semi-endo SS-coprime modules is presented 

as generalization of endo SS-coprime modules, 

where an R-module M is called semi-endo SS-coprime 

if for any )(MEndf  with )Im( ff  ≪ M  implies 

0f . Most of properties of endo SS-coprime modules 

generalized to semi-endo SS-coprime module. Several  

properties of semi-endo SS-coprime modules and 

some connections between semi-endo SS-coprime 

modules and other related concepts are given. It is 

proved that, an R-module M is semi-endo SS-coprime 

if and only if )(Ml
S

 is a semiprime ideal of  S and 

M  is Τ-noncosingular, where )(MEndS  .        

 

 

2.  Definitions and Notation  

 

Definition 2.1 An R-module M is called S-coprime 

if, 
N

M
annMann

RR
  for every small submodule N 

of M  [8]. Equivalently, M is S-coprime if whenever 

Rr , rM ≪M   implies 0rM .     

 

Definition 2.2 An R-module M is called strongly    

S-coprime (briefly SS-coprime) if, for all Rba , , 

abM ≪M  implies 0aM  or 0bM  [7].   

 

Definition 2.3 An R-module M is called semi- 

strongly S-coprime (briefly SSS-coprime) if, for all 

Rr , Mr 2 ≪M  implies 0rM  [7].  

 

Definition 2.4 An R-module M is said to be           

Τ-noncosingular if, for each nonzero endomorphism 

  of  M, Im  is not small in M  [10].    

 

Remark 2.5 By [7], we have the following implications:  
  

SS-coprime  S-coprime,  

SS-coprime  SSS-coprime, 

Τ-noncosingular  S-coprime.   

 
3.  Endo strongly S-coprime modules 
  

In this section, the class of endo strongly S-coprime 

modules is defined and investigated. First we obtain 

some properties of this kind of modules. Also relations 

between such modules and some other classes of 

modules will be studied .  

 

Definition  3.1 An R-module M is called endo strongly 

S-coprime (briefly endo SS-coprime) if, for each 

)(, MEndgf  with )Im( gf  ≪M  implies 0f  or 

0g .   

 

Remarks and Examples 3.2  
 

(1) It is clear that every endo SS-coprime module is 

Τ-noncosingular, but not conversely, as the following 

example shows : it is clear that the Z-module 
6

Z  is 

Τ-noncosingular. Assume )(,
6

ZEndgf  defined by 

xxf 2)(  , xxg 3)(   for all 
6

Zx . Now, we have 

)0()Im( gf  ≪M , but neither  f  nor g is zero. 

This means that the Z-module 
6

Z  is not endo SS-

coprime.  
 

(2) Let M be an R-module, )(MEndS  . Then M is 

endo SS-coprime if and only if M  isΤ-noncosingular 

and )(Ml
S

 is prime.    

 

Proof. It is obvious .      

 

(3) Every endo SS-coprime module is SS-coprime.  
 

Proof. Suppose that M is an endo SS-coprime module. 

Let Rba , , abM ≪M . Define the endomorphisms 

gf ,  on  M  by ammf )(  and bmmg )(   for all     

Mm . Then abMbMfgf  )()Im(  ≪M , but   

M is endo SS-coprime, so either 0f  or 0g  and 

this implies 0aM  or 0bM .      
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   The converse is not true in general, for example : 

consider the Z-module 
22

ZZ 


. See [7, Rem.and.Ex. 

2.2(3)], 
22

ZZ 


 is SS-coprime Z-module but not   

Τ-noncosingular, thus by (1), 
22

ZZ 


 is not endo 

SS-coprime.  

 

    By (3) and Remark 2.5, we have the following. 
 

Corollary 3.3 Every endo SS-coprime module is    

S-coprime and SSS-coprime. 

 

Proposition 3.4 Let M be an R-module, annMRR  . 

Then M is an endo SS-coprime R-module if and only 

if M  is an endo SS-coprime R -module. 
 

Proof. It is obvious .    

 

Proposition 3.5 If 
1

M  and 
2

M are two isomorphic 

R-modules. Then
1

M  is endo SS-coprime if and only 

if 
2

M is endo SS-coprime.  

 

Proposition 3.6 Let M be an R-module, )(MEndS  . 

Then S is an endo SS-coprime S-module implies S 

has no zero divisors.  
 

Proof. Suppose S is an endo SS-coprime S-module. 

Let Sgf ,  such that 0gf  , thus SgSf . ≪S, so 

either 0Sf  or 0Sg , hence 0f  or 0g , and 

so S  has no zero divisors .     
  

 

A submodule N of M  is said to be stable if, NNf )(  

for each R-homomorphism MNf : . A module M  

is called fully stable in case each submodule of M is 

stable [1]. An R-module M is called multiplication if 

for every submodule N of M there exists an ideal I of 

R such that IMN  [3].   

  

 

    The following two corollaries are immediately.  
 

Corollary 3.7 Let M be a fully stable R-module, 

)(MEndS  .Then S is an endo SS-coprime S-module 

implies S is an integral domain.  

 

Proof. Since M is fully stable, thus by [1, Prop. 1.2.1] 

)(MEndS  is a commutative ring. Hence the result is 

follow by Proposition 3.6 .     

 

Corollary 3.8 Let M be a multiplication R-module, 

)(MEndS  .Then S is an endo SS-coprime S-module 

implies S is an integral domain.   
 

Proof. If M is multiplication, thus by [13, Prop. 1.1] 

)(MEndS  is a commutative ring. Hence the result is 

follow by Proposition 3.6 .       

 

Proposition 3.9 Let M be a (multiplication or fully 

stable) R-module. If M is endo SS-coprime then S  is 

an integral domain, where )(MEndS  .  

 

Proof. Let )(, MEndgf  such that 0gf  , then 

)Im( gf  ≪M , but M  is endo SS-coprime, implies  

0f  or 0g . Thus S has no zero divisors. Since 

M  is (multiplication or fully stable), then the result is 

obtained .      
 

   

     Hadi I.M-A in [7], presented the following result.  
 

Lemma 3.10 Let M be a multiplication R-module. 

Then M is an SS-coprime R-module if and only if M 

is an SS-coprime S-module, where )(MEndS  .     

 

   The next result follows directly.   
 

Proposition 3.11 Let M be a multiplication R-module. 

Then M  is an endo SS-coprime module if and only if  

M  is a SS-coprime module.   

 

Corollary 3.12 Let R be a ring. Then R is endo SS-

coprime if and only if R is SS-coprime.  
 

Proof. Since R  is a commutative ring with identity, 

then R is multiplication. Hence, the result obtained 

by Proposition 3.11 .         

 

Recall that an R-module M is called a scalar module 

if, for all )(MEnd , there exists Rr  such that 

rmm )(  for all Mm [14].   
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     We noticed that every endo SS-coprime module is 

a SS-coprime module but not conversely (see Rem. 

and.Ex. 3.2(3)). In the next result we present condition 

under which the converse  is satisfied.  

    

Proposition 3.13 Let M be a scalar R-module. If M  is  

a SS-coprime module, then M  is endo SS-coprime.  
 

Proof. Let )(, MEndgf  , )Im( gf  ≪M .Since M is 

scalar, so there exist Rba , such that ammf )(  and 

bmmg )(  for all Mm .Then )Im( gfabM   is  

small in M, but M  is SS-coprime, so either 0aM  

or 0bM  this implies 0f  or 0g .      

 

     The following two results are characterizations of 

endo SS-coprime modules.   

 

Proposition 3.14 Let M be an R-module, )(MEndS  . 

Then M is an endo SS-coprime module if and only if, 

for each ideals A , B of S, ABM ≪M  implies that 

0AM  or 0BM . 
 

Proof. Assume that M is an endo SS-coprime module. 

Let A , B  be ideals of  S , ABM ≪M  and 0BM , 

so there exists Bg  such that 0)( Mg . For each 

Af  , ABMgf )Im(  ≪M , but M is endo SS-

coprime and 0g , thus 0f  for all Af  . Hence 

0AM . 
 

   Conversely, let )(, MEndgf  with )Im( gf  ≪M. 

Then MSgSf ).( ≪M,  so by assumption, 0)( MSf  

or 0)( MSg ,  and hence 0f  or 0g .       

  

Proposition 3.15 Let M be an R-module, )(MEndS  . 

Then M is endo SS-coprime if and only if for each 

Sgf , , )Im( gf  ≪M implies )():)(( MlMMf
SS

  

or )():)(( MlMMg
SS

 .   

 
 

Proof. Assume M is an endo SS-coprime R-module.         

Let )(, MEndgf  with )Im( gf  ≪M, so 0f  or 

0g and hence )():0():)(( MlMMMf
SSS

 or  

):)(( MMg
S

)():0( MlM
SS

 .   
 

    Conversely, if )(, MEndgf  , )Im( gf  ≪M, thus 

by hypothesis, )():)(( MlMMf
SS

 or ):)(( MMg
S

  

)(Ml
S

. But ):)(( MMff
S

 and ):)(( MMgg
S

 , 

so either )(Mlf
S

  or )(Mlg
S

 ; that is, either 

0f  or 0g .           

             

Proposition 3.16 Every direct summand of  an endo 

SS-coprime module is also endo SS-coprime.  
 

Proof. Let M be an endo SS-coprime module, and let 

MN  , then KNM   for some submodule K 

of M. Let )(, NEndgf  , )Im( gf  ≪N . Consider 

the endomorphisms , of M , )()( nfkn   and 

)()( ngkn   for all Nn . Notice that ,  are 

well-defined. Now, )Im(   )Im( gf  ≪N  implies 

that )Im(   ≪M , but M is endo SS-coprime, so 

either 0  or 0  this mean that, 0f  or 0g . 

Hence N  is endo SS-coprime .       

 

Remarks 3.17 
 

(1) A homomorphic image of endo SS-coprime module 

is not necessarily endo SS-coprime, for example: we 

know that in the Z-module Z, the zero submodule is 

the only small, so it is clear that Z as a Z-module is 

endo SS-coprime. Consider  the natural epimorphism 

4
: ZZ  , then 

4
Im Z  is not endo SS-coprime, 

to see this : let )(,
4

ZEnd such that xx )(   

and  xx 2)(    for all 
4

Zx . Then )Im(    

})2,0({)(Im   }2,0{ ≪
4

Z , but neither   nor 

  is zero. Also, this example show that, the endo 

SS-coprime property does not always transfer from a 

module to each of factor modules.  
  

(2) The direct sum of endo SS-coprime modules need 

not be endo SS-coprime module, for example: we know  

that 
6

Z  as Z-module is not endo SS-coprime, but we 
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have 
326

ZZZ   and each of 
2

Z and 
3

Z  are endo 

SS-coprime.  

 

Proposition 3.18 Let M be an R-module. If MM   

is an endo SS-coprime R-module, then M  is so.  
 

Proof. Since MMMM  )0( and MM  is 

endo SS-coprime, so by Proposition 3.16, )0(M is 

an endo SS-coprime module, and hence M is an endo 

SS-coprime module .      

 

    The converse is not true in general, as the following  

shows: we know Z as Z-module is endo SS-coprime. 

Consider the Z-module ZZ  .Let )(, ZZEndgf   

are defined by )0,(),( xyxf  , ),0(),( yyxg  for all 

ZZyx ),( . Then )0,0())0(()Im(  Zfgf   

which is small in ZZ  , but 0f  and 0g . Then 

ZZ  is not endo SS-coprime as Z-module.  

 

      To prove the following Proposition, we need the 

following Lemma.  
 

Lemma 3.19 Let M be an R-module, )(MEndS  . 

Then M is aΤ-noncosingular module if and only if 

)():( MlMN
SS

  for any  N ≪M .   

 

Proof. Assume that M is aΤ-noncosingular module. 

Let ):( MNf
S

 , then NMf )( ≪M, so )(Mf is 

small in M, thus 0f ; that is )(Mlf
S

 . Therefore 

)():( MlMN
SS

 . 
 

     Conversely, let )(MEnd with Im ≪M , put 

)(MN  .Thus )():( MlMN ss  ,this implies 

0 .     

  

An R-module M is called small prime if, for every 

nonzero small submodule N of M, MannNann
RR

  

[12]. Also, a module M is called endo-small prime if, 

)()( MlNl
SS

  for all  N ≪M , where )(MEndS   

[9]. Equivalently, a module M is endo-small prime if, 

for any Mx , x ≪M  and 0)( xf  implies 0x   

or 0Im f .   

 

Remark 3.20 If M is an endo-small prime module 

then )(Ml
S

 is a prime ideal in )(MEndS  .    
 

Proof. Let )(MEndgf  with 0)( Mgf  .Thus, 

for any Mx , x ≪M  and 0)( xgf  , implies  

0))(( xgf  and )(xg ≪M ,and hence 0)( xg or 

0Im f , so 0x  or 0Im g  or 0Im f , thus 

0Im g  or 0Im f . Thus the result obtained .                       

 

Now, recall the following definition.   
 

Definition 3.21 An R-module M is called S-relatively 

divisible if, for all )(MEndf  , )()( NfNMf   

for all MN  .   

                  

Proposition 3.22 Let M be a S-relatively divisible 

and endo-small prime module then M is an endo SS-

coprime module, provided that M has a nonzero Mx   

and x ≪M .   

 

Proof. First we shall prove that M is Τ-noncosingular. 

Assume that there exists ):( MNf
S

 and )(Mlf
S

 , 

)(MEndS  ; that is 0)( Mf . As M is endo-small 

prime, )()( MlNl
SS

 for all N ≪ M .Hence 0)( Nf . 

But )()()( 2 NfNfMf  , so )()( 2 NfNf  , this 

implies that, for any Nn , )()(
1

2 nfnf  for some 

Nn 
1

. It follows that 0))((
1

 nfnf . But, we 

have Nnfn  )(
1

, so Nnfn  )(
1

≪M , hence 

)(
1

nfn ≪M . But M is endo-small prime, we get 

))((
1

nfnlMl
SS

  implies )(Mlf
S

  which is a 

contradiction. Thus, )():( MlMN
SS

 for all N ≪M . 

Therefore, M is Τ-noncosingular, by Lemma 3.19. On 

the other hand, M is an endo-small prime module, so 

by Remark 3.20, )(Ml
S

is a prime ideal.Thus the result 

obtained by [Rem.and.Ex. 3.2(2)] .      

                     

Recall that an R-module M is called F-regular if, for 

each submodule N of M, IMNIN  for every ideal 

I of R [5]. An R-module M is called prime if, for all 

nonzero submodule N of M, MannNann
RR

  [4].        
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Corollary 3.23 Let M be an F-regular module over 

)(MEndS  . If M is endo-small prime, then M is 

endo SS-coprime.   

 

Corollary 3.24 Let M be an R-module, )(MEndS  . 

If  S  a regular ring, then the following statements are 

equivalent.   
 

(i) M  is an endo-small prime R-module. 

(ii) M  is an endo SS-coprime R-module. 

(iii) M  is a prime as S-module.   
  

 Proof. )()( iii  If S is a regular ring , )(xannS
S

 is 

also a regular ring, hence M is F-regular as S-module, 

so by previous Corollary, M  is endo SS-coprime.  
 

)()( iiiii  Since M is an endo SS-coprime module, 

then )(Ml
S

 is a prime ideal of S, so )(MlS
S

has no 

zero divisors. But S is a regular ring, then )(MlS
S

is 

a regular ring. It follows that )(MlSS
S

  is a division 

ring. Hence M is a prime S -module, and so M is a 

prime as S-module.  
 

)()( iiii   It is obvious .             

 

Proposition 3.25 Let M be a divisible module over 

the ring )(MEndS  , where S has no zero divisors, 

then M  is a faithful endo SS-coprime module.  
 

Proof. Assume that )(, MEndgf  , )Im( gf  ≪M . 

If 0gf   this implies MMgf )( , since M is a 

divisible S-module, so M ≪M which is a contradiction. 

Thus 0gf  , but S has no zero divisors, so either 

0f  or 0g , and hence M is an endo SS-coprime 

module .      

     

Recall that an R-module M is called small retractable 

if, 0),( NMHom  for each  N≪M  [7] .     

  

Remark 3.26 Let M be a small retractable and scalar 

R-module. If M is an endo SS-coprime R-module, 

then 0)( MRad . 
 

Proof. By Remark 3.2(1), M is an endo SS-coprime 

module, implies that M is aΤ-noncosingular module, 

and so by Remark 2.5, M is S-coprime, but M  is 

small retractable and scalar, hence 0)( MRad , by 

[7, Prop. 2.22] .      

     

Proposition 3.27 Let M be an R-module. Then M is   

aΤ-noncosingular module, wherever 0),( NMHom   

for each  N ≪M . 
 

Proof. Assume that )(MEndf  , fIm ≪M . Define 

fMg Im:  by )()( mfmg   for all Mm .Hence 

)Im,( fMHomg , fIm ≪M  and so by assumption   

0g . Hence 0f . Then M is Τ-noncosingular .   

 

Corollary 3.28 Let M  be an R-module with )(Mls  

is a prime ideal of )(MEndS  . If 0),( NMHom  

for all  N ≪M , then M  is endo SS-coprime. 
 

Proof. It follows directly by previous Proposition 

and  [Rem.and.Ex.3.2(2)] .      

 

Proposition 3.29 Let M be an R-module, )(MEndS  . 

Then M is an endo SS-coprime module if and only   

if 0),( NMHom  for every  N ≪M , and )(Ml
S

 is 

a prime ideal of S .  
 

Proof. If  M  is an endo SS-coprime R-module. Let 

),( NMHomf  , N ≪M . Thus Nf Im ≪M , but  

M is an endo SS-coprime module implies that M is 

aΤ-noncosingular module, and so 0f . Therefore 

0),( NMHom . Moreover, since M is an endo SS-

coprime R-module, then )(Ml
S

 is a prime ideal in S, 

by [Rem.and.Ex.3.2(2)]. 
 

 

     Conversely, if 0),( NMHom  for each  N ≪M , 

then by Proposition 3.27, M isΤ-noncosingular. But 

)(Ml
S

is prime, thus by [Rem.and.Ex.3.2(2)], M is 

an endo SS-coprime module .       

 

A nonzero module M is called hollow if, every proper  

submodule is small in M [6] .   
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However, the following result gives a condition under 

which the concepts of  endo SS-coprime module and  

Τ-noncosingular  module are coincide.       

Proposition 3.30 Let M be a hollow R-module.Then 

M is an endo SS-coprime module if and only M is  

aΤ-noncosingular module.  
   

Proof. Assume that M is aΤ-noncosingular R-module. 

Let )(, MEndgf  , )Im( gf  ≪M. So either fIm  

or gIm  is a proper submodule of M. If  Mf Im , 

then fIm ≪M  and hence 0f . Similarly, 0g . 

Thus M  is an endo SS-coprime module. 
    

     Conversely, follows by [Rem.and.Ex.3.2(1)] .    

 

Lemma 3.31 Let M be a module and A be a nilideal 

of )(MEndS  . If M is aΤ-noncosingular module, 

then 0AM .   
 

Proof. Let Af  , we claim that fIm ≪M . Assume 

that MNf Im for some submodule N of M. Thus,  

for all Zn , MNMf n )( . But  f  is a nilpotent 

element, so 0nf  for some 


Zn , then MN  , 

and so fIm ≪M . Thus 0f  for any Af  , since 

M  isΤ-noncosingular. Therefore 0AM .    

 

Proposition 3.32 Let M be an R-module and A , B be     

two ideals of )(MEndS   such that AB  is a nilideal. 

If M is an endo SS-coprime R-module, then 0AM  

or 0BM .  
 

Proof. Since M is an endo SS-coprime module, then 

M isΤ-noncosingular module and hence by above 

Lemma, 0ABM ,so ABM ≪M. But, M is an endo 

SS-coprime module, so by Proposition 3.14, 0AM  

or 0BM .     

 

Recall that a ring R is semilocal provided that )(RJR  

is a semi-simple ring .  
 

Proposition 3.33 Let M be an R-module, )(MEndS   

be a semilocal ring and )(SJ  is a nilideal. Then M  

is a Τ-noncosingular R-module if and only if M is    

a semisimple R-module.   

 

Proof. If M is a Τ-noncosingular R-module. Since S is 

a semilocal ring, then )(SJS is semisimple and hence 

MSJM )( is semisimple, by [2,Cor.15.18]. But )(SJ  

is a nilideal, thus by Lemma 3.31, 0)( MSJ  and 

hence M  is semisimple. 
 

   Conversely, since M is a semisimple module, then 

the zero submodule is the only small submodule of 

M, this implies that M  is Τ-noncosingular .        

 

Proposition 3.34 Let M be a scalar faithful R-module. 

Then R is an endo SS-coprime ring if and only if 

)(MEndS   is an endo SS-coprime ring.    
 

Proof. Since M  is a scalar faithful R-module, then by  

[11, Lemma 6.1] RMEndS  )( . Hence the result 

follows by Proposition 3.5 .            

 

Proposition 3.35 Let M be an R-module such that  

)(MEndS   is a regular ring with out zero divisors, 

then M  is endo SS-coprime.  
 

Proof. Let )(, MEndgf  , )Im( gf  ≪M . Since S 

is a regular ring, so there exists Sh  such that 

gf  )()( gfhgf  , and hence hgf  )(   is 

an idempotent element of S, so that ))Im(( hgf    

is a direct summand of M. But, ))Im(( hgf   

)Im( gf  ≪M, thus ))Im(( hgf  ≪M this implies 

that 0))Im(( hgf  , and hence either 0gf   or 

0h . But, 0gf   implies either 0f  or 0g , 

since S has no zero divisors. Also, if 0h  then 

0gf  , and so 0f  or 0g .      

 

Proposition 3.36 Let M be a multiplication finitely 

generated faithful module over a PID R. Then M is 

endo SS-coprime if and only if 0)( MRad .  
    

Proof. If M is an endo SS-coprime R-module, then  

M is Τ-noncosingular, but M is multiplication finitely 

generated faithful module over a PID R,  thus by [10, 

Cor. 2.9] 0)( MRad .  
 

     Conversely, since 0)( MRad ,so by[10, Cor. 2.9] 

M is Τ-noncosingular, means for all )(, MEndgf  , 
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)Im( gf  ≪M  implies 0gf  . But M is a finitely 

multiplication faithful, then M is scalar faithful, thus 

RS  ,and so S has no zero divisors. Hence 0gf  , 

implies that 0f  or 0g .                 

 4.   Semi-Endo SS-coprime modules  
   

In this section, we define and study semi-endo SS-coprime 

modules which is a generalization of endo SS-coprime 

modules. We give the relations between such modules and 

other types of modules .    

 
Definition 4.1 An R-module M is called a semi-endo 

SS-coprime module (briefly semi-endo SS-coprime) if, 

for each )(MEndf  , )Im( ff  ≪M  implies 0f . 

 

     We shall investigate the relation between semi-

endo SS-coprime and other classes of modules.  

 

Remarks and Examples 4.2  
 

(1) It is clear that every endo SS-coprime module is 

semi-endo SS-coprime, but the converse is not true in 

general, as the following example shows : Z-module 

6
Z  is semi-endo SS-coprime, but it is not endo SS-

coprime. In fact, if )(
6

ZEndf  , )(
6

2 Zf ≪
6

Z  this 

implies that 0)(
6

2 Zf , and since (0) is a semiprime 

submodule of 
6

Z ,  hence 0f .   

    

(2) Every semi-endo SS-coprime module isΤ-noncosingular.  
 

Proof.  Let M be a semi-endo SS-coprime module and 

)(MEndf  , fIm ≪M . But fff Im)Im(  , thus 

)Im( ff  ≪M  , and  so 0f .      

 

(3) Let M be an R-module, )(MEndS  .Then M is   

a semi-endo SS-coprime module if and only if M is 

Τ-noncosingular and )(Ml
S

is a semiprime ideal of  S.     

Proof. It is obvious .     

 

(4) Let M be an R-module and let )(MEndS  be a 

chained ring. Then M is endo SS-coprime if and only 

if  M is semi-endo SS-coprime .  

 

(5) Every semi-endo SS-coprime module is SSS-coprime.   

 

Proof. Let M be a semi-endo SS-coprime module. Let  

Rr , Mr 2 ≪M. Consider MM : by rmm )(  

for all Mm . Thus  )()(2 rMM  Mr 2 ≪M , 

but M is semi-endo SS-coprime, thus 0Im  rM . 

Hence M  is a SSS-coprime module .       
 

     The converse is not true in general, for example :  

consider the Z-module
22

ZZ 


,then it is SS-coprime 

and notΤ-noncosingular see [7, Rem.and.Ex.2.2(3)], 

this implies
22

ZZ 


 is SSS-coprime but not semi-

endo SS-coprime.   
 

(6) If M is a semi-endo SS-coprime module, then M 

is SS-coprime and hence M is S-coprime, whenever 

Mann
R

 is a prime ideal.   
 

Proof. It follows by(2) and [ Rem.and.Ex. 3.2 (2),(3)].  

 

     The next result gives characterizations of semi-

endo SS-coprime modules.   
 

Proposition 4.3 Let M be an R-module, )(MEndS  . 

Then the following statements are equivalent.  
 

(i) M  is a semi-endo SS-coprime R-module. 

(ii) For any ideal A of S, MA2 ≪M  implies 0AM .  

(iii) For any ideal  A of  S, and 


Zn . If MAn ≪M     

        implies 0AM .  
 

Proof. It is easy, so is omitted .     
 

Proposition 4.4 Let M be an R-module, annMRR  . 

Then M is a semi-endo SS-coprime R-module if and 

only if M  is a semi-endo SS-coprime R -module.  
 

Proof. It is obvious .    

 

Proposition 4.5 If 
1

M  and 
2

M are two isomorphic 

R-modules. Then
1

M  is semi-endo SS-coprime if and 

only if 
2

M  is semi-endo SS-coprime. 

 

Proposition 4.6 Let M be a scalar R-module. If M  is  

SSS-coprime, then M  is semi-endo SS-coprime.   
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Proof. Let )(MEnd with )(2 M ≪M. Since M is 

scalar, so there exists Rr  such that rmm )(  for 

all Mm .Thus )(22 MMr  is small in M , but M 

is an SSS-coprime module, thus 0rM  which implies 

0 .     

Proposition 4.7 Let M be an R-module, )(MEndS  . 

Then M is semi-endo SS-coprime if and only if for all 

Sf  , )Im( ff  ≪M  implies )():)(( MlMMf
SS

 .     
 

Proof. Assume that M is a semi-endo SS-coprime   

R-module. Let )(MEndf  , )Im( ff  ≪M, so 0f  

and hence )():0():)(( MlMMMf
SSS

 .   
 

     Conversely, let )(MEnd with )(2 M ≪M, so 

by hypothesis, )():)(( MlMM
SS

 . But we have 

):)(( MM
S

 ,  thus 0)( M , hence 0  and 

M  is a semi-endo SS-coprime R-module .    

 

Proposition 4.8 Let M be a semi-endo SS-coprime 

R-module and let N be a direct summand of  M. Then 

N  is semi-endo SS-coprime . 
 

Proof. Let M be a semi-endo SS-coprime R-module. 

Assume that MN  , then KNM   for some 

submodule K of M. Let )(NEnd , )(2 N ≪N . 

Consider the endomorphism MM : defined by  

)()( nkn    for Nn . Now, )()( 22 NM      

is small in N, this implies )(2 M ≪M , but M is 

semi-endo SS-coprime, so 0 , and hence 0 .  

  

Remark 4.9 A homomorphic image of semi-endo 

SS-coprime module is not necessarily semi-endo SS-

coprime module, for example: it is well known that Z 

as Z-module is endo SS-coprime, so it is a semi-endo 

SS-coprime module. Consider the natural epimorphism  

4
: ZZ  . It is clear that 

4
Im Z  is not SSS-

coprime and hence it is not semi-endo SS-coprime as 

Z-module, by [Rem.and.Ex. 4.2(5)]. In particular case, 

this example show that, the factor of semi-endo SS-

coprime module need not be semi-endo SS-coprime 

module.  

 

Proposition 4.10 Let M be an R-module. If MM   

is a semi-endo SS-coprime R-module, then M  is so. 
   

Proof. By Proposition 4.8, )0(M  is a semi-endo 

SS-coprime module of MM  .But MM  )0( ,so 

M  is semi-endo SS-coprime, by Proposition 4.5 .      

 

Proposition 4.11 Let M be a module has a projective 

cover Mp : . If P is semi-endo SS-coprime, then 

so is M.  
 

Proof. Since M is has a projective cover Mp : , 

then  is an epimorphism and Ker ≪P , thus we 

have MKerP  .It is enough to show that KerP  

is semi-endo SS-coprime. Assume )(  KerPEnd ,                       

)(2  KerP ≪ KerP . Consider  KerPp :  

the natural epimorphism. Since P is projective, so 

there exists a homomorphism PP : such that 

   . 

 

 

 

 

 

  
 

 

 

 

 

So 
22    . Hence, )()( 22  KerPP   is 

small in KerP ,and hence 




Ker

KerP )(2

≪
Ker

P
,  

and since Ker ≪P, thus )(2 P ≪P .But P is semi- 

endo SS-coprime, hence 0 , and so  0  .  

Thus  0 .               

       

Corollary 4.12 Let R be a ring. Then the following 

statements are equivalent.  
 

(i) Every projective R-module is semi-endo SS-coprime. 

(ii) Every R-module has a projective cover is semi-endo    

      SS-coprime.    
 

Proof. )()( iii   It follows by previous Proposition . 
 

 

P Kerp  

P 

Kerp  
  

  

  

  
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)()( iii  Let M be a projective R-module. Consider 

the identity mapping MMi : , 0Keri ≪M, thus 

M has a projective cover. Hence by (ii), M is semi- 

endo SS-coprime .      

 

Theorem 4.13 Let M be a multiplication R-module. 

Then M is a SSS-coprime R-module if and only if M 

is a semi-endo SS-coprime R-module .      
 

Proof. Since M is a SSS-coprime R-module, then by 

[7, Th. 3.10] M is a SSS-coprime as S-module, where 

)(MEndS  . This implies that M  is a semi-endo SS-

coprime as R-module .     

   

Proposition 4.14 Let M be a scalar faithful R-module. 

Then R is a semi-endo SS-coprime ring if and only if 

)(MEndS   is a semi-endo SS-coprime ring .  
 

Proof. Since M is a scalar faithful R-module, so RS  . 

Hence the result is obtained .       

 

Remark 4.15 Let M be an R-module, )(MEndS   be 

a semilocal ring with )(RJ is a nilideal. If M is a semi-

endo SS-coprime S-module, then M is Τ-noncosingular 

and hence M  is semisimple, by Proposition 3.33.   

 

     For every module M, let :)({)( MEndMS    

2Im ≪M }. It is easy to see that )(MS is an ideal  

of )(MEnd .By the semi-endo SS-coprime submodule 

of  M we mean  
)(

)(
MS

S KerMZ





 .  

 

Proposition 4.16 Let M be an R-module. Then M  is 

semi-endo SS-coprime if and only if  MMZ S )( . 
 

Proof. Suppose that M is a semi-endo SS-coprime 

module. Then, for each )(MS , 0  and hence   

)(
)(

MZKerKerM S

MS







 . 

    Conversely, assume MMZ S )( . Let )(MEnd  

and 2Im ≪M , hence )(MS . By hypothesis, we 

have 
)(

)(
MS

S KerMZM





 . Thus KerM  ; that 

is 0)( M . Hence M  is semi-endo SS-coprime .       
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