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Abstract  

     In factorial experiments when the number of factors or the levels of factors are increased the number of 

treatment combinations increased rapidly. Also, it becomes difficult to maintain the homogeneity between 

experimental units. To overcome the decrease of the experimental units, we need to decrease the number of those 

treatments by using a confounded design (complete and partial) and fractional replication design. 

      A factorial experiment for 24 in randomized complete block design with four blocks has been applied, for the 

aim of comparison among factorial randomized complete block design, confounded designs and fractional 

replication design in applied factorial experiments.   

Key Words: Factorial Experiment, Complete Confounding, Partial Confounding, Half fractional Replication.     

   

1.1. The Aim of Study 

      The study aims to comparison among the results of factorial experiment conducted in randomized complete 

block design, complete confounding, partial confounding and half fractional replication, using mean squares 

error to differentiate the results of this study. 

 

1.2. Introduction 

     In factorial experiments when the number of factors or number of levels of the factors increase, the number of 

treatment combinations increase very rapidly and it is not possible to accommodate all these treatment 

combinations in a single homogeneous block. For example, a 25factorial would have 32 treatment combinations 

and blocks of 32 plots are quite big to ensure homogeneity within them. A new technique is there for necessary 

for designing experiments with a large number of treatments. 

In order to keep the advantages of the factorial experimental error to a minimum, a device known as confounding 

or fractional factorial is adopted. 

     Fisher (1926) first suggested the confounded design.  Fisher and Wishart (1930) gave the explanation of the 

numerical procedure of the analysis of randomized block and Latin square experiments; they also gave an 

example of a confounded experiment [6]. The use of experiments in factorial replication was proposed in (1945) 

by Finney. 

He outlined methods of construction for 2𝑛and 23 factorials and described a half- replicate of a 4 × 24, 

agricultural field experiment that had been conducted in 1942 [3]. 

 

1.3. Factorial Experiments 

     In a factorial experiment the treatments are combinations of two or more levels of two or more factors. A 

factor is a classification or categorical variable which can take one or more values called levels [2]. 
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Factorial experiments provide an opportunity to study not only the individual effects of each factor but also their 

interactions. They have the further advantage of economizing on experimental resources [6]. 

The mathematical model for factorial RCBD is [7]:  

 

 𝑦𝑖𝑗𝑘  = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜌𝑘 + 𝜀𝑖𝑗𝑘  {
𝑖 = 1,2, … . . , 𝑎
𝑗 = 1,2, … . . , 𝑏
𝑘 = 1,2, … . , 𝑟

                                    …… (1) 

Where 𝜇 is the overall mean, 𝛼𝑖is the effect of the 𝑖𝑡ℎ level of factor A, 𝛽𝑗  is the effect of the 𝑗𝑡ℎ level of factor 

B, (𝛼𝛽)𝑖𝑗 is the effect of the interaction between the 𝑖𝑡ℎ level of factor A and  𝑗𝑡ℎ level of factor B, , 𝜌𝑘 is the 

effect of the 𝑘𝑡ℎ block, and 𝜀𝑖𝑗𝑘 is the random error associated with the 𝑘𝑡ℎ replication in cell (ij). 

In the two factors fixed effects model, we are interested in the hypotheses: 

A main effect: 

 
𝐻0: 𝛼1 = ⋯ = 𝛼𝑎 = 0          
𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓𝛼𝑖 ≠  0

}                                                                                      …… (2) 

 

B main effect: 

 
𝐻0: 𝛽1 = ⋯ = 𝛽𝑏 = 0          
𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓𝛽𝑗 ≠  0

}                                                                                       …… (3) 

 

AB interaction effect: 

 
𝐻0: (𝛼𝛽)11 = ⋯ = (𝛼𝛽)𝑖𝑗 = 0

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓(𝛼𝛽)𝑖𝑗 ≠  0
}                                                                               …… (4) 

Table1: ANOVA for the factorial RCBD 
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1.4. Confounding  

      Confounding is a technique for designing experiments with a large number of treatments in factorial 

experiments. The treatment combinations are divided into as many groups as the number of blocks per 

replication. The different groups of treatments are allocated to the blocks. The grouping of treatments 

combinations must be done in such a way that only the unimportant effects are confused with the block effects 

and other import anted effects could be evolved compare significantly[4]. There are two types of confounding 

[2], [3]: complete confounding and partial confounding. 

      If the same effect confounded in all the other replications, then the interaction is said to be completely 

confounded. And all the information on confounded interactions are lost. 

When an interaction is confounded in one replicate and not in another, the experiment is said to be partially 

confounded. The confounded interactions can be recovered from these replications in which they are not 

confounded. The table (2) of positives and negatives signs for the 24 design. The signs in the columns of this 

table can be used to estimate the factor effects. 

 

Table2: Table of positive and negative signs for the 24 

Trea. 
Com. 

 
A 

 
B 

 
AB 

 
C 

 
AC 

 
BC 

 
ABC 

 
D 

 
AD 

 
BD 

 
ABD 

 
CD 

 
ACD 

 
 BCD 

 
ABCD 

1 - - + - + + - - + + - + - - + 

a + - - - - + + - - + + + + - - 

b - + - - + - + - + - + + - + - 

ab + + + - - - - - - - - + + + + 

c - - + + - - + - + + - - + + - 

ac + - - + + - - - - + + - - + + 

bc - + - + - + - - + - + - + - + 

abc + + + + + + + - - - - - - - - 

d - - + - + + - + - - + - + + - 

ad + - - - - + + + + - - - - + + 

bd - + - - + - + + - + - - + - + 

abd + + + - - - - + + + + - - - - 

cd - - + + - - + + - - + + - - + 

acd + - - + + - - + + - - + + - - 

bcd - + - + - + - + - + - + - + - 

abcd + + + + + + + + + + + + + + + 

 

1.5. Fractional Factorial Designs 

     As the number of factors in a 2𝑘 factorial design increases, the number of trials required for a full replicate of 

the design rapidly outgrows the resources available for many experiments. In such cases, one cannot perform a 

full replicate of the design and a fractional factorial design has to be run [8]. 

Such an experiment contains one- half fraction of a 24 experiment and is called 24−1 factorial experiment. 

Similarly, 
1

23 fraction of 24 factorial experiment requires only 8 runs and contains 
1

22 fraction of  24 factorial 

experiment and called as 24−2 factorial experiment. In general, contains 
1

2𝑝 fraction of a 2𝑘 factorial experiment 
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requires only  2𝑘−𝑝 runs and is denoted as 2𝑘−𝑝 factorial experiment [9]. A 
1

2
  fractional can be generated from 

any interaction, but using the highest - order interaction is the standard. The interaction used to generate  
1

2
 

fraction is called the generator of the fractional factorial design. When there are 4 factors, use ABCD as the 

generator of the 24−1 design. 

Based on the signs (positive or negative) as shown in table (2), attached to the treatments in this expression, two 

groups of treatments can be formed out of the complete factorial set. Retaining only one set with either negative 

or positive signs, we get a half fractional of the  24 factorial experiment. The two sets of treatments are shown 

below. 

Treatments with negative signs 

a b c abc d abd acd bcd 

 

Treatments with positive signs 

1 ab ac bc ad bd cd abcd 

 

      The alias structure for this design is found by using the defining relation 𝐼 = 𝐴𝐵𝐶𝐷. Multiplying any effect 

by the defining relation yields the aliases for that effect. The alias of A is 

 

 𝐴 = 𝐴. 𝐼 = 𝐴. 𝐴𝐵𝐶𝐷 = 𝐴2𝐵𝐶𝐷 = 𝐵𝐶𝐷 

Aliases are two factorial effects that are represented by the same comparisons. Thus A and BCD are aliases. 

Similarly, we have other aliases: 

 

 𝐵 = 𝐴𝐶𝐷,   𝐶 = 𝐴𝐵𝐷 ,   𝐷 = 𝐴𝐵𝐶 

 𝐴𝐵 = 𝐶𝐷 ,  𝐴𝐶 = 𝐵𝐷 ,   𝐴𝐷 = 𝐵𝐶 

      The treatment combinations in the 24−1 design yields four degrees of freedom associated with the main 

effects. From the upper half of table, we obtain the estimates of the main effects as linear combinations of the 

observations,  

 

 𝐴 =
1

4
[𝑎𝑑 + 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑏𝑐𝑑 − 1 − 𝑏𝑑 − 𝑐𝑑 − 𝑏𝑐]                                         …… (5) 

 

 𝐵 =
1

4
[𝑏𝑑 + 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑏𝑐𝑑 − 1 − 𝑎𝑑 − 𝑐𝑑 − 𝑎𝑐]                                          …… (6) 

 

 𝐶 =
1

4
[𝑐𝑑 + 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏𝑐𝑑 − 1 − 𝑎𝑑 − 𝑏𝑑 − 𝑎𝑏]                                          …… (7) 

 

 𝐷 =
1

4
[𝑎𝑑 + 𝑏𝑑 + 𝑐𝑑 + 𝑎𝑏𝑐𝑑 − 1 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐]                                          …… (8) 

 

 𝐴𝐵 =
1

4
[1 + 𝑎𝑏 + 𝑐𝑑 + 𝑎𝑏𝑐𝑑 − 𝑎𝑑 − 𝑏𝑑 − 𝑎𝑐 − 𝑏𝑐]                                        …… (9) 
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 𝐴𝐶 =
1

4
[1 + 𝑏𝑑 + 𝑎𝑐 + 𝑎𝑏𝑐𝑑 − 𝑎𝑑 − 𝑎𝑏 − 𝑐𝑑 − 𝑏𝑐]                                        …… (10) 

 

 𝐵𝐶 =
1

4
[1 + 𝑎𝑑 + 𝑏𝑐 + 𝑎𝑏𝑐𝑑 − 𝑏𝑑 − 𝑎𝑑 − 𝑐𝑑 − 𝑎𝑐]                                       …… (11) 

 

2. Applications 

     This section tackles the practical application of the factorial experiment for 24 in randomized complete block 

design with four blocks given in Cochran and Cox (1957) has been applied, for the aim of comparison among 

factorial randomized complete block design, confounded designs and fractional replication design. The minitab 

16 is used. Then the resulting data is as follows: 

 

Table 3: Data experiment 

Treatment 

combination 

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Total 

1 

a 

b 

ab 

c 

ac 

bc 

abc 

d 

ad 

bd 

abd 

cd 

acd 

bcd 

abcd 

32 

47 

26 

61 

29 

51 

36 

76 

35 

63 

80 

100 

40 

64 

105 

90 

 

43 

41 

36 

76 

39 

34 

31 

65 

42 

41 

68 

68 

44 

39 

99 

82 

27 

48 

24 

56 

27 

40 

32 

70 

56 

60 

75 

87 

53 

75 

74 

89 

19 

45 

18 

64 

28 

48 

30 

63 

35 

53 

67 

66 

36 

72 

73 

101 

121 

181 

104 

257 

123 

173 

129 

274 

168 

217 

290 

321 

173 

250 

351 

362 

Total 935 848 893 818 3494 
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2.1. Full Factorial  

 

Table 4: ANOVA for full factorial RCBD 

S.O.V D.F SS MS F P- value 

Replication 3 493.32 164.43 1.82 0.158 

A 1 5184 5184 57.26 0.000* 

B 1 7267.56 7267.56 80.27 0.000* 

C 1 484 484 5.35 0.025* 

D 1 9264.06 9264.06 102.32 0.00* 

AB 1 169 169 1.87 0.179 

AC 1 1.56 1.56 0.02 0.896 

AD 1 900 900 9.94 0.003* 

BC 1 196 196 2.16 0.148 

BD 1 1914.06 1914.06 21.14 0.000* 

CD 1 169 169 1.87 0.179 

ABC 1 33.06 33.06 0.37 0.549 

ABD 1 1156 1156 12.77 0.001* 

ACD 1 10.56 10.56 0.12 0.734 

BCD 1 4 4 0.044 0.834 

ABCD 1 39.06 39.06 0.43 0.515 

Error 45 4074.2 90.54   

Total 63 31359.44    

*significant at level (0.05) 

 

Figure 1: Pareto plot for full factorial RCBD 
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      In the analysis, the results show those main effects A, B, C and D and the two factor interactions AD, BD 

and three factor interaction ABD are significant and the interactions AB, AC, BC,CD, ABC,ACD, BCD, ABCD 

are non significant at the level of significant (α=0.05). And the Pareto plot looks at the effects and orders them 

from largest to smallest as shown in figure 1. 

 

2.2.1 Complete Confounding 

   The 24 experiment with four factors A, B, C, and D,  each at two levels. There are only 16 treatment 

combinations.  
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a. Suppose that each replicate in experiment is divided in to two blocks of eight units each, such that one block 

contains all treatment combinations that have on positive signs, while the other contains all negative signs. The 

interaction of highest order is the ABCD interaction. This interaction is estimated from the comparison.  The 

plan would be as follows: 

 

Table 5: Plan for  24factorial, blocks of 8 units, with ABCD confounded 

 

Replicate 1  Replicate 2  Replicate 3  Replicate 4 

(1) 32 (a) 47  (1) 43 (a) 41  (1) 27 (a) 48  (1) 19 (a) 45 

(ab) 61 (b) 26 (ab) 76 (b) 36 (ab) 56 (b) 24 (ab)  64 (b) 18 

(ac) 51 (c) 29 (ac)  34 (c) 39 (ac)  40 (c) 27 (ac)  48 (c) 28 

 (bc) 36 (abc)76 (bc) 31 (abc) 65 (bc) 32 (abc)70 (bc) 30 (abc) 63 

(ad)  63 (d) 35 (ad)  41 (d)  42 (ad) 60 (d)56 (ad) 53 (d) 35 

(bd) 80 (abd)100 (bd) 68 (abd) 68 (bd) 75 (abd) 87 (bd) 67 (abd) 66 

(cd)  40 (acd)64 (cd) 44 (acd) 39 (cd) 53 (acd) 75 (cd) 36 (acd) 72 

(abcd) 

90 

(bcd)105 (abcd) 

82 

(bcd) 99 (abcd) 89 (bcd) 74 (abcd)101 (bcd) 73 

453 482 419 429 432 461 418 400 

935 848 893 818 

 

 𝐶𝑜𝑟𝑒𝑐𝑡 𝐹𝑎𝑐𝑡𝑜𝑟(𝐶. 𝐹) = 190750.56 

   𝑆𝑆𝑇𝑜𝑡𝑎𝑙 =  322 + 472 + ⋯ + 1012 − 𝐶. 𝐹 = 31359.44 

 𝑆𝑆𝑅𝑒𝑝𝑙. = 493.32 

 𝑆𝑆𝐵𝑙𝑜𝑐𝑘 =
(453)2+(482)2+⋯+(400)2

8
− 𝐶. 𝐹 = 624.94 

𝑆𝑆(𝐵𝑙𝑜𝑐𝑘/𝑅𝑒𝑝) =  𝑆𝑆𝐵𝑙𝑜𝑐𝑘 − 𝑆𝑆𝑅𝑒𝑝. = 131.62  

The sums of squares for the main effects and interactions are calculated using the factorial effect totals which 

can be obtained by the Yates method as shown in table (6). 
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Table 6: Yates method for effect totals 

Treat. 

comb. 

Total 

Treatments 

Sum and different of pairs  

SS= 
[𝑰𝑽]𝟐

𝟒∗𝟐𝟒 
I II III IV 

1 

a 

b 

ab 

c 

ac 

bc 

abc 

d 

ad 

bd 

abd 

cd 

acd 

bcd 

abcd 

121 

181 

104 

257 

123 

173 

129 

274 

168 

217 

290 

321 

173 

250 

351 

362 

302 

361 

296 

403 

385 

611 

423 

713 

60 

153 

50 

145 

49 

31 

77 

11 

663 

699 

996 

1136 

213 

195 

80 

88 

59 

107 

226 

290 

93 

95 

-18 

-66 

1362 

2132 

408 

168 

166 

516 

188 

-84 

36 

140 

-18 

8 

48 

64 

2 

-48 

3494 

576 

682 

104 

176 

-10 

112 

-46 

770 

-240 

350 

-272 

104 

26 

16 

-50 

- 

5184 

7267.56 

169 

484 

1.56 

196 

33.06 

9264.06 

900 

1914.06 

1156 

169 

10.56 

4 

39.06 

 

Table 7: ANOVA with ABCD Confounded 

S.O.V D.F SS MS F P- value 

Blocks r-1=3 493.32 164.44 1.73  

Block/Repl. r = 4 131.62 32.91 0.35  

A 1 5184 5184 54.68 0.000* 

B 1 7267.56 7267.56 76.66 0.000* 

C 1 484 484 5.11 0.029* 

D 1 9264.06 9264.06 97.72 0.000* 

AB 1 169 169 1.78 0.189 

AC 1 1.56 1.56 0.016 0.898 

AD 1 900 900 9.49 0.004* 

BC 1 196 196 2.07 0.158 

BD 1 1914.06 1914.06 20.19 0.000* 

CD 1 169 169 1.78 0.189 

ABC 1 33.06 33.06 0.35 0.558 

ABD 1 1156 1156 12.19 0.001* 

ACD 1 10.56 10.56 0.11 0.740 

BCD 1 4 4 0.042 0.838 

Error 42 3981.64 94.8   

Total 63 31359.44    

*significant at level (0.05) 

      In the analysis, the results show those main effects A, B, C and D and the two factor interactions AD, BD 

and three factor interaction ABD are significant  and the interactions AB, AC, BC,CD, ABC,ACD, BCD, ABCD 

are non significant at the level of significant (α=0.05). While the mean squares error is equal to (94.8) greater 

than the result of the analysis in the table (4) and that the mean squares error is equal to (90.54). 

b. Each replicate in experiment is divided in to four blocks of four units each, the interactions of ABC, BCD and 

AD completely confounded,  

 𝐴𝐵𝐶 𝐵𝐶𝐷 = 𝐴𝐵2𝐶2𝐷 = 𝐴𝐷  

There will be 
2𝑘

2𝑝 =
24

22 = 4 blocks per replicate. 
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Let 𝑋1, 𝑋2, 𝑋3, 𝑎𝑛𝑑 𝑋4 denoted the levels (0 or 1) of each of the 4 factors A, B, C and D. Solving the following 

equations would result in different blocks of the design: 

 For interaction ABC: X1 + X2 + X3 = 0,1 

 For interaction BCD: X2 + X3 + X4 = 0,1 

Treatment combinations satisfying the following solutions of above equations will generate the required 4 

blocks: (0,0), (0,1), (1,0), (1,1). 

The solution (0,0) will give the key block(a key block is one that contains one of the treatment combination of 

factors, each at lower level)[4].similarly we can write the other blocks by taking the solutions of above equations 

as (0,1), (1,0) and (1,1). In this case that each replicate in experiments divided into4 blocks of 4 units each, with 

4 replicates the plan would be as follows: 

 

Table 8: Plan for  24factorial, blocks of 4 units, with ABC, BCD and AD confounded 

Replicate 1  Replicate 2 

(b)26 (a)47 (d)35 (bc)36 (c ) 39 (bd)68 (ab)76 (acd)39 

(c ) 29 (bd)80 (ab)61 (abd)100 (b) 36 (a)41 (d)42 (bc)31 

(ad)63 (cd)40 (ac)51 (acd)64 (ad)41 (abc)65 (ac)34 (abd)68 

(abcd)90 (abc)76 (bcd)105 (1)32 (abcd)82 (cd)44 (bcd)99 (1)43 

208 243 252 232 198 218 251 181 

935 848 

 

Replicate 3  Replicate 4 

(ad)60 (bd)75 (ab)56 (abd)87 abcd)101 (abc)63 (ac)48 (1)19 

(abcd)89 (abc)70 (ac)40 (1)27 (b)18 (bd)67 (bcd)73 (acd)72 

(c )27 (a)48 (acd)74 (bc)32 (ad)53 (cd)36 (d)35 (abd)66 

(b) 24 (cd)53 (d)56 (acd)75 (c) 28 (a)45 (ab)64 (bc)30 

200 246 226 221 200 211 220 187 

893 818 

 

 

   𝑆𝑆𝑇𝑜𝑡𝑎𝑙 =  322 + 472 + ⋯ + 1012 − 𝐶. 𝐹 = 31359.44 

 

 𝑆𝑆𝑅𝑒𝑝𝑙. = 493.32 

 

 𝑆𝑆𝐵𝑙𝑜𝑐𝑘 =
(208)2+(243)2+⋯+(187)2

4
− 𝐶. 𝐹 = 1862.94 

 

  𝑆𝑆(𝐵𝑙𝑜𝑐𝑘/𝑅𝑒𝑝) =  𝑆𝑆𝐵𝑙𝑜𝑐𝑘 − 𝑆𝑆𝑅𝑒𝑝. = 1369.62  
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      The sums of squares for the main effects and interactions are calculated using the factorial effect totals which 

can be obtained by the Yates method as shown in table (6), and the analysis of variance as shown in table (9). 

Table 9:  ANOVA with ABC, BCD and AD Confounded 

S.O.V D.F SS MS F P- value 

Blocks r-1=3 493.32 164.44 1.62 0.221 

Block/Rep r (b-1)=12 1369.62 114.135 1.13 0.300 

A 1 5184 5184 51.12 0.000* 

B 1 7267.56 7267.56 71.67 0.000* 

C 1 484 484 4.77 0.024* 

D 1 9264.06 9264.06 91.35 0.000* 

AB 1 169 169 1.67 0.200 

AC 1 1.56 1.56 0.02 0.896 

BC 1 196 196 1.93 0.176 

BD 1 1914.06 1914.06 18.87 0.000* 

CD 1 169 169 1.67 0.200 

ABD 1 1156 1156 11.4 0.002* 

ACD 1 10.56 10.56 0.1 0.740 

ABCD 1 39.06 39.06 0.38 0.540 

Error 36 3650.64 101.41   

Total 63 31359.44    

*significant at level (0.05)  

 

      In the analysis, the results show those main effects A, B,C, and D and the two factor interactions BD and 

three factor interaction ABD are significant and the interactions AB, AC, BC,CD, ACD , ABCD are non 

significant at the level of significant (α=0.05), And the mean squares error is equal to (101.41).  

 

2.2. 2.Partial Confounding  

    Consider again 24 experiment with each replicate divided into two blocks of 8 units each. It is not necessary to 

confound the same interaction in all the replicates and several factorial effects may be confounded in one single 

experiment. The following plan confounds the interaction ABCD, ABC, ACD and BCD in replicates 1, 2, 3 and 

4 respectively.  
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Table 10: Plan for  24factorial, blocks of 8 units, with ABCD, ABC, ACD and BCD partially confounded 

 

Replicate 1 

Confound ABCD 

 Replicate 2 

Confound ABD 

 Replicate 3 

Confound ACD 

 Replicate 4 

Confound BCD 

(1) 32 (a) 47  (a) 41 (1) 43  (a) 48 (1) 27  (b) 18 (1) 19 

(ab) 61 (b) 26 (b) 36 (ab) 76 (ab) 56 (b) 24 (ab) 64 (a)45 

(ac) 51 (c) 29 ( c) 39 (ac) 34 ( c) 27 (ac) 40 (c ) 28 (bc) 30 

(bc) 36 (abc)76 (abc) 65 (bc) 31 (bc) 32 (abc) 70 (ac) 48 (abc) 63 

(ad)  63 (d) 35 (ad) 41 (d) 42 (d) 56 (ad) 60 (d) 35 (bd) 53 

(bd) 80 (abd)100 (bd) 68 (abd) 68 (bd) 75 (abd) 87 (ad) 67 (abd) 66 

(cd)  40 (acd)64 (cd) 44 (acd) 39 (acd) 75 (cd) 53 (bcd) 73 (cd) 36 

(abcd) 90 (bcd)105 (abcd) 82 (bcd) 99 ( abcd)89 (bcd) 74 (abcd)101 (acd)72 

453 482 416 432 458 435 434 384 

935 848 893 818 

 

       The sums of squares for blocks and for the not confounded effects are found in the usual way (see table 

Yates method). 

  𝑆𝑆𝑅𝑒𝑝𝑙. = 493.32 

 𝑆𝑆𝐵𝑙𝑜𝑐𝑘 =
(453)2+…..+(384)2

8
− 𝐶. 𝐹 = 751.19 

 

𝑆𝑆(𝐵𝑙𝑜𝑐𝑘/𝑅𝑒𝑝) =  𝑆𝑆𝐵𝑙𝑜𝑐𝑘 − 𝑆𝑆𝑅𝑒𝑝. = 257.87  

   

   The sum of squares for ABCD is calculated from replicates (2, 3, 4), similarly it is possible to recover 

information on the other confounded interactions ABC (from 1, 3, 4), ACD (from 1, 2, 4) and BCD (1, 2, 3) as 

shown in table (11). The sum of squares for partially confounded are calculated as follows: 

 

 𝑆𝑆𝐴𝐵𝐶𝐷 =
1

(𝑟−1)24 [
(𝐼 + 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑑 + 𝑏𝑑 + 𝑐𝑑 + 𝑎𝑏𝑐𝑑) −

(𝑎 + 𝑏 + 𝑐 + 𝑎𝑏𝑐 + 𝑑 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑)
]

2

          ……. (12)  

                    =
1

48
[−21]2 = 9.188 

 𝑆𝑆𝐴𝐵𝐶 =
1

(𝑟−1)24 [
(𝑎 + 𝑏 + 𝑐 + 𝑎𝑏𝑐 + 𝑎𝑑 + 𝑏𝑑 + 𝑐𝑑 + 𝑎𝑏𝑐𝑑) −
(𝐼 + 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 + 𝑑 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑)

]
2

                 …… (13) 

                    =
1

48
[−30]2 = 18.75 

 𝑆𝑆𝐴𝐶𝐷 =
1

(𝑟−1)24 [
(𝑎 + 𝑎𝑏 + 𝑐 + 𝑏𝑐 + 𝑑 + 𝑏𝑑 + 𝑎𝑐𝑑 + 𝑎𝑏𝑐𝑑) −
(𝐼 + 𝑏 + 𝑎𝑐 + 𝑎𝑏𝑐 + 𝑎𝑑 + 𝑎𝑏𝑑 + 𝑐𝑑 + 𝑏𝑐𝑑)

]
2

                 …… (14) 

                     =
1

48
[3]2 = 0.188 

 𝑆𝑆𝐵𝐶𝐷 =
1

(𝑟−1)24 [
(𝑏 + 𝑎𝑏 + 𝑐 + 𝑎𝑐 + 𝑑 + 𝑎𝑑 + 𝑏𝑐𝑑 + 𝑎𝑏𝑐𝑑) −
(𝐼 + 𝑎 + 𝑏𝑐 + 𝑎𝑏𝑐 + 𝑏𝑑 + 𝑎𝑏𝑑 + 𝑐𝑑 + 𝑎𝑐𝑑)

]
2

                 ……. (15)  

              =
1

48
[−6]2 = 0.75 
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Table 11:  ANOVA for partial confounded 

S.O.V D.F SS MS F P- value 

Replications r-1= 3 493.32 164.43 1.74  

Block/Repl. r = 4 257.87 64.47 0.68 0.79 

A 1 5184 5184 54.86 0.00* 

B 1 7267.56 7267.56 76.91 0.00* 

C 1 484 484 5.12 0.029 

D 1 9264.06 9264.06 98.04 0.00* 

AB 1 169 169 1.78 0.189 

AC 1 1.56 1.56 0.02 0.89 

AD 1 900 900 9.52 0.004* 

BC 1 196 196 2.07 0.58 

BD 1 1914.06 1914.06 20.25 0.00* 

CD 1 169 169 1.78 0.189 

(ABC)  ́ 1 18.75 18.75 0.19 0.177 

ABD 1 1156 1156 12.23 0.002* 

(ACD)  ́ 1 0.188 0.188 0.001 0.91 

(BCD)  ́ 1 0.75 0.75 0.007 0.93 

(ABCD)  ́ 1 9.188 9.188 0.09 0.75 

Error 41 3874.134 94.49   

Total 63 31359.44    

*significant at level (0.05) 

 

       In the analysis, the results show those main effects A, B, and C and the two factor interactions AD, BD and 

three factor interaction ABD are significant and main effect D and the interactions AB, AC, BC,CD, ABC,ACD, 

BCD, ABCD are non significant at the level of significant (α=0.05). While the mean squares error is equal to 

(94.49) less than the results of the analysis for complete confounding with 2 blocks and complete confounding 

with 4 blocks and that the mean squares errors are equal to (94.8) and (101.41) respectively.  

 

2.3. Fractional Replication  

     There are 4 factors, use ABCD as the generator of the 24−1 design. Based on the signs (positive or negative) 

as shown in table (2), attached to the treatments in this expression, two groups of treatments can be formed out 

of the complete factorial set. Retaining only one set with either negative or positive signs, we get a half fractional 

of the  24 factorial experiments.  

     The alias structure for this design is found by using the defining relation  𝐼 = 𝐴𝐵𝐶𝐷. Multiplying any effect 

by the defining relation yields the aliases for that effect. The alias of A is 

 𝐴 = 𝐴. 𝐼 = 𝐴. 𝐴𝐵𝐶𝐷 = 𝐴2𝐵𝐶𝐷 = 𝐵𝐶𝐷 

Aliases are two factorial effects that are represented by the same comparisons. Thus A and BCD are aliases. 

Similarly, we have other aliases: 

 𝐵 = 𝐴𝐶𝐷,   𝐶 = 𝐴𝐵𝐷 ,   𝐷 = 𝐴𝐵𝐶 

 𝐶. 𝐹 =
(𝐺.𝑇𝑜𝑡𝑎𝑙)2

𝑟𝑡
                                                               

 𝐶. 𝐹 =  
(1722)2

4(8)
= 92665.125 

   𝑆𝑆𝑇𝑜𝑡𝑎𝑙 =  322 + 612 + ⋯ + 1012 − 𝐶. 𝐹 = 13652.875 

 𝑆𝑆𝑅𝑒𝑝𝑙. = 99.625 
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      For the four factors tested, a  
1

2
  fractional factorial design is a Resolution IV design. The resolution of the design 

is based on the number of the letters in the generator. The main effects are aliased with three way interactions and the 

two way interactions are aliased with each other [1]. Therefore, we cannot determine from this type of design which 

of the two way interactions are important because they are confounded or aliased with each other. 

The sums of squares for the main effects and interactions are calculated as shown in table (12). 

Table 12:  ANOVA for fractional replication 

S.O.V D.F SS MS F P- value 

Replications r-1= 3 99.625 33.2 0.51 0.679 

A 1 3916.1 3916.1 60.34 0.000* 

B 1 72 72 1.11 0.304 

C 1 4095.1 4095.1 63.1 0.000* 

D 1 2738 2738 42.19 0.000* 

AB 1 128 128 1.97 0.175 

AC 1 903.1 903.1 13.92 0.001* 

BC 1 338 338 5.21 0.033* 

Error 21 1362.9 64.9   

Total 31 13652.875    

 

*significant at level (0.05)  

 

Figure 2: Pareto plot for fractional replication 
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Figure 3: Normal probability plot of the effects 
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                The result in table (12) shows those main effects A, C, and D and the two factor interactions AD, AC are 

significant and main effect B and the interactions AB are non significant at the level of significant (α=0.05), and 

the normal probability plot is very useful in assessing the significance of effects from a fractional factorial design, 

particularly when many effects are to be estimated. Figure (3) presents the normal probability plot of the effects. 

Notice that the A, C, D, AC and AD effects stand out clearly in this graph. 

 

         Conclusions 

1. The result of analysis of variance for factorial randomized complete block design showed that the mean 

squares error is equal to (90.54). 

2. When each replicate in experiment contains two blocks of eight units each and the interaction of ABCD 

completely confounded, the mean squares error is equal to (94.8). While, each replicate in experiment 

contains four blocks of four units each, and the interactions are completely confounded, the mean squares 

error is equal to (101.41) greater than the result of the analysis in the full factorial. 

3. Partially confounding has been most efficient, the value of mean squares error is (94.49) less than the result 

of the analysis in completely confounded. 

4. The result of analysis of variance showed that the fractional factorial design is the highest accuracy in 

estimating the effects and was the best in saving time and cost. 
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