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Abstract 

In this paper, we consider an epidemic model of Ebola disease which is deadly in its 

transmission. 

Local stability analysis of the model equilibria was investigated. We computed the basic 

reproduction number  𝑅0 using the next generation method. The threshold parameter 𝑅0 

was found to be dependent on several hosts of model parameters in determining the stability 

of an invading epidemic into the population. We have numerically described the model 

trajectories using Matlab. 

KEYWORDS: Basic Reproduction number, Ebola virus, Next-generation matrix, Local 

stability analysis. 

 

1. INTRODUCTION 

Ebola, one of the deadly diseases for humans, emanates from the family of the virus 

filoviridae [1]. There are five recognized subtype of the Ebola virus [9]. Four of these strains; 

Ebola-Ta, Ebola-Bundibugyo, Ebola-Zaire and Ebola-Sudan have all caused disease in 

humans. The only stain that is known of ever causing disease in non-human primates is 

Ebola-Reston. The virus can be spread when a direct contact is made with blood or body 

fluids of infected persons, objects that have been contaminated with the virus and non-human 

primates [4]. The history of Ebola traces back to 1976, in Sudan and Zaire where it was first 

found [13]. Ebola has high mortality rate, and ever since its outbreak in west Africa , the 

streams of the infection has poured forth into all parts of west Africa; Gabon, Liberia, Guinea, 

Uganda, Democratic Republic of Congo , Nigeria etc [15]. The rapid instreaming of the 

infection into the neighboring countries of West Africa has been alarming and a major public 

health concern for World Health Organization (WHO) [2]. 

 

(WHO, [5]), reported approximately 4700 cases of Ebola deaths in the last quarter of 2014. 

This is just an epitome of the reported death cases emanating from Ebola virus infection in 

that year. Evidently, the 2014 Ebola virus outbreak in West Africa is recognized as the largest 

outbreak of the genus Ebolavirus to date [14]. Infection from the virus may produce headache, 

loss of appetite, body weakness, muscle ache, fever, sore throat and fatigue at the early stages 

http://www.iiste.org/
http://scholar.google.com/citations?view_op=view_org&hl=en&org=9219141668983597010


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.2, 2016 

 

 

35 

of the infection [11]. The development of the virus takes approximately 1 to 2 weeks, in 

which the infective shows no symptoms of a disease. The last stage of the infection is 

characterized by profuse vomiting, diarrhea, chest pain, severe blood lost and coagulation 

abnormalities. Eventually, the infection leads to liver and kidney failure as well as internal 

bleeding which usually results in death due to the blood loss [7]. Recently, Ebola vaccine has 

been developed by researchers and its trial stages of testing has proved to be hundred percent 

effective. However, recovery from Ebola infection depends on the person’s immune system 

and probably good health care for the infected person [23].  

 

Ever since its outbreak, related works of the Ebola virus disease have been proposed and 

studied by modelers, and the analysis of these models has been of great importance to 

researchers and health bodies at large and has provided insight to these bodies in the area of 

vaccine development and control intervention strategy [6]. Amira and Delffin [8], studied a 

simple mathematical model that describes the 2014 Ebola outbreak in Liberia. They used 

numerical simulations and available data provided by the World Health Organization (WHO) 

to validate their model. They again developed a new model including vaccination of 

individuals, and discuss different cases of vaccination in order to predict the effect of 

vaccination on the infected individual over time. Optimal control was then applied to study 

the impact of vaccination on the spread of the Ebola virus. Althaus [3], studied EVD epidemic 

using SEIR model and the model was then fitted to the most recent data of deaths cases 

provided in Guinea, Sierra Leone and Liberia. Arreola et al., [12], analyzed an Ebola 

deterministic and stochastic model of SIR compartments and used it to study the effect of 

quarantine on the infective. Nishiura and chowell [17], clarified and illustrated different 

hypothetical concepts of the quality of being infectious in order to compare the infectiousness 

of several diseases which are spread through contacts, including EVD. Pandey et al. [16], 

introduces a stochastic model of Ebola and used the general community, hospital and funerals 

as their case study, calibrated to incidence data from Liberia. Lekone and Finkenstadt [20], 

formulated a discrete time SEIR stochastic model for infectiou disease and used it to estimate 

parameters from mortality time series for 1995 Ebola outbreak of Democratic republic of 

Congo. Weitz and Dushoff [21], examined an important component of Ebola dynamics by 

studying the transmission of Ebola from the dead to the living. Atangana and Gonfo [18], 

constructed a model that describes the dynamics of the spread of Ebola hemorrhagic fever 

using the methods of classical and beta derivative. 

 

Chowell et al [19]., estimated an important threshold parameter called the basic reproduction 

ratio (𝑅0) by using data from the outbreak of 1995 Congo and 2000 Uganda Ebola for his 

model. Ebihara et al [24].,provided a better tool for comprehending the important processes in 

pathogenesis and provides a better way for evaluating prophylactic and post exposure 

intervention for testing in non-human primate by using mouse-adapted Ebola virus for their 

lethal Syrian monster model of Ebola hemorrhagic fever. McElroy [25], provided a better 

insight of Ebola hemorrhagic fever path-physiology and a starting point for researching new 

potential targets for therapeutic interventions by using a series of multiplex assays to measure 
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the concentrations of 55 biomarkers. Pyankov et al [22]., describe the evaluation of an Ebola 

virus vaccine candidate based on kunjin replicon virus –like particles (KUN VLPs) encoding 

EBOV glycoprotein with a D637L mutation (GP/D637L) in non-human primates.  

 

In this research article, using the mathematical formulation of Ebola disease dynamics by 

Khan et al. [10], we carry out the local qualitative stability analysis of the model which was 

not considered in their paper. The dynamics of the Ebola model is shown in figure 1. 

 

 

 

 

Figure 1: Shows the flowchart of the dynamics of the Ebola model by Khan et al. [10]. 
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2. The Model formulation 

The dynamics of the model as described by Khan et al. [10] is given by the system of the 

differential equations: 

𝑑𝑆𝐿

𝑑𝑡
= 𝜋(1 − 𝑝) −

𝛽𝐼𝑆𝐿

𝑁
−

𝑛𝛽𝐻𝑆𝐿

𝑁
− 𝜇𝑆𝐿         (1) 

 

𝑑𝑆𝐻

𝑑𝑡
= 𝜋𝑝 −

𝛽𝐼𝜓𝐻𝑆𝐻

𝑁
−

𝑛𝐵𝐻𝜓𝐻𝑆𝐻

𝑁
− 𝜇𝑆𝐻         (2) 

 

𝑑𝐸

𝑑𝑡
=

𝛽𝐼𝑆𝐿

𝑁
+

𝑛𝛽𝐻𝑆𝐿

𝑁
+

𝛽𝐼𝜓𝐻𝑆𝐻

𝑁
+

𝑛𝛽𝐻𝜓𝐻𝑆𝐻

𝑁
− (𝛼 + 𝜇)𝐸      (3) 

 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)𝐼                  (4) 

 

𝑑𝐻

𝑑𝑡
= 𝜏𝐼 − (𝜃𝐻 + 𝛿𝐻 + 𝜇)𝐻           (5) 

 

𝑑𝑅

𝑑𝑡
= 𝜃𝐼𝐼 + 𝜃𝐻𝐻 − 𝜇𝑅            (6) 

 

 

The total population, 𝑁 for the model is given by 

 𝑁(𝑡) = 𝑆𝐿(𝑡) + 𝑆𝐻(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐻(𝑡) + 𝑅(𝑡)      (7) 

 

where      𝑆𝐿(0) = 𝑆𝐿0 ≥ 0, 𝑆𝐻(0) = 𝑆𝐻0 ≥ 0, 𝐸(0) = 𝐸0 ≥ 0 , 

                    𝐼(0) = 𝐼0 ≥ 0,     𝐻(0) = 𝐻0 ≥ 0 , 𝑅(0) = 𝑅0 ≥ 0 

 

From equation (7),  let  𝑅(𝑡) = 𝑁(𝑡) − 𝑆𝐿(𝑡) − 𝑆𝐻(𝑡) − 𝐸(𝑡) − 𝐼(𝑡) − 𝐻(𝑡) .  

 

Therefore the equivalent system of differential equations becomes  

𝑑𝑆𝐿

𝑑𝑡
= 𝜋(1 − 𝑝) −

𝛽𝐼𝑆𝐿

𝑁
−

𝑛𝛽𝐻𝑆𝐿

𝑁
− 𝜇𝑆𝐿         (8) 

𝑑𝑆𝐻

𝑑𝑡
= 𝜋𝑝 −

𝛽𝐼𝜓𝐻𝑆𝐻

𝑁
−

𝑛𝐵𝐻𝜓𝐻𝑆𝐻

𝑁
− 𝜇𝑆𝐻         (9) 

𝑑𝐸

𝑑𝑡
=

𝛽𝐼𝑆𝐿

𝑁
+

𝑛𝛽𝐻𝑆𝐿

𝑁
+

𝛽𝐼𝜓𝐻𝑆𝐻

𝑁
+

𝑛𝛽𝐻𝜓𝐻𝑆𝐻

𝑁
− (𝛼 + 𝜇)𝐸      (10) 

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)𝐼           (11) 
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𝑑𝐻

𝑑𝑡
= 𝜏𝐼 − (𝜃𝐻 + 𝛿𝐻 + 𝜇)𝐻           (12) 

With 𝑅(𝑡) = 𝑁(𝑡) − 𝑆𝐿(𝑡) − 𝑆𝐻(𝑡) − 𝐸(𝑡) − 𝐼(𝑡) − 𝐻(𝑡). 

 

2.1  Model Equilibria 

The equilibrium points of the model are the disease –free equilibrium point 

𝐸0 = (𝑆𝐿0, 𝑆𝐻0, 𝐸0, 𝐼0𝐻0, ) = (
𝜋(1−𝑝)

𝜇
,
𝜋𝑝

𝜇
, 0,0,0) and the endemic equilibrium point 

 𝐸𝐸 = (
𝑁𝜋(1−𝑝)

(𝛽𝐼+𝑛𝛽𝐻+𝑁𝜇)
,

𝑁𝜋𝑝

(𝛽𝐼𝜓𝐻+𝑛𝛽𝐻𝜓𝐻+𝑁𝜇)
,
(𝜏+𝜃𝐼+𝛿𝐼+𝜇)𝐼

𝛼
,

𝛼𝐸

(𝜏+𝜃𝐼+𝛿𝐼+𝜇)
,

𝜏𝐼

(𝜃𝐻+𝛿𝐻+𝜇)
) 

 

2.2 The Basic reproduction Ratio 

In a population of only susceptible individuals, the basic reproduction ratio is defined as the 

infection from a single infected individual introduced into the population. Our model 

calculation would be based on the approach of Diekmann and Heesterbeek ([26], [27]).  

 

 

The infective compartments of the model are   

𝑑𝐸

𝑑𝑡
=

𝛽𝐼𝑆𝐿

𝑁
+

𝑛𝛽𝐻𝑆𝐿

𝑁
+

𝛽𝐼𝜓𝐻𝑆𝐻

𝑁
+

𝑛𝛽𝐻𝜓𝐻𝑆𝐻

𝑁
− (𝛼 + 𝜇)𝐸      (13)  

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)𝐼           (14) 

𝑑𝐻

𝑑𝑡
= 𝜏𝐼 − (𝜃𝐻 + 𝛿𝐻 + 𝜇)𝐻            (15) 

Hence ℱ = [

𝛽𝐼𝑆𝐿

𝑁
+

𝑛𝛽𝐻𝑆𝐿

𝑁
+

𝛽𝐼𝜓𝐻𝑆𝐻

𝑁
+

𝑛𝛽𝐻𝜓𝐻𝑆𝐻

𝑁

0
0

] and   𝒱 = [−

(𝛼 + 𝜇)𝐸

𝛼𝐸 + (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)𝐼

−𝜏𝐼 + (𝜃𝐻 + 𝛿𝐻 + 𝜇)𝐻
]. 

 

Evaluating the Jacobian of 𝐹 and 𝑉 at (𝑆𝐿0, 𝑆𝐻0, 𝐸0, 𝐼0𝐻0, ) = (
𝜋(1−𝑝)

𝜇
,
𝜋𝑝

𝜇
, 0,0,0) gives 

𝐹 = [
0

𝛽𝜋(1−𝑝)+𝛽𝜋𝑝𝜓𝐻

𝜇𝑁

𝑛𝛽𝜋(1−𝑝)+𝑛𝛽𝜋𝑝𝜓𝐻

𝜇𝑁

0 0 0
0 0 0

]   and 

 

 𝑉 = [

(𝛼 + 𝜇) 0 0

−𝛼 (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇) 0

0 −𝜏 (𝜃𝐻 + 𝛿𝐻 + 𝜇)
] 

But since  𝑁 = 𝑆𝐿0 + 𝑆𝐻0 =
𝜋

𝜇
   at  𝐼0 = 0, 𝐻0 = 0, 𝐸0 = 0,  𝐹 becomes  
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𝐹 = [
0 𝛽(1 − 𝑝) + 𝛽𝑝𝜓𝐻 𝑛𝛽(1 − 𝑝) + 𝑛𝛽𝑝𝜓𝐻

0 0 0
0 0 0

]  

 

But 𝑉−1 =

[
 
 
 
 

1

(𝛼+𝜇)
0 0

𝛼

(𝛼+𝜇)(𝜏+𝜃𝐼+𝛿𝐼+𝜇)

1

(𝜏+𝜃𝐼+𝛿𝐼+𝜇)
0

𝛼𝜏

(𝛼+𝜇)(𝜏+𝜃𝐼+𝛿𝐼+𝜇(𝜃𝐻+𝛿𝐻+𝜇))

𝜏

(𝜏+𝜃𝐼+𝛿𝐼+𝜇)(𝜃𝐻+𝛿𝐻+𝜇)

1

(𝜃𝐻+𝛿𝐻+𝜇)]
 
 
 
 

 

 

 

𝐹𝑉−1 = [

𝛼𝛽(1 − 𝑝) + 𝛼𝛽𝑝𝜓𝐻

(𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)
+

𝛼𝜏𝑛𝛽(1 − 𝑝) + 𝛼𝑛𝜏𝛽𝑝𝜓𝐻

(𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)
𝑘1 𝑘2

0 0 0
0 0 0

] 

 

  where                    𝑘1 =
𝛽(1−𝑝)+𝛽𝑝𝜓𝐻

(𝜏+𝜃𝐼+𝛿𝐼+𝜇)
+

𝑛𝜏𝛽(1−𝑝)+𝑛𝜏𝛽𝑝𝜓𝐻

(𝜏+𝜃𝐼+𝛿𝐼+𝜇)(𝜃𝐻+𝛿𝐻+𝜇)
 

 

𝑘2 =
𝑛𝛽(1 − 𝑝) + 𝑛𝛽𝑝𝜓𝐻

(𝜃𝐻 + 𝛿𝐻 + 𝜇)
 

According to Diekmann and Heesterbeek [27], the reproduction ratio is given by  𝑅0 =

𝜌(𝐹𝑉−1) where 𝜌 is the spectral radius of the next generation matrix (𝐹𝑉−1).  

Hence 

 𝑅0 =
𝛼𝛽(1−𝑝)+𝛼𝛽𝑝𝜓𝐻

(𝛼+𝜇)(𝜏+𝜃𝐼+𝛿𝐼+𝜇)
+

𝛼𝜏𝑛𝛽(1−𝑝)+𝑛𝛽𝜏𝑝𝜓𝐻

(𝛼+𝜇)(𝜏+𝜃𝐼+𝛿𝐼+𝜇)(𝜃𝐻+𝛿𝐻+𝜇)
 

 

 

3. Local stability of the Disease- free Equilibrium (DFE) 

The model is analyzed for its stability at the disease-free equilibrium where 𝐸0 = 𝐼0 = 𝐻0 =

0 and the steady state has 𝐸0 = (𝑆𝐿0, 𝑆𝐻0, 𝐸0, 𝐼0, 𝐻0, ) = (
𝜋(1−𝑝)

𝜇
,
𝜋𝑝

𝜇
, 0,0,0).  

 

 

The local stability is deduced from the system (8-12) evaluated at 𝐸0.  

 

The Jacobian matrix of the system (8-12) is given by 
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[
 
 
 
 
 
 
 
 (−

𝛽𝐼

𝑁
−

𝑛𝛽𝐻

𝑁
− 𝜇) −

𝑛𝛽𝑆𝐿

𝑁
0                   

−𝛽𝑆𝐿

𝑁
                   

−𝑛𝛽𝑆𝐿

𝑁

0 (
−𝛽𝐼𝜓𝐻

𝑁
−

𝑛𝛽𝐻𝜓𝐻

𝑁
− 𝜇) 0            −

𝛽𝜓𝐻𝑆𝐻

𝑁
               

−𝑛𝛽𝜓𝐻𝑆𝐻

𝑁

(
𝛽𝐼

𝑁
+

𝑛𝛽𝐻

𝑁
)

0
0

(
𝛽𝐼𝜓𝐻

𝑁
+

𝑛𝛽𝐻𝜓𝐻

𝑁
)

0
0

−(𝛼 + 𝜇) (
𝛽𝑆𝐿

𝑁
+

𝛽𝜓𝐻𝑆𝐻

𝑁
)  (

𝑛𝛽𝑆𝐿

𝑁
+

𝑛𝛽𝜓𝐻𝑆𝐻

𝑁
)

𝛼    −(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)                       0

   0                  𝜏                           −(𝜃𝐻 + 𝛿𝐻 + 𝜇) ]
 
 
 
 
 
 
 
 

 

 

Evaluating the Jacobian matrix at the point 𝐸0 = (
𝜋(1−𝑝)

𝜇
,
𝜋𝑝

𝜇
, 0,0,0) gives 

𝐽(𝐸0)

=

[
 
 
 
 
−𝜇 −𝑛𝛽(1 − 𝜌)                0                  −𝛽(1 − 𝜌)                            − 𝑛𝛽(1 − 𝑝)

0 −𝜇       0                        −𝛽𝜓𝐻𝑝                           − 𝑛𝛽𝜓𝐻𝑝

0
0
0

0
0
0

 

−(𝛼 + 𝜇) (𝛽(1 − 𝑝) + 𝛽𝜓𝐻𝑝) (𝑛𝛽(1 − 𝑝) + 𝑛𝛽𝜋𝜓𝐻𝑝)

       𝛼                      − (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)                        0

           0                             𝜏                              −(𝜃𝐻 + 𝛿𝐻 + 𝜇) ]
 
 
 
 

 

 

 

We now determine the eigenvalues of 𝐽(𝐸0).  

 

det |𝐽(𝐸0) − 𝜆𝐼| =   

 

  

|

|

−𝜇 − 𝜆 −𝑛𝛽(1 − 𝜌)        0                         −𝛽(1 − 𝜌)                       −𝑛𝛽(1 − 𝑝)

0 −𝜇 − 𝜆   0                            −𝛽𝜓𝐻𝑝                            −𝑛𝛽𝜓𝐻𝑝

0
0
0

0
0
0

−(𝛼 + 𝜇) − 𝜆  (𝛽(1 − 𝑝) + 𝛽𝜓𝐻𝑝)       (𝑛𝛽(1 − 𝑝) + 𝑛𝛽𝜋𝜓𝐻𝑝)

         𝛼                      −(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇) − 𝜆                        0

         0                             𝜏                        − (𝜃𝐻 + 𝛿𝐻 + 𝜇) − 𝜆

|

|
 

  

Clearly 𝜆1 = −𝜇 and  𝜆2 = −𝜇 are negative eigenvalues from the first 2 × 2 block matrix. 

 

Hence, the remaining three eigenvalues can obtained from the 3 × 3 determinant matrix 

below.  

|

−(𝛼 + 𝜇) − 𝜆 (𝛽(1 − 𝑝) + 𝛽𝜓𝐻𝑝)              (𝑛𝛽(1 − 𝑝) + 𝑛𝛽𝜋𝜓𝐻𝑝)

𝛼                    −(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇) − 𝜆                                   0

         0                             𝜏                                             − (𝜃𝐻 + 𝛿𝐻 + 𝜇) − 𝜆

| 
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We obtain the characteristics equation  

𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 = 0    (16) 

where  

𝑎0 = 1 

𝑎1 = ((𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇) + (𝜃𝐻 + 𝛿𝐻 + 𝜇) + (𝛼 + 𝜇)) 

𝑎2 = ((𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇) + (𝛼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)

+ (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇) − 𝛼(𝛽(1 − 𝑝) + 𝛽𝜓𝐻𝑝)) 

𝑎3 = ((𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇) − 𝛼(𝛽(1 − 𝑝) + 𝛽𝜓𝐻𝑝)(𝜃𝐻 + 𝛿𝐻 + 𝜇)

− 𝛼𝜏(𝑛𝛽(1 − 𝑝) + 𝑛𝛽𝜋𝜓𝐻𝑝)) 

By Routh–Hurwitz stability criterion, for the characteristic equation of the cubic polynomial 

(16) to have a negative real part then 𝑎0 > 0, 𝑎1𝑎2 > 𝑎3 > 0.  Hence the disease-free 

equilibrium is locally asymptotically stable if these conditions hold, otherwise unstable. 

 

 

 

3.1 Local stability of the Endemic Equilibrium (EE) 

At the endemic equilibrium, the system of the equations (8-12) gives the steady state, 

(𝑆𝐿
∗, 𝑆𝐻

∗, 𝐸∗, 𝐼∗, 𝐻∗)=(
𝑁𝜋(1−𝑝)

(𝛽𝐼+𝑛𝛽𝐻+𝑁𝜇)
,

𝑁𝜋𝑝

(𝛽𝐼𝜓𝐻+𝑛𝛽𝐻𝜓𝐻+𝑁𝜇)
,
(𝜏+𝜃𝐼+𝛿𝐼+𝜇)𝐼

𝛼
,

𝛼𝐸

(𝜏+𝜃𝐼+𝛿𝐼+𝜇)
,

𝜏𝐼

(𝜃𝐻+𝛿𝐻+𝜇)
)  

Therefore the Jacobain matrix evaluated the at the endemic equilibrium is given by  

 

[
 
 
 
 
 
 
 
 
−𝛽𝑘4

𝑁
−

𝑛𝛽𝑘5

𝑁
− 𝜇

−𝑛𝛽𝑘1

𝑁
0            

−𝛽𝑘1

𝑁
            

−𝑛𝛽𝑘1

𝑁

0
−𝛽𝜓𝐻𝑘4

𝑁
−

𝑛𝛽𝜓𝐻𝑘5

𝑁
− 𝜇          0           

−𝛽𝜓𝐻𝑘2

𝑁
       

−𝑛𝛽𝜓𝐻𝑘2

𝑁
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
0
0

𝛽𝜓𝐻𝑘4

𝑁
+

𝑛𝛽𝜓𝐻𝑘5

𝑁
0 
0

   
−(𝛼 + 𝜇)

𝛽𝑘1

𝑁
+

𝛽𝜓𝐻𝑘2

𝑁
 
𝑛𝛽𝑘1

𝑁
+

𝑛𝛽𝜓𝐻𝑘2

𝑁
         0         −(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)            0

            0                  𝜏           −(𝜃𝐻 + 𝛿𝐻 + 𝜇)]
 
 
 
 
 
 
 
 

 

Where  𝑘1 =
𝑁𝜋(1−𝑝)

(𝛽𝐼+𝑛𝛽𝐻+𝑁𝜇)
 ,  𝑘2 =

𝑁𝜋𝑝

(𝛽𝐼𝜓𝐻+𝑛𝛽𝐻𝜓𝐻+𝑁𝜇)
 , 𝑘3 =

(𝜏+𝜃𝐼+𝛿𝐼+𝜇)𝐼

𝛼
 , 𝑘4 =

𝛼𝐸

(𝜏+𝜃𝐼+𝛿𝐼+𝜇)
 , 𝑘5=

𝜏𝐼

(𝜃𝐻+𝛿𝐻+𝜇)
 

 

Hence  det |𝐽(𝐸𝐸) − 𝜆𝐼| gives  
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|

|

|

−𝛽𝑘4

𝑁
−

𝑛𝛽𝑘5

𝑁
− 𝜇 − 𝜆

−𝑛𝛽𝑘1

𝑁
0            

−𝛽𝑘1

𝑁
            

−𝑛𝛽𝑘1

𝑁

0
−𝛽𝜓𝐻𝑘4

𝑁
−

𝑛𝛽𝜓𝐻𝑘5

𝑁
− 𝜇 − 𝜆          0           

−𝛽𝜓𝐻𝑘2

𝑁
       

−𝑛𝛽𝜓𝐻𝑘2

𝑁
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
0
0

𝛽𝜓𝐻𝑘4

𝑁
+

𝑛𝛽𝜓𝐻𝑘5

𝑁
0 
0

   
−(𝛼 + 𝜇) − 𝜆

𝛽𝑘1

𝑁
+

𝛽𝜓𝐻𝑘2

𝑁
 
𝑛𝛽𝑘1

𝑁
+

𝑛𝛽𝜓𝐻𝑘2

𝑁
         0        − (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇) − 𝜆           0

            0                  𝜏           −(𝜃𝐻 + 𝛿𝐻 + 𝜇) − 𝜆

|

|

|

 

 

The determinant matrix satisfy the characteristics equation   

𝑃(𝜆) = 𝑎0𝜆
5 + 𝑎1𝜆

4 + 𝑎2𝜆
3 + 𝑎3𝜆

2 + 𝑎4𝜆 + 𝑎5 = 0      (17) 

where  

 𝑎0 = 1 

   𝑎1 = ((
𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) + (𝛼 + 𝜇) + (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇) + (𝜃𝐻 + 𝛿𝐻 + 𝜇)

+ (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇)) 

 

𝑎2 = ((
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (

𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) + (

𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (𝛼 + 𝜇)

+ (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)

+   (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (𝜃𝐻 + 𝛿𝐻 + 𝜇) + (

𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝛼 + 𝜇)

+ (
𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)

+ (
𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝜃𝐻 + 𝛿𝐻 + 𝜇) − (𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)

− (𝛼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇) − (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)) 
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𝑎3 = (−(
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (

𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝛼 + 𝜇)

− (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (

𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)

− (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇)(

𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝜃𝐻 + 𝛿𝐻 + 𝜇)

− (
𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)

− (
𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝛼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)

− (
𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)

− (𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)

+ (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)

+ (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (𝛼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)

+ (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)) 

 

𝑎4 = ((
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (

𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)

+ (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇)(

𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝛼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)

+ (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇)(

𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻

+ 𝜇) + (
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻 + 𝜇)) 

 

𝑎5 = ((
𝛽𝑘4

𝑁
+

𝑛𝛽𝑘5

𝑁
+ 𝜇) (

𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝛼 + 𝜇)(𝜏 + 𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻

+ 𝜇)

+ (
𝛽𝜓𝐻𝐾4

𝑁
+

𝑛𝛽𝜓𝐻𝐾5

𝑁
+ 𝜇) (𝛼 + 𝜇)(𝜏 +                𝜃𝐼 + 𝛿𝐼 + 𝜇)(𝜃𝐻 + 𝛿𝐻

+ 𝜇)) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.2, 2016 

 

 

44 

 

By Routh–Hurwitz stability criterion [28]: if 𝑎𝑖 > 0, 𝑖 = 0,1, 2, 3, 4, 5, 𝑎1. 𝑎2. 𝑎3 > 𝑎3
2 +

𝑎1
2. 𝑎4 and   

(𝑎1. 𝑎4 − 𝑎5)(𝑎1. 𝑎2. 𝑎3 − 𝑎3
2 − 𝑎1

2. 𝑎4) > 𝑎5(𝑎1. 𝑎2 − 𝑎3)
2 + 𝑎1. 𝑎5

2 , then the endemic 

equilibrium is locally asymptotically stable, otherwise unstable. 

 

 

 

4. Simulation Results 

The simulated results bring insight to the dynamics of the model. Since the reproduction 

number depends on hosts of parameters in determining the stability of an invading epidemic 

into the population, we have thus described the effect of these parameters on the equilibrium 

level of the exposed, infected, hospitalized population.  

 

         

 

Figure 1 Plot showing the dynamics of the model using  𝜓𝐻 = 1.2 , 𝛿𝐼 = 0.1, 

  𝛿𝐻 = 0.5, 𝜃𝐼 = 0.16, 𝜃𝐻 = 0.2, 𝛼 = 0.1, 𝛽 = 2.0,  𝜋 = 1.7, 𝜏 = 0.15, 

  𝜌 = 0.2, 𝜇 = 0.00004 
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Figure 2 Plot showing the dynamics of High-Susceptible and Exposed. 

 

 

 

 

Figure 3 Plot showing the dynamics of High-Susceptible and Infected. 
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Figure 4 Plot showing the dynamics of High-Susceptible and Hospitalized. 

 

 

 

Figure 5 Plot showing the dynamics of Low-Susceptible and Exposed. 
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Figure 6 Plot showing the dynamics of Low-Susceptible and Infected. 

 

 

 

Figure 7 Plot showing the dynamics of Low-Susceptible and Hospitalized. 

 

4.1 Conclusion  

In this article, we have analytically studied the qualitative analysis of one of the deadly 

diseases that affect the human population and mostly in some part of the Africa Continent. 

Our main purpose of the study was to understand the local stability analysis of the Ebola 

model that was proposed by Khan et al. [10].  We have numerically simulated the model 
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dynamics using Matlab. In our future studies of Ebola disease modeling, we will employ the 

idea of fractional calculus due to the property of memory effect in fractional order derivatives. 

It will also be interesting to model this disease using stochastic differential equations. 

 

 

REFERENCES 

[1] WHO, ‘‘Report of an International Study Team. Ebola haemorrhagic fever in Sudan, 

1976,’’ Bulletin of the World Health Organization, vol. 56, no.2, pp. 247-270, 1978. 

[2] Report of an International Commission, ‘‘Ebola haemorrhagic fever in Zaire, 1976, 

‘‘Bulletin of the World Health Organization, vol. 56, no. 2, pp.271-293, 1978. 

[3] Althaus.  C. L., ‘‘Estimating the reproduction number of  Ebola virus (EBOV) 

during the 2014 outbreak in West Africa,’’ PLoS Currents Outbreaks, 2014. 

[4] WHO, Ebola Response Roadmap-Situation Report Update, World Health Organization, 

2014, http:// www.who.int/csr/disease/ebola/situation-reports/en. 

[5] World Health Organization (WHO), Ebola Response Roadmap Situation Report, 

World Health Organization, Geneva, Switzerland, 2014, 

http://apps.who.int/iris/bitstream/10665/137376/1/roadmapsitrep_29Oct2014_eng.pdf

?ua=1. 

[6] David . F., Edwin. K., and Ashleigh .T., ‘‘Early epidemic dynamics of the West 

African 2014 Ebola outbreak: estimates derived with a simple two-parameter model, 

PLos. 2014. 

[7] Peters . C. J. and  LeDuc .J. W.,‘‘An introduction to Ebola: the virus  and the disease, 

‘‘ Journal of Infectious Diseases,vol.179, Supplement 1,1999. 

[8] Amira .R. and  Delfim .F.M.T, ‘‘Mathematical modeling, Simulation, and optimal 

control of the 2014 Ebola outbreak in West Africa, Hindawi Publishing Corporation, 

BioMed Research International , 842792, 2015 

[9] http://www.cdc.gov/ncidod/publications/brochures/ebolainf.htm. 

[10] Khan .A , Naveed.  M,  Dur-e-Ahmed. M  and Imran. M., ‘‘estimating the basic 

reproduction ratio for the Ebola outbreak in Liberia and Sierra Leone, Infectious 

disease of poverty,DOI 10.1186/s40249-015-0043-3,2015. 

[11] http://www.who.int/emc/diseases/ebola/eboladata.html 

[12] Arreola .R., McDuffy. D. D., Mejia .M. B. and Oliver .A. I., ‘‘The Ebola virus: Factors 

affecting the dynamics of the disease, MTBI, BU-1519-M, 1999. 

[13] Brief General History of Ebola, 10 June 2015. 

https://web.stanford.edu/group/virus/filo/history.html. 

[14] Haradhan. M., ‘‘The most fatal 2014 outbreak of Ebola virus disease in Western Africa. 

Am J Epidemiol infect Dis. 2014; 2 (4). 

[15] Derek. G. ‘‘The 2014 Ebola virus disease outbreak in West Africa. J Gene Virology. 

2012; 95: 1919-24. 

[16] Pandey .A., Arkins. K. E., Medlock .J., Wenzel. N., Townsend. J. P., Childs .J. E., et. 

al., , ‘‘Strategies for containing Ebola in West Africa, Science 346,991 (2014). 

[17] Nishiura and Chowell: Theoretical perspectives on the infectiousness of Ebola virus 

http://www.iiste.org/
http://www.who.int/csr/disease/ebola/situation-reports/en
http://apps.who.int/iris/bitstream/10665/137376/1/roadmapsitrep_29Oct2014_eng.pdf?ua=1
http://apps.who.int/iris/bitstream/10665/137376/1/roadmapsitrep_29Oct2014_eng.pdf?ua=1
http://www.who.int/emc/diseases/ebola/eboladata.html
https://web.stanford.edu/group/virus/filo/history.html


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.2, 2016 

 

 

49 

disease. Theoretical Biology and Medical Modelling,doi: 10.1186/1742-4682-12-1, 

2015. 

[18] Atangana . A. and Goufo. E. F. D., ‘‘On the Mathematical Analysis of Ebola 

Hemorrhagic Fever : Deathly infection Disease in West Africa countries,  Hindawi 

Publishing Corporation, BioMed Research International, doi:10.1155/2014/261383. 

[19] Chowell . G, Hengartner .N. W, Castillo-Chavez C, Fenimore. P. W. and Hyman. J. M., 

‘‘The basic reproduction number of Ebola and the effects of public health measures: 

the cases of Congo and Uganda, Journal of Theoretical Biology, 

doi:10.1016/j.jtbi.2004.03.006. 

[20] Lekone . P. E. and Finkenstadt. B. F., ‘‘Statistical Inference in a Stochastic Epidemic 

SEIR Model with Control Intervention: Ebola as a Case Study, Biometrics 62, 

1170-1177, 2006. 

[21] Weitz .J. S. and Dushoff . J, ‘‘Modeling Post-death Transmission of  Ebola: 

Challenges for Inference and Opportunities for Control. Sci.Rep. 5,8751; 

DOI:10.1038/srep08751 (2015). 

[22] Pyankov.  O. V., Bodnev. S. A., Pyankova. O. G, Solodkyi.  V. V., Pyankov  S. A., 

Setoh. Y. X. ,et., al. ‘‘A Kunjin replicon virus-like particle vaccine provides protection 

against Ebola virus infection in Nonhuman primates. Journal of Infectious Diseases, 

DOI: 10.1093/infdis/jiv019,2015. 

[23] http://www.cdc.gov/vhf/ebola/outbreaks/drc/2015-July.html. 

[24] Ebihara .H.,  Zivcec .M., Gardner. D , Falzarano .D.,  LaCasse. R., Rosenke. R., 

et.al, ‘‘A Syrian Golden Hamster Model Recapitulating Ebola Hemorrhagic Fever. The 

Journal of Infectious Diseases, 2013; 207: 306-1 8. 

[25] McElroy .A. K., Erickson .B. R., Flietstra. T. D., Rollin .P. E., Nichol., S. T, Towner J. 

S. et.al, ‘‘Ebola hemorrhagic fever: Novel biomarker  correlates of Clinical Outcome. 

The Journal of Infectious Diseases, 2014: 210:558-66. 

[26] Diekmann, O., Heesterbeek. J.A.P., ‘‘Mathematical Epidemiology of infectious 

diseases: Model building, analysis and interpretation, John Wiley & Sons, New York. 

(2000). 

[27] Diekmann, O., Heesterbeek.  J.A.P., and Metz.  J.A. J , ‘‘On the definition and the 

computation of the basic reproduction ratio mathcal 𝑅0 in models for infectious 

disease in heterigenuos populations, J. Math.Biol., 28:365-382, (1990). 

[28] http://userpages.umbc.edu/~rostamia/math481/Routh-Hurwitz.pdf 

 

 

http://www.iiste.org/
http://www.cdc.gov/vhf/ebola/outbreaks/drc/2015-July.html

