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Abstract 

 We investigate in this paper, the ultimate boundedness of solutions for certain special 

class of third order nonlinear differential equations. Using suitable complete Lyapunov 

function, we obtain the criteria for the ultimate boundedness of solutions for this equation. 

Our result extends and improves on some well known results on boundedness of solutions of 

third order differential equations in the literature.  
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Lyapunov’s method. 

 

1   INTRODUCTION 
 We consider the third-order nonlinear ordinary differential equation,  

 ),,,(=),(
...

xxxtpxxxax    (1) 

 where a is positive constant, ),( RRRC  and ),)([0, RRRR Cp  and 

),(= R . The functions   and p  depend only on the argument displayed explicitly and 

the dots denote differentiation with respect to t. The derivatives x  and y  exist and are 

continuous. Moreover, the existence and uniqueness of solutions of (1) will be assumed. 

It is well known that the boundedness of solutions is a very important problem in the 

theory and application of differential equations, and an effective method for studying the 

stability and boundedness of solutions is still the Lyapunov’s second (direct) method [3]. The 

major advantage of this method is that the stability of solutions can be obtained without any 

prior knowledge of solutions. However, the construction of these Lyapunov functionals 

remains a general problem. So far, in the literature, several authors have investigated the 

boundedness of solutions of some differential equations of third order [6]. For example, many 

of the third other differential equations which have been discussed in [6] are special cases of 

(1). We can mention in this direction, the works of Omeike [4] who considered the case for 

which ),(= xxa   of (1) where an incomplete Lyapunov function was used to obtain the 

global asymptotic stability of zero solution 0=)(tx  of this equation. Omeike [4] proved 

under less restrictive conditions the stability result obtained by Qian [5] for the case 

mentioned above. Tunc [9] further improved the result of Omeike [4] on the boundedness of 

solutions of nonlinear differential equations. Other articles in this direction include Barbashin 

[1] and Tunc [7,8] where Lyapunov’s second method was used. The Lyapunov function used 

in the papers mentioned above is not complete (see [2]). Particularly, the boundedness result 

considered in Tunc [9] is of the type in which the bounding constant depends on the solution 

in question. 

Our aim in this paper is to further study the boundedness of solutions of (1). We 

obtain the criteria for the ultimate boundedness of solutions of (1), which extends and 

improves Tunc [9]. 
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2   MAIN RESULT 
 Our main result is the following theorem.  

Theorem 1 In addition to the basic assumptions imposed on the functions ,a  and p  

appearing in (1), we assume that there exist positive constants bamo ,,,,, 1  and c  

)>( cab  such that the following conditions hold:   

    ,<),(<0,,0)( cyxcx xx     

,),( byxy    ,),( myxz    10   

anddxy x

y

0),(
0

    

    |)||||(||),,,(| 1 zyxzyxtp o  .  

 Then, every solution )(tx  of (1) satisfies  

 DtxDtxDtx  |)(|,|)(|,|)(|   (2) 

 for all sufficiently large t, where D is a constant depending only on mandcba o ,,,,, 1 .  

 

 

2.1   PRELIMINARY RESULTS 
 Equation (1) may be replaced with the system  

 

).,,,(),(=

=

=

zyxtpyxazz

zy

yx

 





 (3) 

 

Our main tool in the proof of the theorem will be the following function,  

 ),,(),,(=),,( 21 zyxVzyxVzyxV   (4) 

 where 1V  and 2V  are defined by  

 22

00
1

2

1
),(,0)(,0)(= yadxyxdaV

yx

    

 ,
2

1 2zayz   

 and  

  dxyazdabxV
yx

),(,0)(2=
0

222

0

2

2    

 ayzxzaxy 222    

 ,,0)(2 2yyx    

 where  

 andcab 0>  

 },
1

,,{<<0
a

ab

a

cab
bmin


  (5) 

 with c chosen such that 1<<0 c . 

We can easily verify the following for V.  

Lemma 1   
    V(0,0,0)=0 and  

    there exist finite constants 0>1D , 0>2D  such that  

 )()( 222

2

222

1 zyzDVzyxD   (6) 
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Proof: It is clear that 0=(0,0,0)V . 

Since byxy ),( , 

1V  in (4) can be re-arranged as follows:  

 222

0
1

2

1

2
,0)(,0)(= yay

b
yxdaV

x

   

 ,
2

1 2zayz   

  

 22

1 }{
2

1
,0)}({

2

1
zayxby

b
V    

 (0,0),,0)(,0)]([
2

1 2

0
   dab

b

x

 

 By the condition (i) of Theorem 1 and 0=(0,0) , we have that  

 2

0
)(

2

1
,0)(,0)]([

2

1
cxcab

b
dab

b

x

   

 Hence,  

 22

1 }{
2

1
,0)}({

2

1
zayxby

b
V    

 .)(
2

1 2cxcab
b

  

 Similarly, 2V  can be re-arranged as follows:  

 22

1

2

1

2

2 ,0)}({}{ xayazayxV  


 

   daxxb
y

]),([)( 1

0

2  

  

 ,0)],(,0)([ 2

0
xda

x

    

 where  

 ,)
1

(]),([ 21

0
y

a
bdax

y

  

  

 and  

 ,0)](,0)([ 2

0
xda

x

   

 (0,0)],0)(,0)}({1[= 2

0
  da

x

 

 Using condition (i) of Theorem 1 and 0=(0,0) , we have,  

 ,)(1(0,0)],0)(,0)}({1[= 22

0
cxcada

x

   

 2V  becomes,  

 22

1

2

1

2

2 ,0)}({}{ xayazayxV  


 

 .)
1

()}(1)({ 22 y
a

bxcab    

 Combining the estimates for 1V  and 2V , and we obtain,  

 ,= 21 VVV   
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 22 }{
2

1
}{ zayzayxV    

 222

1

2

1

,0)}({
2

1
,0)}({ xby

b
xaya  



 

 ,)
1

()}(1)(
2

1
{)( 222 y

a
bxcaccab

b
xb    (7) 

 where   satisfies (5). 

Now, it is obvious from (7) that the function V defined in (4) is a positive definite 

function. Hence, there is a positive constant 1D  such that  

 ).(),,( 222

1 zyxDzyxV   (8) 

 Hence, inequality (6) follows from (8) and (4) if we choose 0>1D  and 0>2D . 

 

Lemma 2 There are finite constants 0>0,> 43 DD  depending only on 

andmcba o ,,,,, 1  such that for any solution ))(),(),(( tztytx  of (3)  

 ,))(),(),(( 3DtztytxV
dt

d
V   

 provided that 4

222 Dzyx  .  

 

Proof : On using (4), a direct differentiation of 
dt

dv
 gives after simplification of 1V , 

yields 

 

 21
0

2

1 ),(,0)(= UUdxyxyV x

y

x     

 ),,,,(}{ zyxtpzay  (9) 

 where  

 ,0})(),({=1 xyxayU    

 1,,0),( 1

2

1

2   abyyxay y  

 and  

 ,0)}(),({=2 xyxzU    

 ),,(= 2

2 yxz z   

 1,0 2

2  mz  

 also under the assumptions of the theorem we have  

 ,,0)( 22 cyxy x   

 

 0,),(
0

  dxy x

y

 

 

 |),,,(||)|||(),,,(}{ zyxtpzyazyxtpzay   

From the estimates 21,UU  above and (9) we obtain  

 .|),,,(||)|||()( 22

1 zyxtpzyamzycabV   
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For 2V , we have  

 ,0)(),(= 2

0

2

2 xydxyayV xx

y

    

 543

2 ),( UUUyxx x    

 .),,,(}{ zyxtpzayx    

 where  

 ,0)}(),({=3 xyxayU    

 1,),0,(= 33

2  yxay y  

 ,2aby  

  

 ,0)}(),({=4 xyxzU    

 1,),0,(= 44

2  yxz z  

 ,2mz  

  

 }),({=5 bxyyxxU    

 0}),({=  xybyxy  

 

and 

 

 0.),(
0

  dxy x

y

 

 

Hence, we obtain for 2V  as,  

 222

2 }){( mzyacabcxV    

 |,),,,(||}|||||{ zyxtpzyax    

 Thus, for 21= VVV   , we have  

 222 2}){2()( mzyacabcxtV    

 |,),,,(||}|2||2||{ zyxtpzyax    

 where by (5) there exist positive constants 1 , 2  such that  

 )()( 222

1 zyxtV    

 |)]||||(||}[||||{| 12 zyxzyx o   

  

 )(3)()( 222

21

222

1 zyxzyxtV    

 ,)(3 2

1

222

2
2

1

zyxo    

 where };2)(;{min=1 macabc    and ;2};2{max=2 a . 

It follows that  

 2

1

222

4

222

3 )()()( zyxzyxtV    (10) 

 where 2
2

1

41

1

2

1

12113 3=,3<),3(=  oand   . 

If we choose  
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 .=)( 1

345
2

1

222  zyx  

Inequality (10) implies that  

 ).()( 222

3 zyxtV    (11) 

 Then, there exists 6  such that  

 .1)( 2

6

222  zyxiftV  

 

Proof of Theorem 1 : Let ))(),(),(( tztytx  be any solution of (1). Then there is 

evidently a 0ot  such that  

 ,<)()()( 4

222 Dtztytx ooo   

 where 4D  is the constant in the Lemma 2, for otherwise, that is, if  

 0,,<)()()( 4

222  tDtztytx  

 then by Lemma 2, i.e (11),  

 0,0,<3  tDV  

 and this in turn implies that )(tV  as t , which contradicts (8). Hence, to prove (2) 

it will suffice to show that if  

 ,=,<)()()( 4

222 TtforDtztytx   

 where 45 DD   is a finite constant, then there is a constant 0>6D , depending on 

51,,,,, Dandcba o  , such that  

 .,)()()( 6

222 TtforDtztytx   (12) 

 The proof of (12) is based essentially on an extension of an argument proceeding exactly 

along the lines just indicated in the proof of [10, Lemma 1]. Hence, we omit the detailed 

proof. 

Thus, (12) holds. This completes the proof of (2) and Theorem 1 now follows.  

Remark 2.1 The proof of Theorem 1 shows clearly that the bounding constant D does 

not depend on the solution of (1) which is not the case with [9].  
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