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ABSTRACT 

Maxwell’s Field Equations (MFE’s) for the propagation of electromagnetic waves were found to be invariant 

under Lorentz transformation (LT) and could be derived using assumptions different from what Einstein used. 

Here, we start with electromagnetic field tensors, obtain the MFE’s and apply the relativistic principle to them. 

With this approach, Special Relativity Theory (SRT) is reformulated in a simple form without using the LT and 

it’s kinematical contradictions. Our results are in agreement with the existing literature. 
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1. INTRODUCTION 

Galilean relativity shows that the laws of mechanics are the same for a body at rest and a body moving at 

constant velocity. Newton also developed his laws of motion and his concept of relativity which states that, “the 

laws of mechanics must be the same in all inertial frames.”[1]. Due to Galileo and Newton, the concept of 

absolute space became redundant but absolute time was retained, the development of electromagnetic theory in 

the nineteenth century demonstrated a problem with Newtonian relativity. It became inconceivable to physicist 

that electromagnetic wave could propagate without a medium (the ether) [2]. But as a consequence of Newtonian 

relativity, an observer moving through the ether with velocity u  would measure the velocity the velocity of a 

light beam as  uc  , hence the Michelson-Morley experiment showed that no ether (absolute reference frame) 

existed for electromagnetic phenomena [3]. 

 

This result opened a way for a new approach which is Einstein relativity [4]. He postulated that the speed of light 

is invariant in all inertial frames which lead to a new relationship between space and time (Lorentz 

transformation). MFE’s for the propagation of electromagnetic waves were not invariant under Galilean 

transformation (GT), but were invariant under LT. For invariant under LT we deal with three quantities: space, 

time and light speed. In Einstein’s approach for deriving the LT, he connected the three quantities through a new 

velocity v  along x  [5]. 

                                            
2

1
c

uv

v
v

x

x

x






        1 

He used the basic definition for any velocity in frame S  or S   as: 
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And his second postulate for light speed as: 
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This is understood as the “measurement rule.” 

 

For the invariant of light speed, time itself has to slow down and space must contract to give almost the same 

value in Eq.(3) [6]. Thus Einstein introduced relativity of simultaneity to physics. But the interpretation of LT 

and it’s kinematical effects has long been questioned and misunderstood. Today, paradox [7,8], criticism [9,10] 

still continue to receive attention, as a result many physicist believe that a new interpretation or even a theory 

alternative to SRT may be needed [11]. 

In this research we use electromagnetic field tensors to generate MFE’s and apply the relativistic principle to 

obtain the LT equations. The MFE’s stands in place of Einstein’s relativity of simultaneity. The LT produced by 

our alternative method is simply a neutral transformation and it’s results are the same as that obtained initially 

[12, 13]. 
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2. ELECTROMAGNETIC FIELD TENSORS 

Electromagnetic field tensors is a mathematical objective that describes the electromagnetic field of a physical 

system[14]. The field tensor was first used after the 4-dimentional tensor formulation of SRT (Minkowski 

space). 

It was known that the 4-vectors for the electromagnetic field BE


, is represented by the scalar and vector 

potential A


,  as follows: 

                                             t
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F is defined as an antisymmetric  rank-2 tensor which is written in terms of 4-dimentional vectors as[15]: 
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Where 
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We represent this set of equations in a 4×4 matrix form as; 
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This tensor simplifies and reduces Maxwell equations as 4-vector calculus equations into 2-vector field 

equations. In magnetostatics, Gauss law for magnetism and Maxwell-Faraday’s equation are gotten from: 
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And applying the sets 2,1,4:4;1,3,4:3;3,2,4:2;3,2,1:1 , we can obtain the following  

For ;3,2,1:1   
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This equation can be written as 
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For ;3,2,4:2  
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For ;1,3,4:3
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Equations(11)-(13) are the x,y,z components respectively, multiplying them by appropriate unit vectors and 

adding  we obtain; 
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In electrodynamics, Gauss law for electricity and Maxwell-Ampere’s equation are gotten from: 
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According to Einstein summation convection; when the same letter index appears as subscript as well as 

superscript, then summation will appear over that index. Hence Eq(11) becomes: 
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For ;1   

                                                

xo

xyz J
t

E

cz

B

y

B















2

1
     17 

  For ;2   

                                              

yo

yzx J
t

E

cy

B

z

B















2

1
     18 

For ;3  
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Equations (17)-(19) are the x,y,z components respectively, multiplying them by appropriate unit vectors and 

adding we obtain; 
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For ;4   

                                         

0

2c
z

E

y

E

x

E zyx 













      21 

The last equation can be expressed as 
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Equations (10),(14),(20),(22)  are the familiar MFE’s which describe the electric and magnetic fields arising 

from distributions of electric charges and currents, and how those fields change with time. 

Hence the MFE’s in frame S  may be expressed as: 
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By applying the relativistic principle to Eq.(23) they will preserve their form in frame S   and they are expressed 

as follows: 
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where JJ ,,,   are the relativistic charge and current density in frame S  and S   respectively. The light 

speed c  is defined in terms of pure electromagnetic constant as  

oo

c


1
 . But we know that o  and o  

have same value in all reference frames so cc   which implies invariance of light speed. 

 

3. DERIVING THE LORENTZ TRANSFORMATION 

Taking the x-component of Eq.(23) and writing Eq.(4) in terms of cathesian component. 
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Multiply Eq.(25) by   and Eq.(26) by 
2c

u
 and then subtracting we have: 
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Taking the x-component of Eq.(24) 
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Comparing Eq.(27) and Eq.(28) 
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Now multiply Eq.(25) by u  and Eq.(26) by   and then subtracting we have 
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Taking the cathesian component of Eq.(24) 
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Comparing Eq.(30) with Eq.(31) and noting that xx EE 


, we have: 
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The Eqs .(29),(32) are the differential Lorentz transformation. We can fix the scalar factor   by applying the 

relativistic principle (interchanging primed and the unprimed variables and letting uu  .) on the z-part of 

Eq.(29).  
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Substituting the values of 
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Starting now from the y-component of Eq(23) and applying Eq.(35) we have: 
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Taking the y-component of Eq.(24)  
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Comparing Eq.(37) and Eq.(38) 
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In a similar way starting from the z-component of Eq(23) we obtain: 
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But the electromagnetic charge density   for a particle of charge q is  xxq  3 , and the definition of 

current density J  in frame S  is: 
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By applying the relativistic principle the current density J  in frame S   is: 
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Also from Eq.(39) and making use of Eq.(32) we have 
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Finally from Eq.(40) and making use of Eq(32) we have 
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The Eqs.(43)-(45) are the relativistic Lorentz velocity transformation. 

 

Many researchers [12, 13, 16] have demonstrated the invariant of MFE’s under LT, but have not used our 

approach. In our approach we begin with electromagnetic field tensors and obtain the MFE’s in frames S and 

S  , we apply them using relativistic principle to obtain the differential LT and hence deduce the scalar factor  . 

We also obtained the relativistic Lorentz velocity transformation and the results are consistent with [17]. Thus 

none of Einstein’s results changes; it is only the approach that changes. 

 

4. CONCLUSION 

Our results show that there is no physical distinction between Lorentz force law (LFL) and MFE’s, so MFE’s 

should govern the relativistic electromagnetic phenomena exactly as LFL does. Here we extended the relativistic 

principle to hold true for MFE’s as held by LFL and obtain the same results as [18, 19]. Here, we presented the 

LT in its differential form, deduced the scalar factor   and hence obtained the relativistic Lorentz velocity 

transformation equations. 
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