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Abstract 

Most parametric methods rely on the assumption of normality. Results obtained from these methods are more 

powerful compared to their non-parametric counterparts. However for valid inference, the assumptions 

underlying the use of these methods should be satisfied. Many published statistical articles that make use of the 

assumption of normality fail to guarantee it. Hence, quite a number of published statistical results are presented 

with errors. As a way to reduce this, various approaches used in assessing the assumption of normality are 

presented and illustrated in this paper.   In assessing both univariate and multivariate normality, several methods 

have been proposed. In the univariate setting, the Q-Q plot, histogram, box plot, stem-and-leaf plot or dot plot 

are some graphical methods that can be used. Also, the properties of the normal distribution provide an 

alternative approach to assess normality. The Kolmogorov-Smirnov (K-S) test, Lilliefors corrected K-S test, 

Shapiro-Wilk test, Anderson-Darling test, Cramer-von Mises test, D'Agostino skewness test, Anscombe-Glynn 

kurtosis test, D'Agostino-Pearson omnibus test, and the Jarque-Bera test are also used to test for normality. 

However, Kolmogorov-Smirnov (K-S) test, Shapiro-Wilk test, Anderson-Darling test, and Cramer-von Mises 

test are widely used in practice and implemented in many statistical applications.   

For multivariate normal data, marginal distribution and linear combinations should also be normal. This provides 

a starting point for assessing normality in the multivariate setting. A scatter plot for each pair of variables 

together with a Gamma plot (Chi-squared Q-Q plot) is used in assessing bivariate normality. For more than two 

variables, a Gamma plot can still be used to check the assumption of multivariate normality. Among the many 

test proposed for testing multivariate normality, Royston's and Mardia's tests are used more often and are 

implemented in many statistical packages.   

When the normality assumption is not justifiable, techniques for non-normal data can be used. Likewise, 

transformation to near normality is another alternative.  

Keywords: Univariate normal, Multivariate normal, Q-Q plot, Gamma plot, Kolmogorov-Smirnov test, Shapiro-

Wilk test, Mardia's test, Royston's test. 

  

1. Introduction 

In the statistics literature, the normality assumption is tagged as an omnipresent assumption. This is due to its 

wide use in both univariate and multivariate analysis (Rosner, 2006). Many of the statistical methods including 

correlation, linear regression, t-tests, Analysis of Variance (ANOVA), just to name a few, are based on the  

normal distribution  (Neter et al., 2005). Aside these, many multivariate statistical techniques such as, 

Multivariate Analysis of Variance (MANOVA), Principal Component Analysis (PCA), canonical correlation 

analysis, discriminants analysis, etc. rely on the multivariate normality assumption in order to make inferences 

(Johnson & Wichern, 2007). In essence, this assumption requires that a set of data upon which a statistical test of 

significance or statistical modelling is to be applied must either exactly or approximately be normally 

distributed. Essentially, this is due to the fact that almost all of these tests and models are developed with the 

normal distribution. By making this assumption about the data, parametric tests are more powerful than non-

parametric test. 

The validity of any statistical analysis depends on the assumptions underlying its use. This is no exception to 

statistical methods that make use of the assumption of normality. It is therefore important to ensure that the 

normality assumption is satisfied before use. However, for large sample, violation of the normality assumption 

should not be of major concern, due to the central limit theorem. The theorem states that, the mean of random 

sample from any distribution will have normal distribution (Altman & Bland, 1995). For this reason, if we have 

samples consisting of hundreds of observations, we can ignore the distribution of the data.  There are several 
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tools used in checking the validity of the normality assumptions. The purpose of this paper is to provide a 

concise overview of how to assess both univariate and multivariate normality, using both graphical techniques 

and formal test. In the absence of a more detailed and rigorous mathematical formulas, several references are 

provided.  To achieve this, a random normal and non-normal data is generated and used for the purpose of 

illustration. Also, to illustrate how to check multivariate normality, the lumber stiffness data is used. 

 

2. Assessing normality in univariate data 

In the univariate setting, several tools (graphical and formal tests) are available for checking the normality 

assumption. The Q-Q plot is one of the most popular graphical methods used in testing univariate normality even 

though, there are many other graphical techniques as well (Stevens, 2001). Some of the other graphical tools 

include the use of histogram, box plot, stem-and-leaf plot or dot plot. These tests allow a quick and simple 

means of evaluating the shape of the distribution. However, they require large samples in order to provide 

reliable information (Neter et al., 2005). In this paper, Q-Q plot together with histogram is used for illustrative 

purpose. 

 

2.1 Q-Q plot, Histogram and correlation test 

In a Q-Q plot, the sample quantiles are plotted against the quantiles that would be expected if the sample came 

from a normal distribution. If the data are normally distributed, the result would be a straight diagonal line. Also, 

for normally distributed data, the histogram should approximates the bell shape (symmetry) of a normal 

distribution. Two different set of data were generated: normal data and a random generated data with no known 

distribution. For the normal data, data of sizes 20 and 200 were generated to assess the effect of sample size on 

normality. Figure 1 presents both the Q-Q plot and the histogram for the two univariate data sampled from a 

normal distribution with size 20 and 200. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1. Q-Q plot and Histogram for generated normal data of sizes 20 and 200 

From the plots, both samples are normally distributed. This is obvious since the data was generated from a 

normal distribution. Though normal, the histogram for the sample with fewer observations does not approximate 

the bell shape as expected. To use the histogram to check normality, there should be reasonably large number of 

observations (Neter et al., 2005).  This can be seen in the histogram of the normal sample of size 200. The 

histogram has the bell shape (symmetric shape) as expected for normal data. On the other hand, using the Q-Q 

plot, both sample are normally distributed. It is observed that in both samples, most of the points fall or lie close 

to the diagonal line. 

In practice, a plot that is nearly linear suggests normality. Since linearity is subjective particularly with graphics, 

the correlation between the sample quantiles and the expected (theoretical) quantiles can be computed. This is 

called the correlation test for normality (Neter et al., 2005). A high coefficient of correlation is an indication of 

normality. As an alternative, some authors have develop a rule for making conclusions using the correlation test. 

This rule depends on the sample size as well as the level of significance (Johnson & Wichern, 2007). For large 

samples and large α, a large correlation coefficient is require to achieve normality.  
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In addition, as a simple guide, Figure 2 shows Q-Q plots where the distributions depart from a normal 

distribution.  

  

 

 

 

 

 

 

Figure 2. Q-Q plot for non-normal data 

 

Figure 2(a) shows a Q-Q plot where the distribution is highly skewed to the right. This is indicated in the 

concave-upward shape in the plot. Plots that show concave-downwards shape are also not normally distributed: 

such plots are indication of left skewed distributions. Similarly, Figure 2(b) presents a Q-Q plot of a non-normal 

data which is symmetric but have heavy tails. These can be used as a simple guide to assess whether a univariate 

data is normally distributed or otherwise. 

The Q-Q plot and histogram for the random generated data with no known distribution is also presented in 

Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Q-Q plot for random generated data with no known distribution 

From the plot (both Q-Q plot and histogram), it can clearly be observed that the samples are not normally 

distributed. The Q-Q plot for the sample of size 20 seem to exhibit some pattern. Also for the larger sample 

(sample size 200), the Q-Q plot looks symmetric with heavy tails. Likewise, the shape of the histogram in both 

samples do not approximate that of the bell shape for normally distributed data 

 

2.2 Properties of normal distribution 

From the empirical rule of normal distribution, it has been established that if a random sample is normally 

distributed then, 68.3%, 95% and 95.4% of the observed values must lie within 1, 1.96 and 2 standard deviation 

(sd) of the mean respectively. Hence for large sample, it is expected that the observed proportion of the sample 

lying within �̅� ± √𝑠, �̅� ± 1.96√𝑠 and �̅� ± 2√𝑠 should be about 68.3%, 95% and 95.4% respectively (Johnson 

and Wichern 2007). Consequently, it is observed that, for departure from normality,  

|�̂�𝑗1 − 0.683|  will be > 3√((0.683×0.317)/200). �̅� is sample mean, 𝑠 is the sample variance, √𝑠 is sample 

standard deviation (sd) and �̂�𝑗1 is the proportion of observation within �̅� ± √𝑠 (Hogg et al., 2004). Using the two 

generated samples each of size 200, the percentage of observations within 1 and 1.96 sd of the mean is calculated 

and presented in Table 1. From the results, the percentage of observations within 1 sd of the mean is at least 68% 

for the normal sample and 58% for the non-normal sample. The proportion for the non-normal sample is far 

below 68.3%.   
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Table 1. Percentage of observations within 1 and 1.96 sd of the mean 

 

Normal sample 

Non-normal 

sample 

% within 1 sd of 

mean 

% within 1.96 sd of 

mean 

|�̂�𝒋𝟏 − 𝟎. 𝟔𝟖𝟑|   

68 

58 

96 

100 

0.003 

0.103 

 

Likewise, due to the heavy tails in the non-normal sample as shown in Figure 3, all the observations in that 

sample are within 1.96 sd of the mean. Comparing |�̂�𝑗1 − 0.683| with 3√ ((0.683×0.317)/200) = 0.098, it can be 

concluded that the random sample from the unknown distribution is not normally distributed.  

 

2.3 Formal tests for univariate normality 

The normality tests are complement to the graphical techniques. The main tests for the assessment of normality 

are Kolmogorov-Smirnov (K-S) test, Lilliefors corrected K-S test, Shapiro-Wilk test, Anderson-Darling test, 

Cramer-von Mises test, D'Agostino skewness test, Anscombe-Glynn kurtosis test, D'Agostino-Pearson omnibus 

test, and the Jarque-Bera test (Ghasemi & Zahediasl, 2012). Among these, Kolmogorov-Smirnov (K-S) test, 

Shapiro-Wilk test, Anderson-Darling test, and Cramer-von Mises test are widely used in practice and 

implemented in many statistical applications (SAS Guide, 2004). These tests have their own pros and cons 

hence, in practice, one can perform more than a single test to be sure of the results obtained. In this paper, the 

Shapiro-Wilk test together with the Kolmogorov-Smirnov test is used. Detailed formulas can be consulted in the 

literature and are not presented here. 

The results of the test for normality for the two generated samples is presented in Table 2. The hypotheses for 

these tests is the following: 𝐻0: Sample is normally distributed against  𝐻1: Sample is not normally distributed. 

At a 5% level of significance, we fail to reject the null hypothesis of normality for the normal sample. However, 

for the non-normal data, we reject the null hypothesis at a 5% level of significance and conclude that, the random 

sample is not from a normal distribution. The p-value for both test is < 0.05 for the non-normal sample and 

otherwise in the normal samples. 

Table 2. Shapiro-Wilk and Kolmogorov tests for normality 

                     Normal sample Non-normal sample 

 

Test 

Shapiro - Wilk 

Kolmogorov -Smirnov 

    Sample size = 20      Sample size =200 Sample size =200 

Test statistics  

 0.938 

0.284 

p-value 

0.224 

0.065 

Test statistics  

0.994 

0.07136 

p-value 

0.58 

0.26 

Test statistics 

0.945  

0.2774 

p-value 

<0.0001 

<0.0001 

 

3. Assessing normality in multivariate data 

Just like with univariate normality, several methods exist for assessing normality for multivariate data. However, 

unlike in uinvariate analysis, we would want to check the assumption of normality for all distributions of 

2,3, … , 𝑝 dimensions. If 𝑿 is multivariate normal with mean vector 𝝁 and covariance matrix 𝚺, we 

write 𝑿~𝑁𝑝(𝝁, 𝚺). Many statistical techniques such as multivariate analysis of variance (MANOVA), principal 

component analysis (PCA), canonical correlation, discriminant analysis and many others make use of the 

multivariate normal assumption in making inference. Furthermore, most of the theories in multivariate data 

analysis have been developed assuming multivariate normality (Johnson & Wichern, 2007). This is because, 

procedures based on normal populations are simple and more efficient hence, are very common in statistical 

applications. 

As noted earlier, for large samples, it is assumed that the data is approximately normal regardless of underlying 

distribution. Even though this is so, the approximation will be better if the distribution is closer to normality. 

Therefore, the detection of departures from normality is crucial. The properties of multivariate normal data will 

be used as a starting point in assessing the assumption of multivariate normality. The marginal distributions and 
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linear combinations of a multivariate normal distribution are normal. Hence, one can begin the assessment of 

multivariate normality by checking univariate normality and bivariate normality. 

Several authors suggest restricting the investigation to the univariate and the bivariate margins (Johnson & 

Wichern, 2007, Rencher, 2002), however, multivariate distribution as a whole should be investigated. To check 

univariate normality, the procedure outlined earlier can be used.  

A scatter plot of the pairs of variables as well as a bivariate Gamma plot (chi-squared Q-Q plot) can be used in 

checking bivariate normality (Johnson & Wichern, 2007). With the scatter plot, if the plot points do not look 

ellipsoidal, then the normality assumption is questionable. On the other hand, if the plot is ellipsoidal, there is no 

guarantee of bivariate normality since many other distributions have this shape. So, for an ellipsoidal shape, we 

are only sure that the random samples do not come from a non-normal distribution. 

Assume 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒏 is a random sample from a 𝑝 dimensional multivariate normal population. Then, the 

generalized square distance, 𝑑𝑗
2 = (𝒙𝒋 − 𝒙)′𝑺−𝟏(𝒙𝒋 − 𝒙) ~ 𝜒𝑝

2 (Hogg et al., 2004). A Gamma plot is used to 

check if 𝑑𝑗
2 has a 𝜒𝑝

2 .  A Gamma plot is a plot of the ordered generalized squared distances 𝑑𝑗
2, against the 

corresponding percentile of the chi-squared distribution. The points on the plot should be linear if the data is 

bivariate/multivariate normal. 

To illustrate the use of scatter plot and Gamma plot to check bivariate/multivariate normality, the data for lumber 

stiffness is used. The data set contains four different measures of stiffness 𝑋1, 𝑋2, 𝑋3  and 𝑋4 for 𝑛 = 30 boards. 

This data has been studied in detail by Johnson and Wichern (2007) hence, more detail can be obtained from 

their analysis. In this paper, we use the data set for illustration, in checking whether it is multivariate normal. 

3.1 Scatter plot and Gamma plot 

To begin with, a scatter plot of all pair of variables is provided. Since there are four variables in total, we will 

require 6 bivariate scatter plots. Again, for illustration, only two of the plots are presented. It should be 

emphasized that, the remaining four plots are similar to the ones presented in this paper. From the plot as 

presented in Figure 4, most of the points are found inside the ellipse. As confidence curve, the ellipse shows 

where 95% of the data should lie, assuming a bivariate normal distribution. Since many other distributions are 

within the class of elliptically contoured distributions e.g. multivariate t, multivariate Cauchy, etc. (Kibria, 2008), 

bivariate normality cannot be guaranteed. Likewise, for the Gamma plot, most of the point fall on or closer to the 

straight line.  However, for both plots, some points are distance away from the ellipse (for scatter plot) and 

straight line (Gamma plot).  In practical application, observations like this should prompt the analyst to check the 

data for outlying observations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Bivariate scatter plot and Gamma plot for 𝑋1 against 𝑋3 and 𝑋3 against 𝑋4. 

As mentioned earlier, restricting the investigation to the univariate and the bivariate margins is sometimes 

sufficient, however, a gamma plot can also be constructed for more than two variables. A Gamma plot for the 

four variables used in the illustration is presented in Figure 5. If the data is multivariate normal, it is expected 
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that most of the points should fall on the diagonal line and should not show any pattern as shown in Figure 2. 

From the Gamma plot (Figure 5), a substantial number of points lie away from the line particularly, in the right 

tail. Hence, the assumption of multivariate normality is questionable.  However, in order to confirm this, other 

methods for testing multivariate normality will also be used. 

 

 

 

 

 

 

Figure 5. Gama plot for all variables 

3.2 Formal tests for multivariate normality 

Several tests have been proposed for testing multivariate normality (Selcuk et al., 2015). Unfortunately, there is 

no known uniformly most powerful test and it is recommended to perform several tests before coming up with a 

conclusion on normality (Thomas & Jon, 2003). It is recommended that the choice of the method should be 

based on the kind of departures from normality that one wishes to investigate depending on the particular 

problem at hand (Cox & Small, 1978). All the methods proposed can be grouped into four main categories 

namely: goodness of fit techniques, procedures based on skewness and kurtosis, consistent and invariant tests, 

and graphical and correlational approaches (Patrick et al., 2006). 

For illustration, we discuss two commonly used methods namely; Royston's test and Mardia's test. These 

methods are also implemented in many statistical software. Royston's test is an extension of the Shapiro and 

Wilk goodness of fit test for univariate normality while Mardia’s test is a multivariate extension of measures of 

skewness and Kurtosis.  In the absence of extensive mathematical formulations and exhaustive detail on 

Royston's and Mardia's tests, Selcuk et al., 2015, Thomas & Jon, 2003, Patrick et al., 2006, Mardia et al., 2003, 

De Carlo, 1997 and Domanski, 2009 are recommended. 

Royston's and Mardia's test is applied to the lumber stiffness data to check if it is multivariate normal. The 

hypotheses for these tests is the following: 𝐻0 : The measurements have a multivariate normal distributed, 

against 𝐻1: The measurements do not have a multivariate normal distributed. The results obtained from both tests 

are presented in Table 3. At a 5% level of significance, the null hypothesis of multivariate normality is rejected. 

The results from both test reveal that the data is not multivariate normal. In most situations, outliers and small 

sample size are found to have a substantial influence in the results of the test for normality (Johnson & Wichern, 

2007).  

Table 3. Test for normality Using Royston's test and Mardia's test 

Test 

 

Royston’s            Mardia’s 

 Skewness Kurtosis 

Test Statistics 

p-value 

9.8238 

0.0095 

37.68 

0.00967 

0.58 

0.01114 

 

To illustrate what to look for if data is multivariate normal, a random sample of size 250 bivariate normal 

variates with 𝜇 = (
0.0
2.0

)  ,  Σ = (
1.0 0.5
0.5 1.0

) is used. A scatter plot of the pair of variables, a bivariate Gamma plot 

as well as Mardia's and Royston's test are used in checking multivariate normality. Both plots show that the 

random sample has a multivariate normal distribution. With the scatter plot, almost all the points fall inside the 
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ellipse. The ellipse shows where 95% of the observations should lie if the data is bivariate/multivariate normal. 

However, if the scatter plot for any pair of variables have an ellipsoidal shape, there is no guarantee of bivariate 

normality. Aside the normal distribution, several distributions (the multivariate normal, matric- 𝑡, multivariate 

Student’s 𝑡, and multivariate Cauchy) belong to the class of elliptically contoured distributions (Kibria, 2008). 

The Gamma plot in Figure 6 also provides evidence of a bivariate normal sample. For bivariate/multivariate 

normal data, the points on the Gamma plot should be linear. The plot in Figure 6 is spectacular, almost all the 

points fall on the diagonal line. This should not be a surprise since we have a bivariate normal sample. However, 

in practical applications, one should not always have a plot similar to this to conclude multivariate normality. 

Plots like Figures 2, 3 and 5 do not guarantee bivariate / multivariate normality. 

Again, the results obtained from both Mardia's and Royston's tests (Table 4) confirm bivariate normality. For 

Mardia's test, the p-values for both skewness and kurtosis are far greater than the significance level of 0.05.  

 

 

 

  

  

Figure 6. Scatter plot and Gamma plot for a bivariate normal data 

Table 3. Test for normality Using Royston's test and Mardia's test 

Test 

 

Royston’s            Mardia’s 

 Skewness Kurtosis 

Test Statistics 

p-value 

4.1797 

0.1248 

3.3447 

0.5019 

0.040 

0.9679 

 

3. Conclusion 

The assumption of normally distributed data is widely used in practice. Many statistical techniques rely on this 

assumption for making inference. Methods that make use of this assumptions have higher power compared to 

their non-parametric counterparts. However, the validity of these methods depend on the validity of the 

assumption of normality. Several methods have been outlined to help assess this assumptions. In the univariate 

case, the Q-Q plot, histogram, box plot and dot plot can be used as graphical techniques for checking normality. 

In the case of the Q-Q plot, the correlation test for normality can also be used. Using the properties of normal 

data, another alternative for assessing normality can be applied. Likewise, Kolmogorov-Smirnov (K-S) test, 

Lilliefors corrected K-S test, Shapiro-Wilk test, Anderson-Darling test, Cramer-von Mises test, D'Agostino 

skewness test, Anscombe-Glynn kurtosis test, D'Agostino-Pearson omnibus test, and the Jarque-Bera test can 

also be used (Ghasemi & Zahediasl, 2012). However, Kolmogorov-Smirnov test, Shapiro-Wilk test, Anderson-

Darling test, and Cramer-von Mises test are widely used in practice and implemented in many statistical 

applications (SAS Guide, 2004). To be sure of the results obtained from the assessment of normality, it is 

recommended to use several methods and not just one method.  

For data to be multivariate normal, the marginal distributions and linear combinations should be normally 

distributed as well. Hence, the univariate methods should first be used for checking normality of each variable. 

Then, all the pair of variables should be bivariate normal. For each pair, a scatter plot together with a gamma plot 

can be used to test bivariate normality. Though in many applications, restricting attention to the univariate and 

the bivariate margins is sufficient (Johnson & wichern, 2007, Rencher, 2002), a Gamma plot, and other methods 

can be used in testing multivariate normality. Royston's and Mardia's tests can be used as alternative methods in 
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checking multivariate normality. 

Many alternative methods exits when the normality assumption is not tenable. Techniques for non-normal data 

can be used (Christensen, 1997). Also, the data can be transformed to make it normal or near normal (Johnson & 

wichern, 2007, Altman & Bland, 1995). 

A natural question to ask is whether all forms of departure from normality can be captured by the methods 

presented in this paper. Likewise, the statistical power associated with using these methods deserves further 

investigation and creates a path for further research. 
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