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Abstract

The purpose of this paper is to introduce and investigate the notion of endo strongly S-coprime modules, where
an R-module M is called an endo strongly S-coprime module (briefly endo SS-coprime) if, for all f,g e End(M),

Im(f og) issmall in M implies f =0 or g=0. We give some properties of endo SS-coprime modules. Several

of various relations between such modules and other classes are obtained. Moreover, we give some equivalent
statements for endo SS-coprime modules. We also introduce the notion of semi-endo strongly S-coprime

modules as generalization of endo strongly S-coprime modules, where an R-module M

is called semi-endo

strongly S-coprime (briefly semi-endo SS-coprime) if, for each f e End(M), Im(f o f) issmall in M implies

f =0. Some results of such modules are given .

Key Words : Endo SS-coprime modules ; Semi-endo SS-coprime modules ; 7-noncosingular modules ; SS-coprime modules;

SSS-coprime modules ; S-coprime modules .

1. Introduction

Throughout this article, let M be a left module as a
commutative ring with identity. We denote the ring of
all endomorphisms of M by End(M) and the Jacobson

radical of M by Rad(M) .We will denote the left
annihilator of M in S=End(M) by I,(M), and the

direct summand N of M by N <® M . Recall that a
submodule N <M is called small and denoted by
N <M if, N+K = M for every proper submodule K
of M, [2]. Following [10], an R-module M is called
T-noncosingular if, for every nonzero endomorphism
@ of M, Img is not small in M. Hadi I.M-A in [7]
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introduce the notion of strongly S-coprime module
(briefly, SS-coprime), where a module M is called
strongly S-coprime (briefly SS-coprime) if, for all
a,beR, abM <M implies aM =0 or bM =0. In
section 3 of this paper we further investigate the
notion of endo strongly S-coprime module (briefly
endo SS-coprime), where an R-module M is called
endo SS-coprime if for each f,g e End(M) with

Im(f og) KM implies f =0 or g =0.We show that

in general the direct sum of endo SS-coprime modules
is not endo SS-coprime module. We also prove that
endo SS-coprime is inherited by direct summands.
We prove some results concerning these types of


http://www.iiste.org/
mailto:Innam1976@yahoo.com
mailto:thaar_math83@yahoo.com

Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.6, No.1, 2016

www.iiste.org
JLIELE

STe

modules. It is shown that a divisible R-module M
over no zero divisor ring S = End (M), is faithful endo
SS-coprime. For a multiplication module M, we prove
that the concepts endo SS-coprime module and a
SS-coprime module are coincide. In section 4, the
concept of semi-endo SS-coprime modules is presented
as generalization of endo SS-coprime modules,
where an R-module M is called semi-endo SS-coprime
if for any f € End(M)with Im(fo f) <M implies
f =0. Most of properties of endo SS-coprime modules
generalized to semi-endo SS-coprime module. Several
properties of semi-endo SS-coprime modules and
some connections between semi-endo SS-coprime
modules and other related concepts are given. It is
proved that, an R-module M is semi-endo SS-coprime
if and only if I, (M) is a semiprime ideal of S and

M is 7-noncosingular, where S = End(M).

2. Definitions and Notation

Definition 2.1 An R-module M is called S-coprime

if, ann,M =ann, % for every small submodule N

of M [8]. Equivalently, M is S-coprime if whenever
reR, rM <M implies rM =0.

Definition 2.2 An R-module M is called strongly
S-coprime (briefly SS-coprime) if, for all a,beR,
abM <M implies aM =0 or bM =0 [7].

Definition 2.3 An R-module M is called semi-
strongly S-coprime (briefly SSS-coprime) if, for all
reR, r’M <M implies rM =0 [7].

Definition 2.4 An R-module M is said to be
7-noncosingular if, for each nonzero endomorphism
@ of M, Img isnotsmall in M [10].

Remark 2.5 By [7], we have the following implications:

SS-coprime = S-coprime,
SS-coprime = SSS-coprime,

79

T-noncosingular = S-coprime.

3. Endo strongly S-coprime modules

In this section, the class of endo strongly S-coprime
modules is defined and investigated. First we obtain
some properties of this kind of modules. Also relations
between such modules and some other classes of
modules will be studied .

Definition 3.1 An R-module M is called endo strongly
S-coprime (briefly endo SS-coprime) if, for each
f,g e End(M) with Im(f og) <M implies f =0 or

g=0.

Remarks and Examples 3.2

(1) It is clear that every endo SS-coprime module is
T-noncosingular, but not conversely, as the following
example shows : it is clear that the Z-module Z, is

T-noncosingular. Assume f, g e End(Z,) defined by
f(;):Zi, g(;):?& for all ;eZB. Now, we have
Im(f og)=(0) <M, but neither f nor g is zero.

This means that the Z-module Z_ is not endo SS-

coprime.

(2) Let M be an R-module, S=End(M). Then M is
endo SS-coprime if and only if M is 7-noncosingular
and I, (M) is prime.

Proof. It is obvious . O

(3) Every endo SS-coprime module is SS-coprime.
Proof. Suppose that M is an endo SS-coprime module.
Let a,beR,abM <M . Define the endomorphisms
f,g on M by f(m)=am and g(m)=bm for all
meM . Then Im(fog)=f(bM)=abM <M , but
M is endo SS-coprime, so either f =0 or g=0 and
this implies aM =0 or bM =0. 0O
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The converse is not true in general, for example :
consider the Z-module Z  © Z,. See [7, Rem.and.Ex.

22(3)], Z,, ®Z, is SS-coprime Z-module but not
T-noncosingular, thus by (1), .92, is not endo

SS-coprime.

By (3) and Remark 2.5, we have the following.

Corollary 3.3 Every endo SS-coprime module is
S-coprime and SSS-coprime.

Proposition 3.4 Let M be an R-module, R = R/annM .
Then M is an endo SS-coprime R-module if and only

if M is an endo SS-coprime R -module.

Proof. It is obvious . O

Proposition 3.5 If M, and M, are two isomorphic
R-modules. Then M, is endo SS-coprime if and only

if M, isendo SS-coprime.

Proposition 3.6 Let M be an R-module, S = End (M) .
Then S is an endo SS-coprime S-module implies S
has no zero divisors.

Proof. Suppose S is an endo SS-coprime S-module.
Let f,geS suchthat fog=0, thus Sf.Sg S, so
either Sf =0 or Sg=0, hence f =0 or g=0, and
S0 S has no zero divisors . [

A submodule N of M is said to be stable if, f(N)< N
for each R-homomorphism f : N — M . A module M

is called fully stable in case each submodule of M is
stable [1]. An R-module M is called multiplication if
for every submodule N of M there exists an ideal | of
R such that N = IM [3].

The following two corollaries are immediately.

Corollary 3.7 Let M be a fully stable R-module,
S =End(M).Then S is an endo SS-coprime S-module

implies S is an integral domain.
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Proof. Since M is fully stable, thus by [1, Prop. 1.2.1]
S = End (M) is a commutative ring. Hence the result is

follow by Proposition 3.6 . O

Corollary 3.8 Let M be a multiplication R-module,
S =End(M).Then S is an endo SS-coprime S-module

implies S is an integral domain.

Proof. If M is multiplication, thus by [13, Prop. 1.1]
S = End (M) is a commutative ring. Hence the result is

follow by Proposition 3.6 . 0O

Proposition 3.9 Let M be a (multiplication or fully
stable) R-module. If M is endo SS-coprime then S is
an integral domain, where S = End(M) .

Proof. Let f,g < End(M)such that fog=0, then
Im(f og) <M, but M is endo SS-coprime, implies
f=0 or g=0. Thus S has no zero divisors. Since

M is (multiplication or fully stable), then the result is
obtained . O

Hadi I.M-A in [7], presented the following result.

Lemma 3.10 Let M be a multiplication R-module.
Then M is an SS-coprime R-module if and only if M
is an SS-coprime S-module, where S =End(M).

The next result follows directly.

Proposition 3.11 Let M be a multiplication R-module.
Then M is an endo SS-coprime module if and only if
M is a SS-coprime module.

Corollary 3.12 Let R be a ring. Then R is endo SS-
coprime if and only if R is SS-coprime.

Proof. Since R is a commutative ring with identity,
then R is multiplication. Hence, the result obtained
by Proposition 3.11. O

Recall that an R-module M is called a scalar module
if, for all ¢ e End(M), there exists r € R such that

@(m)=rm for all me M [14].
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We noticed that every endo SS-coprime module is
a SS-coprime module but not conversely (see Rem.
and.Ex. 3.2(3)). In the next result we present condition
under which the converse is satisfied.

Proposition 3.13 Let M be a scalar R-module. If M is
a SS-coprime module, then M is endo SS-coprime.

Proof. Let f,g e End(M), Im(f o g) <M .Since M is
scalar, so there exist a,b € R such that f (m) =am and
g(m)=bm forall me M .Then abM =Im(f -Q) is

small in M, but M is SS-coprime, so either aM =0
or bM =0 thisimplies f =0 or g=0. O

The following two results are characterizations of
endo SS-coprime modules.

Proposition 3.14 Let M be an R-module, S = End(M) .

Then M is an endo SS-coprime module if and only if,
for each ideals A, B of S, ABM <M implies that
AM =0 or BM =0.

Proof. Assume that M is an endo SS-coprime module.
Let A, B beideals of S, ABM <M and BM =0,
so there exists g € B such that g(M) =0 . For each

feA, Im(fog)<ABM <M, but M is endo SS-
coprimeand g #0,thus f =0 forall f € A.Hence
AM =0.

Conversely, let f,g e End(M) with Im(f o g) <M.
Then (Sf.Sg)M <M, so by assumption, (Sf)M =0
or (Sg)M =0, and hence f=0or g=0. O

Proposition 3.15 Let M be an R-module, S = End(M) .

Then M is endo SS-coprime if and only if for each
f,geS,Im(f og) <M implies (f (M) :; M) =1,(M)

or (g(M):, M)=1,(M).

Proof. Assume M is an endo SS-coprime R-module.
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Let f,geEnd(M)with Im(fog) <M,so f=0 or
g=0and hence (f(M):, M)=(0:, M)=I,(M)or
@gM):; M)=(0:, M)=I,(M).

Conversely, if f,geEnd(M), Im(f og) <M, thus
by hypothesis, (f(M):; M)=I,(M)or (g(M):; M) =
I,(M). Butf e(f(M):; M)andg e(g(M):, M),
so either f el (M) or gel,(M); that is, either
f=0o0rg=0. O

Proposition 3.16 Every direct summand of an endo
SS-coprime module is also endo SS-coprime.

Proof. Let M be an endo SS-coprime module, and let
N <® M, then M =N®K for some submodule K
of M. Let f,geEnd(N),Im(fog) <N . Consider
the endomorphisms ¢, of M, @(n+k)= f(n) and
w(n+k)=g(n) for all ne N. Notice that ¢,y are
well-defined. Now, Im(¢@ o) = Im(f o g) <N implies
that Im(peow) <M , but M is endo SS-coprime, so
eitherp =0 or =0 thismean that, f =0 or g=0.
Hence N is endo SS-coprime . O

Remarks 3.17

(1) A homomorphic image of endo SS-coprime module
is not necessarily endo SS-coprime, for example: we
know that in the Z-module Z, the zero submodule is
the only small, so it is clear that Z as a Z-module is
endo SS-coprime. Consider the natural epimorphism
7w:Z—>Z,, then Imz =2, isnot endo SS-coprime,

to see this : let @, € End(Z,) such that go(;) =X

and w(x)=2x forall xeZ,. Then Im(poy)=
o(my) = p({0,2}) ={0, 2} < Z,, but neither ¢ nor
w is zero. Also, this example show that, the endo

SS-coprime property does not always transfer from a
module to each of factor modules.

(2) The direct sum of endo SS-coprime modules need
not be endo SS-coprime module, for example: we know
that Z, as Z-module is not endo SS-coprime, but we


http://www.iiste.org/

Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.6, No.1, 2016

www.iiste.org
JLIELE

STe

have Z, =Z, ®Z, and each of Z,and Z, are endo

SS-coprime.

Proposition 3.18 Let M be an R-module. If M @M
is an endo SS-coprime R-module, then M is so.

Proof. SinceM =M ®(0)<®* M@®M and M ®M is
endo SS-coprime, so by Proposition 3.16, M @ (0) is

an endo SS-coprime module, and hence M is an endo
SS-coprime module . O

The converse is not true in general, as the following
shows: we know Z as Z-module is endo SS-coprime.
Consider the Z-module Z® Z .Let f,ge End(Z®2Z)

are defined by f(x,y)=(x,0), g(x,y) = (0, y) for all
(x,y)eZ®Z. Then Im(fog)=f(0)®Z)=(0,0)
whichissmall inZ®Z ,but f 0 and g=0. Then

Z ®Z is not endo SS-coprime as Z-module.

To prove the following Proposition, we need the
following Lemma.
Lemma 3.19 Let M be an R-module, S =End(M).
Then M is a 7-noncosingular module if and only if
(N, M)=I,(M) forany N <M.
Proof. Assume that M is a 7-noncosingular module.
Let f e(N:, M), then f(M)<N <M, so f(M)is
small in M, thus f =0; thatis f €l,(M). Therefore
(N:s M)=1,(M).

Conversely, let @ € End(M) with Ime <M, put
N =¢p(M).Thus ¢ (N :; M)=I (M) this implies
¢=0. 0

An R-module M is called small prime if, for every
nonzero small submodule N of M, ann,N =ann,M
[12]. Also, a module M is called endo-small prime if,
I.(N)=I,(M) forall N <M, where S=End(M)
[9]. Equivalently, a module M is endo-small prime if,
forany xe M ,(x) <M and f(x)=0 impliesx=0

or Imf=0.
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Remark 3.20 If M is an endo-small prime module
then I, (M) is a prime ideal in S =End(M).

Proof. Let f og € End(M) with f og(M)=0.Thus,
for any xeM ,(x) <M and fog(x)=0, implies
f(9(x)) =0 and (g(x)) <M ,and hence g(x)=0or
Imf=0,s0 x=0 or Img=0 or Imf =0, thus

Img=0 or Im f =0. Thus the result obtained . O

Now, recall the following definition.

Definition 3.21 An R-module M is called S-relatively
divisible if, for all f e End(M), f(M)N = f(N)
forall N<M .

Proposition 3.22 Let M be a S-relatively divisible
and endo-small prime module then M is an endo SS-
coprime module, provided that M has a nonzero x e M

and (x) <M.

Proof. First we shall prove that M is 7-noncosingular.
Assume that there exists f € (N :; M)and f ¢l (M),

S=End(M);thatis f(M)=0.AsM is endo-small
prime, I, (N) =1, (M) for all N «< M .Hence f(N) =0.
But f (M)~ f(N) = f2(N), so f(N)= f2(N), this
implies that, for any ne N, f(n) = f *(n,) for some
n, e N. It follows that f(n—f(n))=0. But, we
have n—f(n,)e N, so (n—f(n,))<N <M, hence
(n—f(n,)) <M. But M is endo-small prime, we get
I;M =1 ((n—f(n,))) implies f eI, (M) which is a
contradiction. Thus, (N :; M) =I1,(M) forall N <M.

Therefore, M is 7-noncosingular, by Lemma 3.19. On
the other hand, M is an endo-small prime module, so
by Remark 3.20, I, (M) is a prime ideal.Thus the result

obtained by [Rem.and.Ex. 3.2(2)] . O

Recall that an R-module M is called F-regular if, for
each submodule N of M, IN =N " IM for every ideal
I of R [5]. An R-module M is called prime if, for all
nonzero submodule N of M, ann,N =ann,M [4].
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Corollary 3.23 Let M be an F-regular module over
S=End(M). If M is endo-small prime, then M is

endo SS-coprime.

Corollary 3.24 Let M be an R-module, S = End(M) .

If S aregular ring, then the following statements are
equivalent.

(i) M is an endo-small prime R-module.

(if) M is an endo SS-coprime R-module.

(iii) M is a prime as S-module.

Proof. (i) = (ii) If S is a regular ring , S/ann, (x) is
also a regular ring, hence M is F-regular as S-module,
so by previous Corollary, M is endo SS-coprime.

(ii) = (iii) Since M is an endo SS-coprime module,
then I,(M) is a prime ideal of S, so S/l (M) has no

zero divisors. But S is a regular ring, then S/I, (M) is
a regular ring. It follows that S = S/Is (M) is a division

ring. Hence M is a prime S -module, and so M is a
prime as S-module.

(iii) = (i) Itisobvious. O

Proposition 3.25 Let M be a divisible module over
the ring S =End(M), where S has no zero divisors,

then M s a faithful endo SS-coprime module.

Proof. Assume that f,ge End(M), Im(f og) <M.
If fog=0 thisimplies f og(M)=M, since M is a
divisible S-module, so M <M which is a contradiction.
Thus fog =0, but S has no zero divisors, so either
f=0 or g=0, and hence M is an endo SS-coprime

module. O

Recall that an R-module M is called small retractable
if, Hom(M, N) =0 foreach N<M [7].

Remark 3.26 Let M be a small retractable and scalar
R-module. If M is an endo SS-coprime R-module,
then Rad(M)=0.
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Proof. By Remark 3.2(1), M is an endo SS-coprime
module, implies that M is a 7-noncosingular module,
and so by Remark 2.5, M is S-coprime, but M is
small retractable and scalar, hence Rad(M) =0, by

[7,Prop.2.22]. O

Proposition 3.27 Let M be an R-module. Then M is
a 7-noncosingular module, wherever Hom(M, N) =0

foreach N <M.

Proof. Assume that f € End(M), Im f <M . Define
g:M —Im f by g(m) = f(m) forall me M .Hence
g e Hom(M,Im f),Im f <M and so by assumption

g=0.Hence f=0.Then M is 7-noncosingular .

Corollary 3.28 Let M be an R-module with (M)
is a prime ideal of S=End(M). If Hom(M,N)=0
forall N <M, then M is endo SS-coprime.

Proof. It follows directly by previous Proposition
and [Rem.and.Ex.3.2(2)]. O

Proposition 3.29 Let M be an R-module, S = End(M) .
Then M is an endo SS-coprime module if and only
if Hom(M,N)=0 forevery N <M, and I, (M) is
a prime ideal of S .

Proof. If M is an endo SS-coprime R-module. Let
f e Hom(M,N), N <M. Thus Im f <N <M, but

M is an endo SS-coprime module implies that M is
a 7T-noncosingular module, and so f =0. Therefore

Hom(M, N) =0. Moreover, since M is an endo SS-
coprime R-module, then I (M) is a prime ideal in S,
by [Rem.and.Ex.3.2(2)].

Conversely, if Hom(M,N) =0 for each N <M,

then by Proposition 3.27, M is 7-noncosingular. But
I,(M)is prime, thus by [Rem.and.Ex.3.2(2)], M is

an endo SS-coprime module . O

A nonzero module M is called hollow if, every proper
submodule is small in M [6] .
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However, the following result gives a condition under
which the concepts of endo SS-coprime module and
T-noncosingular module are coincide.

Proposition 3.30 Let M be a hollow R-module.Then
M is an endo SS-coprime module if and only M is
a 7-noncosingular module.

Proof. Assume that M is a 7-noncosingular R-module.
Let f,geEnd(M),Im(fog) <M. So either Im f

or Img is a proper submodule of M. If Imf =M,
then Im f <M and hence f =0. Similarly, g=0.
Thus M is an endo SS-coprime module.

Conversely, follows by [Rem.and.Ex.3.2(1)] . O

Lemma 3.31 Let M be a module and A be a nilideal
of S=End(M). If M is a 7-noncosingular module,

then AM =0.

Proof. Let f € A, we claim that Im f <M. Assume
that Im f + N = M for some submodule N of M. Thus,
forall nezZ_, f"(M)+N =M. But f is a nilpotent
element, so f"=0 for some neZ_,then N=M,
andso Imf <M. Thus f =0 forany f € A, since
M is 7-noncosingular. Therefore AM =0. O

Proposition 3.32 Let M be an R-module and A , B be
two ideals of S=End(M) such that AB is a nilideal.
If M is an endo SS-coprime R-module, then AM =0
or BM =0.

Proof. Since M is an endo SS-coprime module, then
M is 7-noncosingular module and hence by above
Lemma, ABM =0,50 ABM <M. But, M is an endo
SS-coprime module, so by Proposition 3.14, AM =0
or BM =0. O

Recall that a ring R is semilocal provided that R/J (R)

is a semi-simple ring .

Proposition 3.33 Let M be an R-module, S = End(M)
be a semilocal ring and J(S) is a nilideal. Then M

is a 7-noncosingular R-module if and only if M is
a semisimple R-module.
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Proof. If M is a 7-noncosingular R-module. Since S is
a semilocal ring, then S/J(S) is semisimple and hence

M/J(S)M is semisimple, by [2,Cor.15.18]. But J(S)
is a nilideal, thus by Lemma 3.31, J(S)M =0 and
hence M is semisimple.

Conversely, since M is a semisimple module, then
the zero submodule is the only small submodule of
M, this implies that M is 7-noncosingular. O

Proposition 3.34 Let M be a scalar faithful R-module.
Then R is an endo SS-coprime ring if and only if
S =End(M) is an endo SS-coprime ring.

Proof. Since M is a scalar faithful R-module, then by
[11, Lemma 6.1] S=End(M) = R. Hence the result
follows by Proposition 3.5. O

Proposition 3.35 Let M be an R-module such that
S =End(M) is a regular ring with out zero divisors,

then M is endo SS-coprime.

Proof. Let f,geEnd(M), Im(f-g) <M. Since S
is a regular ring, so there exists heS such that
fog=(fog)eho(fog), and hence (fog)oh is
an idempotent element of S, so that Im((f og)oh)
is a direct summand of M. But, Im((fog)oh)<
Im(f og) <M, thus Im((f o g)oh) <M this implies
that Im((f cg)oh) =0, and hence either f g =0 or
h=0.But, fog=0 implies either f =0 or g=0,
since S has no zero divisors. Also, if h=0 then
fog=0,andso f=0o0r g=0. O

Proposition 3.36 Let M be a multiplication finitely
generated faithful module over a PID R. Then M is
endo SS-coprime if and only if Rad(M)=0.

Proof. If M is an endo SS-coprime R-module, then
M is 7-noncosingular, but M is multiplication finitely
generated faithful module over a PID R, thus by [10,
Cor. 2.9] Rad(M)=0.

Conversely, since Rad (M) =0,s0 by[10, Cor. 2.9]

M is 7-noncosingular, means for all f,g e End(M),
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Im(fog) <M implies fog=0.But M is a finitely
multiplication faithful, then M is scalar faithful, thus
S = R ,and so S has no zero divisors. Hence fog=0,

impliesthat f =0 or g=0. O
4. Semi-Endo SS-coprime modules

In this section, we define and study semi-endo SS-coprime
modules which is a generalization of endo SS-coprime
modules. We give the relations between such modules and
other types of modules .

Definition 4.1 An R-module M is called a semi-endo
SS-coprime module (briefly semi-endo SS-coprime) if,
foreach f e End(M), Im(f o f) <M implies f =0.

We shall investigate the relation between semi-
endo SS-coprime and other classes of modules.

Remarks and Examples 4.2

(2) It is clear that every endo SS-coprime module is
semi-endo SS-coprime, but the converse is not true in
general, as the following example shows : Z-module
Z, is semi-endo SS-coprime, but it is not endo SS-

coprime. In fact, if f e End(Z,), f?(Z,) < Z, this
implies that f?(Z,)=0, and since (0) is a semiprime

submodule of Z,, hence f =0.

(2) Every semi-endo SS-coprime module is 7-noncosingular.
Proof. Let M be a semi-endo SS-coprime module and
f eEnd(M),Imf <M . But Im(fo f)<Imf, thus
Im(fof) <M ,and so f=0. O

(3) Let M be an R-module, S =End(M) .Then M is

a semi-endo SS-coprime module if and only if M is
T-noncosingular and I (M) is a semiprime ideal of S.

Proof. It is obvious . O

(4) Let M be an R-module and let S=End(M)be a

chained ring. Then M is endo SS-coprime if and only
if M is semi-endo SS-coprime .

(5) Every semi-endo SS-coprime module is SSS-coprime.
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Proof. Let M be a semi-endo SS-coprime module. Let
reR,r*M <M. Considerp:M — M by ¢(m)=rm

forall meM . Thus ¢*(M)=p(rM)=r’M <M,
but M is semi-endo SS-coprime, thus rM =Imge =0.
Hence M is a SSS-coprime module . O

The converse is not true in general, for example :
consider the Z-module ZZ” @ Z, ,then it is SS-coprime

and not 7-noncosingular see [7, Rem.and.Ex.2.2(3)],
this implies sz @ Z, is SSS-coprime but not semi-
endo SS-coprime.

(6) If M is a semi-endo SS-coprime module, then M

is SS-coprime and hence M is S-coprime, whenever
ann M is a prime ideal.

Proof. It follows by(2) and [ Rem.and.Ex. 3.2 (2),(3)].0

The next result gives characterizations of semi-
endo SS-coprime modules.

Proposition 4.3 Let M be an R-module, S = End(M).

Then the following statements are equivalent.

(i) M is a semi-endo SS-coprime R-module.

(i) For any ideal A of S, A’M <M implies AM =0.

(iii) For any ideal Aof S,and neZ, .If A"M <M
implies AM =0.

Proof. It is easy, so is omitted . O

Proposition 4.4 Let M be an R-module, R =R/annM .
Then M is a semi-endo SS-coprime R-module if and
only if M is a semi-endo SS-coprime R -module.

Proof. It is obvious. O
Proposition 4.5 If M, and M, are two isomorphic

R-modules. Then M, is semi-endo SS-coprime if and

only if M, is semi-endo SS-coprime.

Proposition 4.6 Let M be a scalar R-module. If M is
SSS-coprime, then M is semi-endo SS-coprime.
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Proof. Let € End (M) with @°(M) <M. Since M is
scalar, so there exists r € R such that ¢(m)=rm for
all me M .Thus r’M =@?*(M)is small in M, but M
is an SSS-coprime module, thus rM =0 which implies
p=0. 0O
Proposition 4.7 Let M be an R-module, S = End(M) .
Then M is semi-endo SS-coprime if and only if for all
feS,Im(fof)<M implies (f(M):, M) =I,(M).
Proof. Assume that M is a semi-endo SS-coprime
R-module. Let f e End(M), Im(fo f) <M, so f =0
and hence (f(M):, M)=(0: M)=I,(M).
Conversely, let @ € End(M) with ¢*(M) <M, so
by hypothesis, (p(M):; M)=I1,(M). But we have
p<(eM):; M), thus ¢(M)=0, hence ¢ =0 and
M is a semi-endo SS-coprime R-module . O

Proposition 4.8 Let M be a semi-endo SS-coprime
R-module and let N be a direct summand of M. Then
N is semi-endo SS-coprime .

Proof. Let M be a semi-endo SS-coprime R-module.
Assume that N <® M , then M =N®K for some
submodule K of M. Let ¢ End(N), @*(N) <N .
Consider the endomorphism  :M — M defined by

w(n+k)=g(n) for ne N. Now, y*(M)=¢*(N)
is small in N, this implies y?(M) <M , but M is

semi-endo SS-coprime, so =0, and hence ¢ =0.0

Remark 4.9 A homomorphic image of semi-endo
SS-coprime module is not necessarily semi-endo SS-
coprime module, for example: it is well known that Z
as Z-module is endo SS-coprime, so it is a semi-endo
SS-coprime module. Consider the natural epimorphism
m:Z—>Z,. Itis clear that Imz =27, is not SSS-

coprime and hence it is not semi-endo SS-coprime as
Z-module, by [Rem.and.Ex. 4.2(5)]. In particular case,
this example show that, the factor of semi-endo SS-
coprime module need not be semi-endo SS-coprime
module.
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Proposition 4.10 Let M be an R-module. If M &M
is a semi-endo SS-coprime R-module, then M is so.

Proof. By Proposition 4.8, M @ (0) is a semi-endo
SS-coprime module of M @M .ButM @ (0) = M ,so
M is semi-endo SS-coprime, by Proposition 4.5. O

Proposition 4.11 Let M be a module has a projective
cover ¢: p— M. If P is semi-endo SS-coprime, then

so is M.

Proof. Since M is has a projective cover ¢p: p —>M,
then ¢ is an epimorphism and Kergp <P , thus we
have P/Kerg = M .It is enough to show that P/Kerg
is semi-endo SS-coprime. Assume iy € End (P/Ker ),
w’(P/Kerg) < P/Kergp . Consider z:p— P/Kergp

the natural epimorphism. Since P is projective, so
there exists a homomorphism A:P — Psuch that

Womr=mol. P

lﬁ
p/Kerg
74

P A p/Kerg

So y?ox=moA?. Hence, 7o Z(P) =y*(P/Kerg) is
2
A (P)+Kergp < P 7
Kerg Kerg
and since Kergp <P, thus A*(P) <P .But P is semi-

small in P/Ker¢ ,and hence

endo SS-coprime, hence A=0, and sO0 woxr=0.
Thus w=0. O

Corollary 4.12 Let R be a ring. Then the following
statements are equivalent.

(i) Every projective R-module is semi-endo SS-coprime.
(ii) Every R-module has a projective cover is semi-endo
SS-coprime.

Proof. (i) = (ii) It follows by previous Proposition .
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(ii) = (i) Let M be a projective R-module. Consider

the identity mapping i: M — M , Keri =0 <M, thus
M has a projective cover. Hence by (ii), M is semi-
endo SS-coprime . O

Theorem 4.13 Let M be a multiplication R-module.
Then M is a SSS-coprime R-module if and only if M
is a semi-endo SS-coprime R-module .

Proof. Since M is a SSS-coprime R-module, then by
[7, Th. 3.10] M is a SSS-coprime as S-module, where
S =End(M). This implies that M is a semi-endo SS-

coprime as R-module . O

Proposition 4.14 Let M be a scalar faithful R-module.
Then R is a semi-endo SS-coprime ring if and only if
S =End(M) is asemi-endo SS-coprime ring .

Proof. Since M is a scalar faithful R-module, soS = R.
Hence the result is obtained . O

Remark 4.15 Let M be an R-module, S =End(M) be
a semilocal ring with J(R) is a nilideal. If M is a semi-

endo SS-coprime S-module, then M is 7-noncosingular
and hence M is semisimple, by Proposition 3.33.

For every module M, letS(M)={pe End(M):
Im@? <M }. It is easy to see that S(M)is an ideal
of End(M) .By the semi-endo SS-coprime submodule

of M we mean ZS(M) = ﬂKergo.

peS(M)
Proposition 4.16 Let M be an R-module. Then M is
semi-endo SS-coprime if and only if Zs (M)=M.

Proof. Suppose that M is a semi-endo SS-coprime
module. Then, for each ¢ < S(M), @ =0 and hence

M = Kerg = ﬂKergozzs(M).

peS(M)
Conversely, assume Zs (M)=M . Let p e End(M)
and Img? <M, hence ¢ e S(M). By hypothesis, we
have M =Zs(M)= ("|Kerp. Thus M < Kerg; that

peS(M)

iS @(M) =0. Hence M is semi-endo SS-coprime . O
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