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Abstract In this paper, the single sampling plan for variables under measurement error for non-normal distributions 

represented by the first four terms of an Edgeworth series is studied for known σ  case. The effect of using the normal 

theory sampling plan in a non-normal situation is studied by obtaining the distorted errors of the first and second kind. As 

one will be interested in having a suitable sampling plan under measurement error for non-normal variables, the values of n 

and k are determined. 
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1. Introduction 

The most important area for studying the effect of error due to measurement and misclassification is the sampling inspection 

plan. In general, imbedded within the design of acceptance sampling plans is the assumption that inspection procedure are 

free from error and normal distribution. In the area of sampling inspection plan by variables very little attention has paid so 

for to investigate the effect of measurement error. Walsh (1963) studied the effect of measurement error on the characteristic 

function of a single sampling inspection by variables with one-sided specification limit. The assumption made by them to 

investigate the effect of measurement error are (i) the error is unbiased and independent of the actual value of the 

characteristics measured (ii) both the true value of the characteristic measured and the measurement error follows normal 

distributions (iii) the ratio of the population variance to the error variance has a positive upper bound. Singh (1966) studied 

the effect of measurement on the operating characteristic function of a single sampling by variables for normal as well 

non-normal product distributions assuming one-sided specification limit, viz, the upper specification limit. His assumptions 

were almost same as those of Walsh (1963). Bennett et al. (1974) investigated the effect of Type-I and Type-II inspection 

errors on the economic design of a single sampling plan by attributes. Case et al. (1975) developed the formula for 

evaluating the average outgoing quality function when attributes examination is subject to Type-I and Type-II inspection 

errors. The following hyperbolic remarks of Geary (1947b) strike out: "Normality is a myth, there never was, and never will 

be normal distribution". Now the question arises whether such optimistic assumption of normality is likely to be seriously 

misleading under non-normal situations. In other words, to what extent the standard statistical procedures developed for 

normal universes are applicable, when samples, in real sense, come from other than normal populations. A statistical 

procedure which is insensitive to departures from the assumptions, which underlie it is called "Robust" an apt term 

introduced by Box (1953) and now widely used. An early survey of the literature on non-normality and robustness was 

given by Box and Anderson (1955). In recent years, distribution-free or non-parametric methods have become quite popular 

because they are readily computable and permit freedom from worry about the classical assumptions of the standard normal 

theory. It should, however, be pointed out that in cases where classical assumptions hold entirely or even approximately, the 

analogous standard normal procedures are generally more efficient for detecting departures from the null hypothesis. 

2.Sampling Distribution of Observed Mean 

 Assuming that the true measurement x and the random error of measurement e are additive, we can write the observed 

measurement X as :  
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  X = x + e,       (2.1) 

where x and e are independent. 

 We now assume the density function of x to be specified by the first four terms of the Edgeworth series as follows:  
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Then the density function of X can be written from equation (2.2) as  
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which is again an Edgeworth series.  

The distribution of X  for the observed samples of size n drawn from the population (2.3) is found by following Gayen 

(1952) as,  
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We now examine the effect of the measurement error on the usual test criterion of single sampling plan described below:  

 Accept the lot if ,Ukx ≤σ+  

 And reject otherwise, 

for a given set of values of the producer's risk , consumer's risk , Acceptable Quality Level (AQL) p  1 and Lot Tolerance 

Proportion Defective (LTPD) p2, the values of n and k are determined by the formulae 
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for different choices of fraction defective θ . If θ  is the proportion defective in the lot, we know that  
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The OC function Lp corresponding to a fraction defective p is found out as follows. Under the assumption of normality, a lot 

having p percent defective items will be accepted, if  
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p
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where Kp is given by equation (2.8) for p=θ . The expression for probability of acceptance under measurement error  
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is derived by recalling the normality of the statistic ( σkx + ). The above probability after some simplification works out to 

be  

 

 )],kK(n[L
pp
−ρΦ=      (2.9) 

where dx
2

x
exp

2

1
)t(

2t









−

π
=Φ ∫

∞−

. 

 

3. Known σ  Plan Under Measurement Error for Non-Normal Situation 

Let the true quality characteristic x follows the first four term of an Edgeworth series under measurement error. The OC 

function of the plan is given by  

  ]'[Pr' µµσ ==≤+= UkxobL p , 

where  σµ pKU '' −= , 
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pK ' being the upper 100p percent point of the standardized Edgeworthian population. i.e., pK ' is given by  
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Using the distribution of x  from equation (2.4), the OC function of the known σ  plan is obtained as  
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 The equation for determining the value of the plan parameters n and k are  

 ,1)(' 1 α−=pL            (3.3) 

and 

 β=)(' 2pL .              (3.4) 

Explicit expression for n and k cannot be obtained under measurement error and non-normal situations. Equation (3.3) and 

(3.4) can however, be solved numerically. If no and ko are the initial solutions than the improved solution can be obtained as 

(n0+δ n0) and (k0+δ k0) where δ n0 and δ k0 are the solution of linear equations 
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The required value of n and k can be obtained by taking the normal theory values as the initial solution and 

repeating the process of interaction for equation (3.5) and (3.6) till the desired accuracy is obtained. 

 

4.Discussion of Numerical Results and Conclusions  

For the purpose of illustrating the effect of measurement error and non- normality on the error of the first and second kind 

and the plan parameters n and k, we have determined the values of these quantities for few chosen sets of values of p1, p2, 

α β, λ 3, λ 4 and for different error sizes. The values of n and k are determined from the equations (2.5) and (2.6). 

The actual error of the first and second kind are given by  

 )p('L'and)p('L1'
21

=β−=α . 

The actual errors of the first kind when normal theory known σ  plan is used under measurement error and 

non-normal situations are determined and presented in the Table (1). As is evident from the Table, for leptokurtic, 

platykurtic population under different error sizes the marked difference is seen in α' and β'. The effect of skewness, kurtosis 

and measurement error are serious. For few non-normal situations and measurement error the value of the plan parameters n 

and k are given in Table (2). The values of n are rounded up and the values of k are given up to 4 decimal places which is 

correct up to the third place of decimal. As can be seen from the Table the negative skewness and negative kurtosis increases 

n where as the positive skewness and positive kurtosis decreases the value of n. The value of k is also considerably affected 

by measurement error and the non-normality of the population. 

It may inferred that the use of normal theory sampling plan is not valid for the non-normal situations and 

measurement error problems. Even when there is slight departure from normality and different error sizes it is advisable to 

take into account the measurement error and the non-normality of the parent population while choosing the sampling plan 

parameters n and k.  
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                                                               Table 1                                                       

                                               Value of αααα' and ββββ' (Underline) for known σσσσ plan  

αααα = 0.05, ββββ = 0.10, p
1
 = 0.05, p

2
 = 0.30 

λ3/λ4λ3/λ4λ3/λ4λ3/λ4  r = 2  r = 4  r = 6  r = ∞∞∞∞  

0  0.5  0  0.5  0  0.5  0  0.5  

0.0  0.0695  0.039  0.0537  0.0291  0.0506  0.0274  0.0969  0.0258  

0.1231  0.1034  0.1033  0.0867  0.1003  0.084  0.0102  0.0814  

-0.5  0.0659  0.0373  0.0507  0.027  0.0486  0.0253  0.0447  0.0238  

0.1369  0.1147  0.118  0.0981  0.1141  0.0934  0.1103  0.0904  

0.05  0.0695  0.0398  0.0537  0.0291  0.0506  0.0274  0.0485  0.0258  

0.1232  0.1019  0.104  0.0854  0.1004  
0.0827  0.097  0.0800  

1.5  0.0778  0.0458  0.0621  0.0349  0.0585  0.0331  0.0563  0.0313  

0.0871  0.074  0.0708  0.059  0.0668  
0.0558  0.0642  0.0538  

2.5  0.0825  0.0491  0.0673  0.0386  0.0636  0.0367  0.0613  0.0349  

0.0672  0.0576  0.0513  0.044  0.0490  0.0415  0.0459  0.0390  
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Table 2 

Values of n (integer) and k for known σσσσ plan 

αααα = 0.05,  ββββ= 0.10, p
1
 = 0.05, p

2
 = 0.30 

λ3/λ4λ3/λ4λ3/λ4λ3/λ4  r = 2  r = 4  r = 6  r = ∞∞∞∞  

0  0.5  0  0.5  0  0.5  0  0.5  

0.0  
7  6  8  7  7  8  7  6  

1.0090  0.9610  1.0110  1.0244  1.0098  0.9790  1.0115  0.9711  

-0.5  
7  6  9  8  8  7  8  7  

1.0368  0.9919  1.0786  1.0533  1.0500  1.0130  1.0429  1.0013  

0.05  
7  6  8  7  7  6  7  6  

1.0098  0.9564  1.0551  1.0201  1.0226  0.9752  1.016  0.9670  

1.5  
5  5  8  5  5  3  5  11  

0.9070  0.9338  0.9759  0.9016  0.9307  0.8209  0.9169  0.8037  

2.5  
2  4  5  3  3  1  2  1  

0.8033  0.7007  0.9101  0.8365  0.8387  0.7426  0.8265  0.7229  

 

 


