
Mathematical Theory and Modeling                                                                                                                                                 www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.2, 2016 

 

97 

Modelling the Ghanaian Inflation Rates Using Interrupted Time 

Series Analysis Approach 
 

Hudu Mohammed
1
, Abdul-Aziz A.R.

2
, Bashiru I. I. Saeed (PhD)

3 

Lecturer, Mathematics and Statistics Department, Kumasi Polytechnic, Kumasi, Ghana 

Senior Lecturer, Mathematics and Statistics Department, Kumasi Polytechnic, Kumasi, Ghana 

Senior Lecturer, Mathematics and Statistics Department, Kumasi Polytechnic, Kumasi, Ghana 

 

Abstract 

The article considers the application of interrupted time series analysis to model yearly inflation rates in Ghana 

from 1996 to 2006. This article, therefore, explored the effectiveness of the economic policy intervention in the 

year 2001 on the inflation rate time series for the period 2001 to 2006 using the interrupted time series 

experiment. We also sort to use this model to make forecasts of future values. To achieve this objective, yearly 

inflation rates for the period were obtained from Bank of Ghana (BoG). The Box-Jenkins Autoregressive 

Integrated Moving Average (ARIMA) method with interruption was employed in analyzing the data using 

Statistical Product for Service Solution (SPSS) version 20. It was found that the rate of inflation in Ghana can be 

fitted with an autoregressive model of order one, i.e. AR (1) model. From the results of the tests of the 

difference between the means before and after intervention, as well as the interrupted time series experiment, 

indicated that the intervention successfully reduced the rate of inflation in the Ghana’s economy. 

Keywords: Inflation, Interrupted Time Series, Box-Jenkins Method.  

 

1.  Introduction  

In Ghana, the debate of achieving a single digit inflation value has been the major concern for both the government 

and the opposition parties. While the government boasts of a stable economy with consistent single digit 

inflation, the opposition parties’ doubts these figures and believe that the figures had been cooked up and do not 

reflect the true situation in the economy. Webster (2000) defined inflation as the persistent increase in the level 

of consumer prices or a persistent decline in the purchasing power of money. Price stability (stable inflation) is 

one of the main objectives of every government as it is an important economic indicator that the government, 

politicians, economists and other stakeholders use as their basis of argument when debating on the state of the 

economy (Suleman and Sarpong, 2012). In recent years, rising inflation has become one of the major economic 

challenges facing most countries in the world especially developing countries like Ghana. David (2001) described 

inflation as a major focus of economic policy worldwide. 

 

Inflation and its volatility entail large real costs to the economy (Moreno, 2004). Among the harmful  effects 

of inflation volatility are the higher risk of permia for long term arrangement, unforeseen redistribution of 

wealth and higher costs for hedging against inflation risks (Rother, 2004). Thus inflation volatility 

canimpede growth even if inflation on the average remains restrained (Awogbemi and Oluwaseyi, 2011) 

and hence monetary policy makers are more interested in containing and reducing inflation through price 

stability (Amos, 2010). Policy makers will be content and satisfied if they are able to understand the 

underlying dynamics of inflation and how it evolves. Ngailo (2011) observes that inflation  dynamics  and  

evolution  can  be  studied  using  a  stochastic  modelling approach that captures the time dependent 

structure embedded in the time series inflation data.  

 

Inflation is a persistent rise in the general price levels of goods and services in an economy over a period of 

time. Inflation rate has been regarded as one of the main economic indicators in any country. According to 

Olatunji et al. (2010), inflation undoubtedly remains as one of the leading and most dynamic macro-economic 

issues confronting almost all economies of the world. Its dynamism has made it an imperative issue to be 

considered. Odusanya and Atanda (2010) determined the dynamic and simultaneous interrelationship between 

inflation and its determinants – growth rate of Gross Domestic Product (GDP), growth rate of money supply 

(M2), fiscal deficit, exchange rate (U.S dollar to Naira), importance and interest rates, using econometric time 
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series model. Olatunji et al. (2010) examined the factors affecting inflation in Nigeria using cointegration and 

descriptive statistics. They observed that there were variations in the trend pattern of inflation rates and some 

variables considered were significant in determining inflation in Nigeria. These variables include annual total 

import, annual consumer price index for food, annual agricultural output, interest rate, annual government 

expenditure, exchange rate and annual crude oil export. 

 

Some econometric models have been used to describe inflation rates, but they are restrictive in their theoretical 

formulations and often do not incorporate the dynamic structure of the data and have tendencies to inflict 

improper restrictions and specifications on the structural variables (Saz, 2011). Mordi et al. (2007), in their 

study of the best models to use in forecasting inflation rates in Nigeria identified areas of future research on 

inflation dynamics to include re-identifying ARIMA models, specifying and estimating VAR models and 

estimating a P-Star model, amongst others that can be used to forecast inflation with minimum mean square 

error. 

The absence of restriction in the ARIMA model gives it the necessary flexibility to capture dynamic properties 

and thus significant advantage in short-run forecasting (Saz, 2011). Encouraged by these empirical results on the 

superiority of ARIMA models, Saz (2011) applied Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model to forecast the Turkish inflation. Longinus (2004) examined the influence of the major 

determinants of inflation with a particular focus on the role of exchange rate policy of Tanzania from 1986 to 

2002. He discovered that the parallel exchange rate had a stronger influence on inflation. Other works on 

modeling inflation rates are seen in the works of Fatukasi (2003), Eugen et al. (2007) and Tidiane (2011).  

 

This paper explores the effectiveness of the economic policy intervention in the year 2001 on the inflation rate 

time series for the period 2001 to 2006 using the interrupted time series experiment. We also seek to use this 

model to make forecasts of future values. 

 

2.0  Materials and Method 

2.1  Model Specification 

2.1.1  ARMA or “Mixed” Process 

Consider the process given by; 

    𝑌𝑡 =  𝛼1𝑌𝑡−1 + 𝜃1𝑒𝑡−1 + 𝑒1 

This can be rewritten as 

 𝑌𝑡 − 𝛼1𝑌𝑡−1 =  𝑒𝑡 + 𝜃1𝑒𝑡−1             Or 

(1 − 𝛼𝐵)𝑌𝑡 = (1 + 𝜃𝐵)𝑒𝑡…………………………….. (1) 

𝐴𝑅(𝐵)𝑌𝑡 = 𝑀𝐴(𝐵)𝑒𝑡 

This is called a mixed or autoregressive moving average (ARMA) process of order (1,1). 

Since equation (1) is ARMA(1,1) if |𝜃| < 1 it can be rewritten as  

     (1 − 𝛼𝐵) (
1

1 + 𝜃𝐵
) 𝑌𝑡 =  𝑒𝑡 

     (1 − 𝛼𝐵)(1 − 𝜃𝐵 + 𝜃2𝐵2 − 𝜃3𝐵3 + ⋯ )𝑌𝑡 =  𝑒𝑡 

     [(1 − 𝛼 + 𝜃)𝐵 + (𝛼𝜃 + 𝜃2)𝐵2 + ⋯ ]𝑌𝑡 =  𝑒𝑡 

This is an infinite order AR process. This is true if |𝛼| < 1 and |𝜃| < 1 i.e. if the AR is stationary and MA is 

invertible. If we have two polynomial in B, MA(B) and AR(B), and an ARMA model, 

  𝐴𝑅(𝐵)𝑌𝑡 = 𝑀𝐴(𝐵)𝑒𝑡 
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It is possible to write the model as an infinite AR process: 

               (
𝐴𝑅(𝐵)

𝑀𝐴(𝐵)
) 𝑌𝑡 =  𝑒𝑡 

Or an infinite MA process 

   𝑌𝑡 =  (
𝑀𝐴(𝐵)

𝐴𝑅(𝐵)
) 𝑒𝑡 

 And approximate either by finite processes 

ARMA processes are parsimonious however identifying those using ACF and PACF may be difficult. The 

condition necessary for dividing by AR(B) is that the AR process be stationary and by MA(B) is that the MA 

process be invertible. 

2.1.2  Autoregressive Moving Average Model (ARMA) 

A more general model is a mixture of the AR(p) and MA(q) models and is called an autoregressive moving 

average model (ARMA) of order (p,q). 

The ARMA(p,q) is given by 

 𝑌𝑡 =  ∑ 𝛼𝑖𝑌𝑖−1
𝑝
𝑖=1 + ∑ 𝜃𝑖𝑒𝑖−1

𝑞
𝑖=1 + 𝜇 + 𝑒𝑡 

An example of an ARMA(1,1)  

   𝑌𝑡 =  𝛼1𝑌𝑡−1 + 𝜃1𝑒𝑡−1 + 𝜇 + 𝑒𝑡 

 An important characteristic of ARMA models is that both the ACF and PACF do not cut off as in AR and MA 

models. 

(Box and Jenkins, 1971) 

2.1.3  The Autoregressive Integrated Moving Average Model (ARIMA) 

If a non-stationary time series which has variation in the mean is differenced to remove the variation the 

resulting time series is called an integrated time series. It is called an integrated model because the stationary 

model which is fitted to the differenced data has to be summed or integrated to provide a model for the non-

stationary data. Notationally, all AR(p) and MA(q) models can be represented as ARIMA(1,0,0) that is no 

differencing and no MA part. 

The general model is ARIMA(p,d,q) where p is the order of the AR part, d is the degree of differencing and q is 

the order of the MA part. 

 Writing                    𝑊𝑡 =  ∇𝑑𝑌𝑡 =  (1 − 𝐵)𝑑𝑌𝑡  

The general ARIMA process is of the form 

 𝑊𝑡 =  ∑ 𝛼𝑖𝑊𝑡−𝑖
𝑝
𝑡=1 + ∑ 𝜃𝑖𝑒𝑡−𝑖

𝑞
𝑡=1 + 𝜇 + 𝑒𝑡 

(Hamilton J.D, 1994) 

2.1.4      Extension of the Procedure to AR(p) Models 

Assume that 𝑛1 data points before intervention consist of a stationary stochastic component, which is fitted with 

an autoregressive model, plus a linear trend. Thus before intervention (𝑡 = 𝑝 + 1, 𝑝 + 2, … 𝑛1) the data can be 

represented as 

𝑌𝑡 =  𝑚1𝑡 + 𝑏1 + ∑ 𝛼𝑖𝑌𝑖−1

𝑝

𝑡=1

+ 𝑒𝑡 
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After intervention (𝑡 =  𝑛𝑡+1, … , 𝑁) and assume 𝑛2 = 𝑁 − 𝑛 data points move to a new asymptotic trend line. It 

is further assumed that the autoregressive parameters have not changed as a result of the intervention. Thus after 

the intervention the data can be represented as 

𝑌𝑡 =  𝑚2𝑡 + 𝑏2 + ∑ 𝛼𝑖𝑌𝑡−𝑖 + 𝑒𝑡

𝑝

𝑡=1

 

The next stage is to estimate the parameters 𝑚1, 𝑏1, 𝛼1, 𝑚2  𝑎𝑛𝑑 𝑏2. one proceeds to find whether there has been 

significant changes in the values of 𝑚1 and 𝑏1 as reflected in the values of 𝑚2 and 𝑏2 which will be used to test 

whether the intervention was successful. 
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As usual the least squares estimates are 

𝛽 =  (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

If the estimate of 𝜎𝑒
2 is denoted by 𝑆𝑒

2 which (
1

𝑣
) (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽), 

Where v, the degrees of freedom for errors is 𝑁 − 2𝑝 − 4 and denote the C as the diagonal of (𝑋𝑇𝑋)−1, then 

each of the parameters in 𝛽𝑖 = (𝑏1, 𝑚1, 𝑏2, 𝑚2, 𝛼1, … , 𝛼𝑝) can be referred to a  

𝑡-distribution with 𝑣 degrees of freedom, where 

𝑇 =  
𝛽1

𝑆𝑒√𝐶𝑖

 

The data points do not actually lie on the lines 𝑚1𝑡 + 𝑏1 before and 𝑚2𝑡 + 𝑏2 after intervention. Rather, before 

intervention the data follow a steady-state trend line of the form 𝐵1 + 𝑀1𝑡 and approach 𝐵2 + 𝑀2𝑡 after 

intervention. 

 

2.3  Estimation of Parameters 

2.3.1  Estimating the Parameters of an ARMA Model 

The procedure for estimating the parameters of the ARMA model is like the one for the MA model it is an 

iterative method. Like the MA the residual sum of squares is calculated at every point on a suitable grid of the 

parameter values, and the values, and the values give the minimum sum of squares are the estimates.  

For an ARMA (1, 1) the model is given by 

 𝑌𝑡 − 𝜇 =  𝛼1(𝑌𝑡−1 − 𝜇)𝑒𝑡 + 𝜃1𝑒𝑡−1 
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Given N observation 𝑌1, 𝑌2, … , 𝑌𝑁 , we guess values for 𝜇, 𝛼1, 𝜃1, set 𝑒0 = 0 and 𝑌0 = 0 and then calculate the 

residuals recursively by  

𝑒1 =  𝑌1 − 𝜇 

𝑒2 =  𝑌2 − 𝜇−𝛼1(𝑌1 − 𝜇) − 𝜃1𝑒1 

… … … … … … … … … … … .. 

… … … … … … … … … … …. 

𝑒𝑁 =  𝑌𝑁 − 𝜇 − 𝛼1(𝑌1 − 𝜇) − 𝜃1𝑒𝑁−1 

The residual sum of squares ∑ 𝑒𝑡
2𝑁

𝑡=1  is calculated. Then other values of𝜇, 𝛼1, 𝜃1, are tried until the minimum 

residual of squares is found. 

Note: It has been found that most of the stationary time series occurring in practices can be fitted by AR(1), 

AR(2), MA(1), MA(2), ARMA(1,1) or white noise models that are customarily needed in practice. 

(Hamilton J.D, 1994)          

2.3.2  Estimating the parameters of an ARIMA Model 

In practice most time series are non-stationary and the series is differenced until the series becomes stationary. 

An AR, MA or ARMA model is fitted to the differenced series and estimation procedures are as described for 

the AR, MA, ARMA above. 

 

2.4  Tests 

 2.4.1  The Box-Jenkins Method of Modeling time Series 

The Box-Jenkins methodology is a statistical sophisticated way of analyzing and building a forecasting model 

which best represents a time series. The first stage is the identification of the appropriate ARIMA models 

through the study of the autocorrelation and partial autocorrelation functions. For example if the partial 

autocorrelation cuts off after lag one and the autocorrelation function decays then ARIMA(1,0,0) is identified. 

The next stage is to estimates the parameters of the ARIMA model chosen. 

The third stage is the diagnostic checking of the model. The Q-statistic is used for the model adequacy check. 

If the model is not adequate then the forecaster goes to stage one to identify an alternative model and it is tested 

for adequacy and if adequacy then the forecaster goes to the final stage of the process. 

The fourth stage is where the analysis uses the model chosen to forecast and the process ends. 

 

2.4.2  Measurement of the intervention Effect 

The procedure used in this work is to fit an AR(p) an autoregressive model of order p to the interrupted time 

series data using the Box-Jenkins methods of fitting a model to a time series data. The next step is to use the 

least squares method to estimate the parameters and statistical methods to assess the effectiveness of the 

intervention.    (McDowall, et al) 

Let us consider an imaginary interrupted time series data which can be fitted with a stationary AR(1) model 

which has a zero mean. 

 𝑌𝑡 =  𝛼1𝑌𝑡−1 + 𝑒𝑡  where 𝛼1 is the AR(1) parameter and 𝑒𝑡 is the white noise. Let us assume further that we 

have 𝑛1 data points before intervention and 𝑛2 points after intervention and 𝑛1 + 𝑛2 = 𝑁. Suppose we assume 

that the effect is to add 𝛾 to the mean level. 
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The data can be expressed as follows 

𝑌2 =  𝛼1𝑌1 + 𝑒2 

𝑌3 =  𝛼1𝑌2 + 𝑒𝑡 

⋮ 

𝑌𝑛 =  𝛼1𝑌𝑛−1 + 𝑒𝑛−1 

𝑌𝑛+1 =  𝛼1𝑌𝑛 + 𝑒𝑛 + 𝛾 

⋮ 

𝑌𝑁 =  𝛼1𝑌𝑁−1 + 𝑒𝑁−1 + 𝛾 

This model can be written in matrix notation as 

       𝑌 = 𝑋𝛽 + 𝐸 

Where 
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This has the least squares solution as 

𝛽 =  [
𝛾

𝛼1
] = (𝑋𝑇𝑋)−1𝑋𝑇𝑋.  Where 𝑋𝑇 is the transpose of𝑋. 

In this case, it is easy to show that 

.𝑋𝑇𝑋 =  [
𝑛2 ∑ 𝑌𝑡

𝑁−1
𝑛1

∑ 𝑌𝑡
𝑁
𝑛1

∑ 𝑌𝑡
2𝑁−1

1

]          𝑋𝑇𝑌 =  [
∑ 𝑌𝑡

𝑁
1

∑ 𝑌𝑡𝑌𝑡−1
𝑁
2

] 

If the first element (first row, first column) of (𝑋𝑇𝑋)−1 is denoted by 𝐶, it can also be shown that an asymptotic 

standard normal [𝑁(0,1)] tests can be derived for 𝛿 under the null hypothesis that 𝛿 = 0 for small samples.  

The following is a statistic with an approximate 𝑡 distribution 

𝑡𝑁−3 =  
𝛾

(𝑆𝑒)√𝑐
    where Se is the square root of the residual variance, computed as 

 

𝑆𝑒
2 =  

1

𝑁 − 3
(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽). 

2.4.3     Steady-state solutions 

Suppose that 𝑌𝑡 =  ∑ 𝛼𝑌𝑡−1 + 𝑚𝑡 + 𝑏 + 𝑒𝑡 

Then the expected value of 𝑌𝑡 is 𝐸(𝑌𝑡) =  ∑ 𝛼𝑖𝐸(𝑌𝑡−1) + 𝑚𝑡 + 𝑏 
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To find the steady-state solution of this difference equation in 𝐸(𝑌𝑡), we assume 

𝑀𝑡 + 𝐵 =  ∑ 𝛼𝑖 (𝑀(𝑡 − 1) + 𝐵) + 𝑚𝑡 + 𝑏 

Equating coefficients of t and constant terms we have 

𝑀𝑡 = (∑ 𝛼𝑖) 𝑀𝑡 + 𝑚𝑡 

𝐵 =  ∑ 𝛼𝑖(−𝑖)𝑀 + (∑ 𝛼𝑖) + 𝑚𝑡 + 𝑏 

So that        𝑀 =  
𝑚

1−∑ 𝛼𝑖
                   and               𝐵 =  

𝑏−𝑀(∑ 𝛼𝑖)

1−∑ 𝛼𝑖
 

For example for an AR(p) model with n1 data points before intervention and n2 data points after intervention 

where n1 + n2 = N, the model becomes  

𝑌𝑡 =  𝑚1𝑡 + 𝑏1 + ∑ 𝛼𝑖𝑌𝑡−1 + 𝑒𝑡

𝑝

𝑖=1

 

Before intervention and  

𝑌𝑡 =  𝑚2𝑡 + 𝑏2 + ∑ 𝛼𝑖𝑌𝑡−1 + 𝑒𝑡

𝑝

𝑡=1

 

After intervention.  

The matrix notation is follows 
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And 𝛽 =  (𝑋𝑇𝑋)−1         𝑋𝑇𝑋  and          𝑇 =  
𝛽1

𝑆𝑒√𝐶𝑖
                𝑖 = 1, 2, 3, 4             

2.4.4        Testing for the significance of the Intervention 

Here we test: 

𝐻0 ∶ 𝑚1 =  𝑚2, 𝑏1 =  𝑏2 (𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑖𝑛𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 ) 

Against: 

𝐻1 ∶  𝑚1 ≠  𝑚2, 𝑏1  ≠  𝑏2 (𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) 

Let 𝑆𝑆0 denote the residual error sum of squares in the reduced model. 

𝑌𝑡 = 𝑚1 + 𝑏 + ∑ 𝛼𝑖𝑌𝑖−1 + 𝑒𝑡       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡    

𝑝

𝑖=1

 

And let 𝑆𝑆0 denote the residual sum of squares in the full model 

𝑌𝑡 = 𝑚1𝑡 + 𝑏1 + ∑ 𝛼𝑖𝑌𝑖−1 + 𝑒𝑡       𝑡 = 𝑝 + 1, . . . , 𝑛1    

𝑝

𝑖=1

 

And  

𝑌𝑡 = 𝑚2𝑡 + 𝑏2 + ∑ 𝛼𝑖𝑌𝑖−1 + 𝑒𝑡       𝑡 = 𝑛1, … , 𝑁    

𝑝

𝑖=1

 

Then under the null hypothesis, 

𝐹 =

(𝑆𝑆0 − 𝑆𝑆1)
2⁄

𝑆𝑆1
𝑣⁄

 

Has an F(1,v) distribution. Here 𝑣, the error degrees of freedom is equal to the number of observations minus 

the number of “start up” observations (2 in AR(2) model or 3 in AR(3) minus the number of parameters fit, that 

is 6 in AR(2) and 4 in AR(1). 

 

3.0  Results 

3.1  Identification of the Model 

The autocorrelation function dies down and the partial autocorrelation function cuts off after lag one. This 

identifies an AR (1) process which has the form 

                                                          𝑌𝑡 = 𝛼𝑌𝑡−1 + 𝑒𝑡  

Fig. 1 and Fig. 2 shows the graph of the autocorrelation and partial autocorrelation functions respectively. 
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Fig 1 ACF of monthly inflation rate in Ghana from Jan. 96 to Dec. 06 

 

Fig 2 PACF of monthly inflation rate in Ghana from Jan. 96 to Dec. 06 

Table 1 Analysis of the time series data 

ARIMA MODEL RESIDUAL 

VARIANCE 

AIC Q-VALUE 

(1,0,0) 6.197 566.019 16.780 

 

Since the interrupted time series analysis look out for an ARIMA (p.0.0), the ARIMA (1,0,0) is the best model 

for the time series data and it is also adequate since the Q- value is less than the critical value. It has the form 

𝑌𝑡 = 0.995𝑌𝑡−1 + 37.657 

242322212019181716151413121110987654321
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3.2  Adequacy Test for an ARIMA (p, d, q) Model 

For any ARIMA (p,d,q) model, the 𝜒2-distribution can be used to test for the adequacy of the model. The Q-

statistics is distributed as 𝜒𝑘−𝑝−𝑞
2  where k=24 (maximum lag) used for Q, p is the order of the AR process and q 

is the order of the MA process. For example, ARIMA (1,0,0) is distributed as 𝜒24−1−0
2 = 𝜒23

2 . 

In Table 2 below, we display the critical values for some ARIMA models. 

Table 2 Chi Square Distribution 

DISTRIBUTION SIGNIFICANCE LEVEL CRITICAL VALUE 

𝜒23
2  0.05 35.172 

𝜒22
2  0.05 33.924 

𝜒21
2  0.05 32.671 

𝜒20
2  0.05 31.410 

 

3.3  Interrupted Time Series  

3.3.1 Test For Significance of Difference Between The Means of The Pre-Intervention Data and The 

Post-Intervention Data 

Let 𝜇1 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 

𝜇2 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 

𝜎1
2 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 

𝜎2
2 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 

𝜇1 = 27.1063                     𝜇2 = 21.3250 

𝑛1 = 48                                𝑛2 = 72 

𝜎1
2 = 239.482                    𝜎2

2 = 87.086 

𝜎𝑝
2 = 147.786                     𝜎𝑝 = 12.158 

Where 𝜎𝑝
2 is the pooled variance of the population which is given by 

𝜎𝑝
2 =

(𝑛1 − 1)𝜎1
2 + (𝑛2 − 1)𝜎2

2

𝑛1 + 𝑛2 − 2
 

 

Hypothesis 

 𝐻0 ∶  𝜇1 = 𝜇2  (Intervention not effective) 

 𝐻1 ∶  𝜇1 ≠ 𝜇2  (Intervention effective) 

Test Statistic 

 𝑍 =
(𝜇1−𝜇2)

𝜎
𝑃√

1
𝑛1

+
1

𝑛2

~𝑁(0,1 
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 Decision Rule 

 𝐼𝑓 𝑍 ≥ 1.65, 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0  𝑎𝑛𝑑 𝑎𝑐𝑐𝑒𝑝𝑡 𝐻1 

              𝐼𝑓 𝑍 < 1.65, 𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0 𝑎𝑛𝑑 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻1 

                      

Calculation 

𝑍 =
(27.1063 − 21.3250)

12.158√ 1
48

+
1

72

= 2.552 

Since Z=2.552 > 1.65 we reject H0 and accept H1 and conclude that there is enough evidence at the 5% level of 

significance of a decrease in the mean level of the inflation in Ghana after the intervention policy in 2000. 

3.3.2 USE OF REGRESSION ANALYSIS TO MODEL TREND AND AUTOREGRESSIVE 

COMPONENTS  

We attempt to apply the interrupted time series analysis described in section 2.0 to estimates b1, b2, m1, m2, 𝛼. 

Here b1 and b2 are the intercepts and m1 and m2 are the slopes before and after intervention while 𝛼 is the AR 

parameters. This is done by use of SPSS for the regression analysis. 

The results for the full and reduced models are displayed in the tables below. 

Table 3 Variables in the equation of full model 

VARIABLE ESTIMATES STD. 

ERROR 

95% CI 

LOWER 

95%CI 

UPPER 

T-VALUE SIG. 

B1 1.230 1.529 -1.800 4.260 0.804 0.423 

M1 -.004 0.035 -0.074 0.066 -0.117 0.907 

B2 3.097 0.961 1.193 5.001 3.222 0.002 

M2 -.036 0.014 -0.064 -0.008 -2.532 0.013 

𝛼 .916 0.027 0.000 0.970 34.002 0.000 

 

Table 4 Model efficiency of full model 

R R-SQUARE ADJUSTED R STD. ERROR 

0.997 0.993 0.993 2.19774 

 

From the Table 4 it indicates that about 99.3% of the variability in the inflation was explained by the predictor 

variables with standard error of about 2.19774. 

Table 5 ANOVA of full model 

MODEL DF SSS MSE F SIG. F 

REGRESSION 5 80110.663 16022.133 3317.167 0.000 

RESIDUAL 114 550.627 4.830   

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                 www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.2, 2016 

 

108 

From Table 5 above, the value of the p-value is less than the significance level (0.05). This means that there is 

sufficient evidence to reject the null hypothesis and conclude that the intervention effect was effective at 95% 

confidence level.  

 

The autocorrelation function dies down and the partial autocorrelation function cuts off      after lag one 

indicating an autoregressive process of order one i.e.  AR (1) process. The model is;              

 Yt = 0.995Yt-1 + 37.657  

 

The significance test of the difference between the means of the pre and post intervention data was significant. 

There was enough evidence at the 5% level of significance that the mean before the intervention was greater 

than the mean after the intervention. 

 

4.  Conclusion 

It was found that the rate of inflation in Ghana can be fitted with an autoregressive model of order one, i.e. AR 

(1) model. From the results of the tests of the difference between the means before and after intervention, as 

well as the interrupted time series experiment, it means/imply that the intervention has successfully reduced the 

rate of inflation in the nation. 

It is recommended that the Government continues with the tight monetary policy, Open Market Operations 

(OMO), Repurchase Agreements (Repos) and prime rate (interest Rate) policies that has been used since Jan 

2000 to Dec 2006 in trying to reduce the rate of inflation since it was effective. 

Also further study that relates interest rate to inflation could be carried researched into. 
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