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Abstract

In this paper necessary and sufficient conditions were obtained to insure that every solution of neutral
integro-differential equations oscillates these results improve and generalized Lemma 2.1, Theorem 2.2,
Theorem 2.3 in Olach(2005).
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1. Introduction
Consider neutral integro-differential equations of the form:

[x(t) —p@®)x(z(®)] + 6fx(t —s)dr(t,s)=0 t>0, § =+1 (1.1)
0

where p(t) is continuous real-valued functions on the interval [0, o0), and the integral is in the sense of
Riemann-Stieltjes, under the standing hypotheses:

(H1) r(t; s) is increasing with respect to s for s € [0, t].

(H2) r(t; t):[0,0) = R is continuous; g(t) = r(t,t) —r(t,0)

(H3) o(t): [0, ) — (0, o) is continuous such that 0 < ¢ (t) < t,

t — o(t) is nondecreasing, lim;_,, t —a(t) = oo.

A continuous real-valued function x(t) defined on the real line R will be called a solution of the neutral
integro-differential equation (1.1) if the function
x(t) — p(t)x(‘[(t)) is a continuously differentiable real-valued function for t > 0 and x(t) satisfies (1.1) for
allt = 0. The purpose of this paper is to obtain some necessary and sufficient conditions for all solution of

equation (1.1) to oscillates. Olach(2005) study the integro-differential equations

x'(t) + th(t —s)dr(t,s) =0, t=>0 (1.2)
0

and established some necessary and sufficient conditions to insure the oscillation of all solutions of eq.(1.2).
When p(t) = 0 then eq.(1.1) reduce to eq.(1.2), so the results in this paper generalized Lemma 2.1, Theorem
2.2 and Theorem 2.3 in Olach(2005).

Lemma 1.1 ( Ladde et al. (1987) )

Assume that ©(t) > t, and
T(t) 1
lim inf p(s)ds > —
t—oo ¢ e

where p(t), 7(t) € C([to, ®); [0,0)) Then
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(i) The differential inequality  y'(t) —p()y(z(t)) =0, t > ¢t,
has no eventually positive solution.
(ii) The differential inequality y'(t) —p(®)y(z(t)) <0, t = t,

has no eventually negative solution.

2. Main Results
Before start in establishing the results, we give some of lemmas which are useful for extracting results. Let
§d=1,and

z(t) = x(t) — p(t)x(‘[(t)) (2.1)
then eq.(1.1) reduce to
t
z'(t) +f x(t —s)dr(t,s)=0, t=0, (2.2)
0
Lemma 2.1 Suppose that H1 — H3, hold and
t
lim inf [r(s,s) —7(s,0(s))]ds > 0 (2.3)
tme Jie)

and let x(t) be a positive (or negative) solution of equation (2.2) on [0, o) then there exist T > 0 such that
z(t —a(t))
z(t)
is bounded on [T, ).

Proof. Assume that x(t) is positive for t € [0, o) then from eq.(2.2) we get
t
Z'(t) = —j x(t —s)dr(t,s) <0, t=0
0

hence z(t) must be eventually monotonically decreasing, and we have two cases to consider for z(t):
1. z(t) <0, t=t,;=0; 2. z(t) >0, t=t,=0
Casel. z(t) <0, Z'(t) <0, t=ty>0
z(t —a(t)) > z(t)
then

z(t — J(t)) <

0<=—5

1

Case2. z(t)>0, z'(t) <0, t=t,=0.

Since x(t) = z(t)

t t

-z'(t) = f z(t — s)dr(t,s) = f( )Z(t —s)dr(t,s), t>t, (2.4)
0 o(t
=Z'(t) = [r(t,t) = r(t,0(0))]2z(t — (D)) (2.5)

from (2.3), there exist ¢ > 0 and T > 0 such that
t
f [r(s, s) — r(s,a(s))]ds >c>0
t—o(t)

for t € [T, ) we can find t* € [t — o(t), t] such that
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f ()[r(s,s) r(s a(s))]

Nlﬁ

and

ft[r(s, s)— r(s, o(s))]ds > %

By integrating (2.5) from ¢t —o(t) to t* yields

t*

- f t Z'(s)ds = f [r(s,s) —7(s,0(s))]z(s — a(s)) ds
t—o(t)

t—o(t)

z(t —o(t)) —z(t*) = %Z(t* —a(t?)
2(t — o (t)) = %z(t* —o(t") (2.6)
Similarly integrating (2.5) from t* to t we get
- f fz’(s)ds > f f[r(s, s) = 7(s,0(5))]z(s — o(s)) ds
—2(0) +2(t) 2 2(t - 0(0) 5
2 = 2(0) 2 5 2(t = 0®)
z(t") > %z(t —a(D)) 2.7)
Combining the inequalities (2.6) and (2.7) we obtain

c c?
z(t") = —Z(t —a() = —Z(t* —o(tY)
z(t* —a(t” )) 4

z(t") c2
The proof is complete.

Theorem 2.2 Assume that H1 — H3, hold, 0 < p(t) < p, 7(t) <t,and (2.3) holds, if

o o dr(v,s) 1
ll{rléonfj jo p(‘r o s)) ———dv > (2.8)
A dp)dr(t,
liminffo exp(Af,_, , 9(P)dp)dr(t,s) 29
toe 9@

for all A > 0. Then every solution of equation (2.2) oscillates on [0, o).

Proof. For the sake of contradiction assume that x(t) is an eventually positive solution of eq.(2.2), (the proof of
the case when x(t) is an eventually negative is similar and will be omitted). Hence for t>1t, >0, let
x(t(t)) >0, x(t —s) > 0.

From (2.2) it follows that z(t) is nonincreasing function.

We have two cases to consider for z(t) :

1. zt)>0, t=2t;=2¢t, ; 2. z(t) <0, t=t; =¢,

Casel. z(t)>0, z'(t) <0, t=t; =t

Since x(t) = z(t) then from eq.(2.2) and using the decreasing nature of z(t) we obtain
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z'(t) + z(O)[r(t, t) —r(t, 0] <0, t=>t; =0
and by (H2) we get
Z{t) +z@t)g(t) <0 (2.10)
Set Q={1>0:2'(t) + Az(t)g(t) < 0}.
Itis obvious that 1 € Q, so Q is non-empty set. By Lemma 2.1, it follows that

Z(tz_(—:)(t)) <a for t=T. (211)
Where a > 0 is a constant.
From H1, H2 we get

r(t, ) —r(t, o)) <rt,0)—r0), t=t

So (2.3) implies that
t

lim inf g(s)ds > 0.

=2 Jio(t)

We can choose k large enough such that e** > q,

t
0<k£f g(s)ds fort=>t, =>t;.
t—o(t)

Now we claim that sup Q < a < oo. Otherwise sup > a which meansthat a € Q, then it follows from

d t .
- 7€ Jey9985) = 1/(1) + a r(t, £)z(t)] M2 9O% < o

which means that the function
2(t)e” Ji,r(s5)ds
is nonincreasing on [t;, o). Hence
z(t — o(t))e” Ittz_g(t)g(s)ds > z(t)e” fftzg(s)ds

t
Z(t - a(t)) > z(t)e” Ji-oy9()ds > z(t)e*® > az(t), t=>t,

Then
z(t—o(t
—( o) >a
z(t)
for t > t,, which contradicts (2.11). Thus
supQ < a.

Suppose A* =sup Q and let u € (0,4") then u € Q, moreover
r—p=Beq.
Hence there exists t; > t, such that
zZ’ () +Bg()z(t) <0 for t=>ts.

Then forany t,s with t > t; , 0 < s < t, and by using the last inequality we get

z(t —s) z(t) £ Z'(p)
72(0 = exp(—lnz(t — s)) = exp(— t_smdp)
> exp (B i g(p)dp) > exp (B j . )g(p)dp)

Where o(t) < t, that is
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t

2(t — ) = 2(t)exp <ﬁ f g(p)dp)

—-o(s)
Substituting the last inequality in (2.4) yields
0=2(t) +f

0

exp <ﬁ f ( )g(p)dp) dr(t,5)z(t)

J, exp (b’ Sy P g(n)) dr(t,s)
g(t)

=7'(t) + gz(t). (2.12)

According to (2.12) we claim that

Iy exp(B [,_ ., 9(0)dp)er(t,s)
lim inf
toe 9@
otherwise there exist A; > A*and T = t; such that
Iy exp(B [, ) 9(P)dp)r (£, )
9

<X (2.13)

=M

for all t > T and therefore (2.12) reduce to
0=27()+Agt)z(t) for t=T
hence A7 € Q, which contradicts the hypothesis that A7 > A1*. Thus (2.13) has been established. Finally (2.13)

implies that

Jo expl =) [y 9P)PYN(E5)
9 B

A"+ lign inf
as u € (0,A") is arbitrary we obtain

2+ limi ffgt exp (A* f:_a(s)g(p)dp) dr(t,s) -
e 9@ =

which contradicts (2.9).

Case2. z(t) <0, z'(t) <0, t=t,>0
From (2.1) we get

—2z(t) —z(x7(1))
x(r(t)) > m, then x(t) = m
from eq.(2.2) we obtain

, tz(r 7t - 5))
z'(t) —j(; de(t,S) <0

t d :
2(t) - 2t (1)) J % <0
0

By Lemma 2.1-ii and condition (2.11) it follows that the last inequality cannot have eventually negative solution

which a contradiction.
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Example 2.3 Consider neutral integro-differential equation
1 rof
[x(t) — (e - 27'[)] + f x(t — $)dr(t,s) = 0 (2.14)
0

Where p(t) =§, r(t,s) =§(t+s), () =t-2m o) =2, A=2.

One can see that all conditions of Theorem 2.2 met as follows

t

lim inf [r(s s)— r(s o(s))]ds = llmf —ds = i l1m (tz) = o

t—oo

t—o(t)
1) dr(t,s) t+2m v
lim inf J- = limf f dsdv =
toeo 0 P(T 1(t—5)) t=oo Jy 0
t s ¢ %@Pdﬁ

o Joexp@ [, 9(pdp)dr(ts)  [le*s ds
lim inf = lim = o0
t—oo g(t) t—oo t

So according to Theorem 2.2 every solution of (2.14) oscillates. For instance x(t) = cost is such a solution.

Now, Set § = —1 then eq.(1.1) reduce to
zZ'(t) — f x(t — s)dr(t,s) =0, t=>0 (2.15)

Lemma 2.4 Suppose that H1 — H3 hold, 0 < p(t) < p, and
t

lim sup (r(s,s) —r(s,a(s)))ds < (2.16)

t—oo t—o(t)
Let x(t) be an eventually positive (or eventually negative) solution of equation (2.15) on [0, ). Then there
exist T > 0 such that
z(t — a(t))
z(t)
is bounded on [T, ).
Proof. Assume that x(t) is positive for t € [0, o), then from eq.(2.15) we get

z'(t) = th(t —s)dr(t,s) =0, t=0
0

hence z(t) isan eventually monotonically increasing function. we have two cases to consider for z(t):
1. z(t)>0, t=t,;=0 2. z(t) <0, t=t,;=0
Casel. z(t) >0, z'(t) =0, t=t,=0
z(t —a(t)) < z(t)
then
0 < z(t — J(t))
z(t)
Case2. z(t) <0, z'(t)=0, t=t,=0
then

z(t) = —p(®)x(z())
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z(t71(t —s))
O (D)

from eq.(2.15) we get

o t t Z(T_l(t_s))
0= [xe-nuenz-[ S

, tz(x7l(t—5))
—Z'(t) < L(t)mdr(t, s)

dar(t,s)

then

—Z'(t) < w [r(t,6) —7(t,a(0)]
then there exists t; such that t — a(t) = t;, t; = max{ty, 771(0)} the last inequality leads to

Z(t - O'(t))
— |

—z'(t) < rit,t) —r(to®)], t=¢t (2.17)

from (2.16) there exist ¢ > 0 and T > 0 such that
t
J- [r(s,s) —7(s,0(s))]ds < ¢
t—o(t)
for t € [T, o) we can find t* € [t — o(t), t] such that

ft [r(s, s)— r(s, J(s))]ds < %
t—o(t)

and

N|

jt[r(s, s)— r(s,a(s))]ds <

By integrating (2.17) from t — o(t) to t* we find
t* 1 t*
—f Z'(s)ds < —j Z(s — a(s))[r(s, s) — r(s,a(s))] ds
t—a(t) PJi-o(t)
z(t* — o(t)) t*
p t-o(t)

—z(t) +z(t — o)) < %z(t* —a(t)

—z(t") + z(t — a(t)) < [r(s, s) — r(s, cr(s))]ds

z(t — J(t)) < %z(t* — J(t*)) (2.18)

Similarly by integrating (2.17) from t* to t we find
t t
—f Z'(s)ds < %f z(s — a(s))[r(s, s) — r(s, a(s))] ds
. c
—z(t) + z(t") < Ez(t —a(t))

z(t") < %z(t —a(®) (2.19)

Combining the inequalities (2.18) and (2.19) we obtain

z(t") < Zc—pzz(t* — J(t*))
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z(t*) - c2 '

The proof is complete.

Theorem 2.5 Assume that H1 — H3 holdand 0 < p(t) <p, t(t) <t, and (2.16) holds, if

(T dr(t,s)
h?lionf f p(‘L’ 1(t _S)) (2-20)
lim sup g(s)ds =00 (2.21)
At
t exp (—f _ g(p)dp) 1
P . p-t a(s) 4
hméonfg(t)J; p(r‘l(t — s)) dr(t,s) > » (2.22)

forall A > 0. Then every solution x(t) of equation (2.15) either oscillates or |x(t)| » o as t — oo.
Proof. For the sake of contradiction assume that x(t) is bounded eventually positive solution of eq.(2.15), (the
proof of the case when x(t) is an eventually negative is similar and will be omitted). Hence for ¢t > t, = 0, let
x(t(t)) >0, x(t —s) > 0.
From (2.15) it follows that z(t) is nondecreasing function.
We have two cases to consider for z(t) :
1. z(t)>0, t=t; =ty ; 2. z(t) <0, t=t; = ¢,
Casel. z(t)>0, z(t)=0, t=t; =t
Let lim;,,2z(t) =L, 0 <L <
if L = oo, then lim,_ x(t) = oo, since x(t) = z(t), which is a contradiction.
if 0 <L < oo, from (2.5) we get
x(t) = z(t)
substituting in eq.(2.15) we obtain

t
Z'(t) —f z(t —s)dr(t,s) =0
0

Z'(t)—z(@t)gt) =0
By integrating the last inequality from 0 to t we find

t
z(t) — z(0) = Z(O)f g(s)ds.
0
as t — oo then the last inequality implies that

t
lim supj g(s)ds < oo,
0

t—oo

which is a contradiction.

Case2. z(t) <0, z'(t) =0, t=t, =t,
from (2.5) we get z(t) = —p()x(z(t)) then

z(t)

x(r(t)) > — m
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z(z7X(t - 5))
x(t—s) = —717(_[_1@ —s))
Substituting in eq.(2.15) we obtain
, “z(r7(t - s))
z'(t) + ( T(c=9) dr(t,s) =0

z(t—s)

z'(t) +f ( ST )dr(t, s)=0, (t) > ¢, (2.23)

z'(t) + z(O)f —dr(t, s) = 0.
0 p('f_l(t - S))
Since p(t) < p, then by using the increasing nature of z(t) and (H2) we get from the last inequality

1
Z'(t) + Ez(t)g(t) >0, t=>t, =0,

Set 0 ={1>0:2(t) + §z(t)g(t) > 0},
It is obvious that 1 € Q, and so Q is non-empty set. By Lemma 2.4, it follows that

z(t —a(t))

< fi >T. 2.24
PO <a for t= ( )

ka
Where « > 0 is a constant, we can choose k large enough such that e? > a, and

t

0<k§f g(s)ds for t > t, > t;.
t—o(t)

Now we claim that sup Q < a < oo. Otherwise sup Q > a which meansthat « € Q and we obtain

g(s)ds

ftz g(s)ds] >0

—[z(t)ep =[Z'(t) + 5 r(t, t)z(t)] eP

since a € Q, hence the function

z(t)ep g(s)ds

is nondecreasing on [t,, o). Hence

fttz ot g(s)ds g(s)ds

z(t — o(t))eP < z(t)e p

LIy 9(S)ds ka
z(t - a(t)) < z(t)ep't-9® <z(t)e? < az(t), t=>t,

Then
z(t — J(t))
z(t)
for t = t,, which contradicts with (2.24). Thus
sup(l < a.
Suppose 1* = sup Q, then forany p € (0,17) imply u € Q, let
A'—u=peq.

Hence there exists t; = t, such that
z'(t) + gg(t)z(t) >0 for t=>ts.

Then forany t,s with t >t; , 0 < s <t, and using the last inequality we get
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z(t —5) z(t)
—z(t) = exp(—lnz(t f
B t
> exp (— g(p)dp) > eXp( g(p)dp)
PJi—s t—o(s)
where a(t) < t, that is
‘3 t
2(t — 5) < 2(Dexp (— | g(p)dp)
p t—o(s)

Substituting the last inequality in (2.23) yields
t t

e [ L (B
0<z'(t) + fo (e —9)) exp <p J;_J(S)dp g(p)) dr(t,s)z(t)

1 texp (% ftt_a(s)g(p)dp>
Z'(t) + J- —
®) p(z71(t —s))

dr(t,s) g(t)z(t) = 0. (2.25)

According to (2.25) we claim that

t
1 [t exp (g ft_,,(s)g(p)dp) 2
lim inf j dr(t,s) < — (2.26)
toeo g(t) p(z71(t — 5)) p
otherwise there exista A > A1"anda T = t; such that
t
1t exp (g ft_d(s)g(p)dp> a
f dr(t,s) = —
(®) p(z71(t — 5)) p

for all t > T and therefore (2.25) leads to

A
Z(t) + jg(t)z(t) >0 for t=>T

hence A7 € Q, which contradicts the hypothesis that A7 > A1*. Thus (2.26) has been established. Finally (2.26)

implies that
A —
e t eXp( EfE ,,(s)g(p)dp)
——+ liminf J dr(t,s) <0
toeo g(t) p(r‘l(t —5))
as u € (0,4%) is arbitrary, we obtain
A"t
e 1 [texp (gft_a(s)g(p)dp)
——+ liminf f dr(t,s) <0
p oo g(t) p(r=1(t —5))
which contradicts (2.22) and complete the proof.
Example 2.6 Consider neutral integro-differential equation
5 ' ¢
[x(t) —2x(e - 2n)] - f x(t = $)dr(t,s) = 0 (227)
0
Where p(t) =2, r(t,s) =t—e™, () =t —2m, o(t) =7, 1=2.
One can see that all conditions of Theorem 2.5 met as follows
t t 5
lim inf [r(s,s) = r(s,0(s))]ds = limJ- e z—eSds=0
t—oo t—a(t) t—oo %
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() dr(t,s) t+2m
liminf J- T 1mf f Sdsdv——>—
t—00 0 p(r (t- s)) i 5

t
lim supf g(s)ds = gimf (1—-eS)ds =
0 —®Jo

t—>oo
A ot ¢ g)lfss(l—e'p)dp
1 [texp (;, ft_c,(s)y(p)dp) 2 e ds
lim inf f dr(t,s) = =lim = o0
t—oo g(t) p(T—l(t _ S)) 5tow

1—et
So according to Theorem 2.5 every solution of (2.27) oscillates on [0, ).
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