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Abstract

In This paper the influence of heat transfer on peristaltic transport of Johnson Segalman fluid in an
inclined asymmetric channel are investigated theoretically and graghically .Aregular perturbation method is
used to obtain the analytical solutions for the streame functions, temperature fields, axial pressure gradient,
and pressure rise.The effects of the physical parameters of the problem on these distributions are discussed
and illustrated graphically through a set of figures.
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1. Introduction

The Johnson- Segalman model is a viscoelastic fluid model which was developed to
allow for non affine deformation [19 ]. Recently, this model has been used by a number
of researchers [20,24,25] to explain the “spurt” phenomenon. Experimentalists usually
associate a spurt with a slip at the wall , and on this issue experiments have been carried
out [21,22,26,27,33] . Also Rao and Rajagopal [34] discussed three distinct flows of a
Johnson-Segalman fluid . The three flows are cylindrical poiseuill flow . The mechanism
of peristaltic transport has been exploited for industrial applications like sanitary fluid
transport, blood pumps in heart lung machine and transport of corrosive fluids where the
contact of the fluid with the machinery parts is prohibited. Since the first investigation of
Latham [23], anumber of analytical, numerical and experimental [1,2,3,6-10] studies of
peristaltic flows of different fluid have been reported under different conditions with
reference to physiological and mechanical situations. The peristaltic flows can be divided
to Newtonian and non-Newtonian flows that have been reported analytically,
numerically, and experimentally by anumber of researchers [29-32].Although most prior
studies of peristaltic transport have focused on Newtonian fluids, there are also studies
involving non-Newtonian fluid [11-15]. Srinivas and Pushparaj [36] discussed the non-
lineare peristaltic transport in an inclined asymmetric channel. Hayat et al.[26]
investigated the peristaltic transport of a Johnson-Segalman fluid in an asymmetric
channel. Reddy and Roju [35] studied the non-linear peristaltic pumping of Johnson-
Segalman fluid in an asymmetric channel under the effect of a magnetic field. Recently,
Hayat et. [16] discussed the peristaltic flow in an asymmetric channel for a J-S fluid and
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previously the examiner Haroun [17] discussed the peristaltic flow in an inclined
asymmetric channel for fourth grad fluid. He observed that with the increase in inclined
angle the trapped bolus volume increase.

Considering the importance of heat transfer in peristaltic an attempt is made to study
the combined effects of heat transfer and inclined angle on the peristaltic transport at a
Johnson-Segalman fluid in an asymmetric channel. Nadeem and Noreen Sher Akbar [28]
are studied the effect of heat transfer on peristaltic transport of a J-S fluid in an inclined
asymmetric channel. El Shehawey and Husseny[4] and EIl Shehawey et al. [5] studied the
peristaltic mechanism of a Newtonian fluid through a porous medium. Hall effects on
peristaltic flow of a Maxwell fluid through a porous medium in a channel was studied by
Hayat et. [18].

In the present note, a mathematical model is presented to understand the interaction
between peristalsis and heat transfer for the motion of a viscous in compressible fluid in a
tow-dimentional asymmetric inclined channel. The momentum and energy equations
have been linearized under long —wavelength and low Reynold’s number assumptions
and analytical solutions for the flow variables have been obtained.

2. The mathematical model
The constitutive equations for an incompressible Johnson-Segalman fluid are given by
2.1. Governing equations

Consider an incompressible, Johnson-Segalman fluid confined in a two-dimensional
infinit inclined asymmetric channel of width di+d, (see Fig. 1). We consider an infinite
wave train travelling with velocity ¢ along the channel walls. The asymmetry in the
channel is induced by assuming the peristaltic wave train on the walls to have different
amplitudes and phase. The resulting asymmetric channel walls are defined as

Y =h(X,T)=d, +aisin[27”(>?—ct_)}, upperwall, (1)

Y =h,(X, ) =-d, —aZSin|:27ﬂ-()z—Ct_)+¢:|, lowerwall. (2)

Here a; and a, are the amplitude of the waves, A is the wavelength and ¢ ¢ [0,x] is the
phase difference. Note that ¢ = 0 corresponds to an asymmetric channel with waves out
of phase and ¢ = = describes the case where waves are in phase. Moreove a; ay di, d;
and ¢ satisfy the following inqualit

a’+a,’+2aa,0s ¢ < (d,+ d2)2 (3)
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Fig.1. Schematic diagram of the problem
The equations governing the flow of an incompressible fluid are
- o _ = dV
div V=0, div &+ pf = T 4)

where V is the velocity, f is the body force per unit mass , p is the fluid density,

d/dt is the material derivative and & is the cauchy stress tensor given by[19]
G=—pl+T,

T=2uD+S,

()
(6)

(7)

(8)

and bars indicate the quntities in the dimensional coordinates. The equations above
include the scalar pressure p , the identity tensor T, the extra stress S, the dynamic
viscosities u# and 7, the relaxation time m , the slip parameter e and the respective

symmetric and skew symmetric part of the velocity gradient, D and W. Note, that
model (5) reduces to the Maxwell fluid model for e =1 and ¢ =0, and for m=0= x we

receive the classical Navier-Stokes fluid model.
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The velocity for unsteady tow-dimensional flows is defined as
V=[0(X.Y.T).V(X.V.T)0]. ©)
From Egs. (4)-(9) we obtain,

0, av
oX oY

2 2 c Q.
p(i_+lji_+\7i)lj:—£8+,u[ & . a_zjlj+asix +a§$¥ HG1pgsing, (10
K

(10)

oX

2 2 2c 2¢c
p(i_+0i_+\7i)\7:_£8+y[ o + 8_2}\7+8 S_W +a S_W AV~ pgcosp, (12)
K

ot 0 oy 0 oX? oY oX oY
g—gzs_x+m[a—(i_+ﬂa%+\76i_}§—2emS_XXZ—Xg+m{(1 e)g—\;—(l e)gg} & (13)
n(g—$ 2zj=_XY+m{a%+Ua%+va%}§”+E{(1 e)Q—(l e)g\;}s
+%{(1—e)g—g—(1+e)g—ﬂ§w, (14)
an—\;:__vy+m[%+ﬁa%+\78%}§w—2emS_YYZ—¥:+ m{(l e)Z—:{J—(He)g—g}S_XY, (15)

oT T ~0T) = U = oV = (U oV T o1
C —+U V—_ =S, —+S,., —+S..| —+— |+k + . 16
pp[at oX avj ) G\ XY[&Y ax} (ax2 av] (16)

In the fixed frame (X,Y) the motion is unsteady, while it becomes steady in the wave
frame (X)y) given by

X =X —ct, y=Y, u=U—c, V=V, (17)
when moving away in direction of the wave from the fixed frame (X,Y) with speed c.

Here @, vand U, V are the velocity components in the wave frame and in the fixed
frame, respectively.
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We put Eq. (17) into Egs. (11)-(16) and to write contiuuity and motion equations in
dimensionless form we introduce the following new quantities

x=2, y=2, u==, v=1, hl=i, hfﬁ,
A d, c C d, d,
2
s-hsm),  pe Y gy oo% gt (18)
LC A(u+n)c A )
a:i, b—i' Re:pCdl, W|=Ea t_=C_t’
d, d, P d, A
2 2 C.V _
E-—s— F-2, p=2t  p-Ih p-X
c,(T,-T,) gd, k T,-T, d,

Where p is the density, u is the coefficient of viscosity of the fluid, p is the pressure,
£ is the inclination of the channel with the horizontal, g is the acceleration due to
gravity, T is the temperature, c, is the specific heat at constant pressure and k is the

thermal conductivity.

we have
Z_u+%:0’ (19)
X
u 0 oS
R0 R B AL @+5zag+ag+563“ it
OX ay H OX OX ay OX ay
_% (U—i—l)—i—%smﬁ, (20)
? 2 oS
Re53(U—+V_j_ (ﬂ+77j@+52{526\2/ 0 \2/} 5295y
x 0y uo)oy x> oy dy
0S 2
+0 22y Losp, (21)
oy D, F

2n6 G_U:SXX +W.o u£+v£ Sy —2€Wi5SXXa—u
U ) ox ox oy OX
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w |52 e S, (22)
OX oy
[N N =S, +W, 0Ll Sxy+vi (1—e)a—u—(1+e)52@ S,
uloy  ox x oy 2 oy ox
+%{(1—e)52 ZV— 1+ e)—} (23)

2N s wslul v s, —aewss, &
K)oy ox oy oy

ou , OV
+ @1-e)—-(1+e)5°—|S 24
{( )5, ~d+e) ax} " (24)
Ro[u v |-k |s,6M s 6N s Mis sV
x oy o ey T gy

2 2
+%{52 Z_erZy_ﬂ, (25)
f X

Writing Egs. (19)-(25) in terms of the stream function (X, y) defined by

U= V=—

s s (26)
oy OX

we get

3
5R{£6w3_8w3}8w}_(u+nja_p 520 Qv 3,

0y OX OXx oy ) oy U ) OX axay oy® OX

asxy oy R,
+—= 5 D, (ay +1J+Fsm,8 (27)

r

_sep |[OW O 0w 00y | _ (p+n )P _ o 561// & |, 52
Loy ox ox oy u o )oy X oxoy? ox

s, &2
bsSw 0 OV sR s, (28)
& D & F

r
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2 2

21510V _g | [0 ¥ O lg oy sV

u ) oxoy oy X X oy oXoy

2 2
w52 (1-e) Y v (140) ¥ |5, (29)

OX oy

2 2
n a_'{_gza_@’; _Sxy+Wi5 6_1//2_8_1//2 Sxy
L\ oy OX oy Oox OX oy

Wil OV O’y Wil 2y 0w O’y
+ {(1 e) 8y2+5 (1+e) }Sxxjt {5 (1-e) P~ +(1+e)ay }SW, (30)

2

vy {(1—e) ‘?;y'{ +5%(L+e) ‘21‘2”} S (31)

2 2 2 2
oR|[QL 20 500 00N g5 5OV g 5OV 5 OV g 5OV
oxoy OX oy OXoy

P~ o oy

r

2 2
+i(52ﬁ+ﬂj. (32)

where 6 is wave number, R, is the Renold’s number, W, is the Weissenberg number,

Fr is the Froud number, P, is the Prandtl number and D; is the Darcy number. The
continuity equation is identically satisfied.

2.2 Rate of volume flow and boundary conditions

The dimensional rate of fluid flow in the fixed frame (X,Y) is

Q= | U(X,Y, DdY (33)

q= | U(X,y)dy (34)
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By Eq.(17), the above rates are related in the following expression
Q=q-+ch, —ch, (35)
Applying the averaged flow
_ 1%
Q==[Qdt (36)
4 0
Over a period (r = A\c) at afixed position X , we receive
Q=q-+cd, —cd,. (37)
With the definition of the dimensionless time averaged flows
0= F=3 (38)
cd, cd,
in the fixed and moving frames, respectively, we can write Eq(37) as
O=F+1+d (39)
where
h, (x) 8!//
F= [ oy =vh)-y(h) (40)
neo 0
and the dimensionless surface of the peristaltic walls are
h (x) =1+asin(2zx), h,(x) =—d —bsin(2zx+¢) , (41)
where the inequality
a’+b’ +2abcos¢£(1+d)2 (42)
holds. The dimensionless boundary conditions in the wave frame are
F oy
=—, —=-1 at y="h(x), ™
V== Y y =h(x)
F oy ~
4 > oy y=h,(x) (43)
=1 at y=h(x), 0=0 at y=h,(x), _

187


http://www.iiste.org/

Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.6, No.3, 2016

www.iiste.org
JLIELE

STe

Here it is pointed out that the conditions on  satisfy Eq. (40) and the conditions on

v are no-slip .
oy

2.3 Model equations

under lubrication approach(i.e., neglecting the terms of order & and Re), from Eqgs.

(27)-(32) we get

S, &
urn | _ By Sv 10w ] Rgg
n OX 5)/ 8y Dr 8y F

r

2
s, =W, (1-e)2¥s

2

2 2
oy 20 _,

Xy ayZ 8y2

From Egs. (46)-(48), we write

LIS
1+Wi2(1—e2)(aa;‘/2/j

using Egs.(46),(48) and (50), the Eq.(44) and (49) can be rewritten as

E.PS

Xy

, ("+1jaz'/2’+wi2(1—e2)(az"’2’w
0 |\ u oy oy 3

24 11W? (1—e2)(62"’j2
i oy l

2
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3 2, \3

POV e, O (a “2’] £ a—‘”{L (52)

ox oy oy| oy (u+n)D, oy \u+n

%0 oy \ o\

‘S =-EP 2( ‘”j —vv.zﬁ(l—ez)( J , (53)

oy H

where o =-—"+—
(+4)

3. perturbed systems and perturbation solutions

The Egs. (51)-(53) are non-lineare and its closed form solution is not possible. thus,
we linearize this equations in terms of W.* since W. is small for the type of flow under

consideration. So we expand v, p, F and 0 as

V=V, +VViZ‘//l +O(\Ni4)’
P= P, +Wi2 Py +O(\Ni4)!
F=F +W?’F +0OW?"),
0 =6, +W?6, +OW.*),

(54)

substituting Eq.(54) into Egs. (51)-(53) and boundary conditions (43), then equating the

like powers of W.* we get :

3.1. perturped systems

3.1.1. Zeroth-order system

3'yq H A2

oy*  (u+n)D, oy*

@,
oy

apozﬁsl//o_ H 8(//0_'_( H j&Sinﬁ
ox oy (u+n)D, &y \u+n)F

%% _ g p 2[5_‘//) |
oy u\ oy
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F, 9y, 3\
=—, —2=-1 at y=h(x),
4 5 dy y=h,(x)
F oY,
=0 20 -1 at y=h(x), 56
Yo 2 dy y=h,(x) (56)
6,=1 at y=h(x), 6,=0, at y=h,(x),
J
3.1.2. First —order system
dvi__u P & (T )
oy (u+nm)D, oy*  Toy? | oy
g
oy
3 2 3
%:avgl +0€1£ (a %Oj _ H al//:l.’ (57)
ox oy oyl oy (u+n)D, oy
4
0%, _EP 2_7752% o, _1( ez)[az%J
oy? ooyt oyt oy? )
F 0 )
Vi 21 ' dl/;l =0 at y="h(x),
F 0
n=g G0 At y=h, (58)

6, =0, at y=h(x), 6=0 at y=h(x),
3.2 Perturbation solutions

3.2.1. Zeroth-order solution

The solution of Eqgs.(55) of zeroth order system, satisfying (56) can be written

Wo=A+AY+

A
doy
L= A-AA,

190
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g _ A,(cosh(2,[A y) —sinh(2,/A Y))(A;+A2(cosh(4,[A y) +sinh(4,/A V)
0 4A1
AAA YA+ AAAY)) (61)
4A
where
M _ uRsin(B) A - —E,Pn
(u+m)D,’ (u+m)F, o

A A LA AL A and A, are constants can be determinates by using the boundary
conditions Eq.(56) .

3.2.2. First-order solution

Substituting the zeroth-order solution (59)-(61) into Eq.(57) and then solving the
resulting system with the corresponding boundary conditions Eq.(58),we get

v, = Bg+B4y+i(8«Bl+Bz)cosh(JE y)-+(B, - B,)sinh({/A y))

~BAA (A (-5+2,[A Y) ~A,(5+2,[A y))cosh(,/A Y)
+(A+ A% cosh(3 A Y) +(A® - A +6A’A(-5+2,[AY)
+6A A’ (B+2AY)+2(A° - A®)cosh(2\A Y))sinh(\A V) a), (62)

dp,

ax AR, 9

0, = B, +%((4Bey+4AzBley2 —4A, cosh(y/A y) —sinh(\/A y)
(A + A cosh(2,/A y) + Asinh(2,/A )
+ﬁ A, (cosh(2/A y)—sinh(2\/A y))

(822 +B’ cosh(4\/Ey) +B’ sinh(4\/EY)))
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ﬂ@(cosh(&/_ A y)—sinh(6 /A y))a,

(9ALa, +9A° cosh(12,/A y)e, +9AS sinh(12,/A y)e,
+18A° (cosh(10\/A y) +sinh(10\/A ¥))(—2B, —3A A, +3/A A’ Aya,)

~18A° (cosh(2/A y) +sinh(2/A y))(2B, +3A A, +3A A A Ya,)

+24 A% (cosh(8,[A y) +sinh(8,/A y))(-6B,A +12B A —8,/AB Ay +21A’A’a,
—21\[A A Al +6AAT ALY a) +24A% (cosh(4,/A Y)

+sinh(4,/A y))(12B,A, —6B,A, +8/AB,AYy

+21A2Ala, + 2T [A A Ao, +6AA’A’Y o)

~4AAAY* (cosh(6,/A y)+sinh(6,/A y))

(—48BZA3 ~48B A +32,/AB,Ay-32,/[ABAY

—LTA Aoy + 28AN Ay ) (64)
Where
= (n2 _1)77’ A4=A3(1_n2),
(u+n)

B..B,,B;,B,,B; and B, are constants can be determinates by using the boundary
conditions Eq. (58) .

Summing up the perturbation results, we find that

(A + Aj)cosh(\[A y) + (A — A)sinh(\/A Y)
A

v=~A+AY+

W, (B, +B,y + AL(S((B , +B,) cosh(y/A y) + (B, - B,)sinh(,/A y))
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—SAA (A;(-5+2,/A y) —A(5+2/A y))cosh(\/A Y)
+(AS+ A% coshB A Y) +(A° - A’ +6A7A(-5+2[AY)
+6AA’ (5+2,/AY)+2(A° - A®)cosh(2/A y))sinh((A V))a,) (65)

L - a-AA-WiAB,) (66)
X
o A,(cosh(2,/A y) —sinh(2,\/A Y))(As +A(cosh(4[A y) +sinh(4A y))

4A

+w, (B, +%((4Bey+4AsBley2 ~4A, cosh(,/A y) -sinh(/A y)
(A3 +A cosh(Z\/Ey) +A sinh(Z\/Ey))
+ﬁA3 (cosh(2/A y)—sinh(2\/A y))

(Bz2 +B? cosh(4ﬂy) +B/? sinh(4ﬂy)))

1
+—
256A

A, (cosh(By[A y) —sinh(6,/A V),

(9ASa, +9A° cosh(12,/A y)a, +9A° sinh(12,/A Y)a,

+18A°(cosh(10,/A y) +sinh(10/A ))(-2B, —3A A, +3/A A’Aya,)
—18A’(cosh(2/A y) +sinh(2/A Y))(2B, +3A A, +3JA AA’Ya,)

+24 A7 (cosh(8,/A y)+sinh(8\/A ¥))(-6B,A, +12B,A —8,/ABA Y + 21AA’e,
21 (A AP Ao, +BAAPAPY o) + 24A7 (cosh(4,[A y)

+sinh(4,/A y))(12B,A —6B,A, +8,/AB,AYy

+21A7 Aoy + 2T\ A AP APy +6AAA’Y )
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—4ALA5A5y2(cosh(6\/E y) +sinh(6\/E y)
(—48BZA3 ~48B A +32,/AB,Ay-32,/[ABAY

“LTA’ Ay + 24AATATY @) (67)
The non dimensional pressure rise per wavelength AP is defined as
1
AP = j Ll (68)
o dx

Where (;_p is defined through Eq.(66).
X

Not that, if we assume that the Darcy number was closer to infinity,then the results of the
problem reduce exactly to the same as that found by Nadeem and Akbar [28].

4. Results and discussions

This section represents the graphical results in order to be able to discuss the
quantitative effects of the sundry parameters involved in the analysis .

4.1. Pumping characteristics

We plot the expresion for AP in Eq. (68) against ® for various values of parameters
of interest in Figs.(2-9). In Fig.2 the effects of region channel width d on AP are seen.
Observe that , in the pumping (AP > 0) and free pumping (AP = 0) for the J-S fluid, an
increase in d causes adecreases in pumping. While in the co-pumping (AP < 0 ), the
pumping increases with an increase in d. Fig.3 the effects of Weissenberg number on AP.
Observe that an increase in W; causes a deacrease in the pumping region(AP > 0) and
behaves oppositely in the free pumping (AP = 0) and co-pumping. The observations
regarding the effects of upper and lower wave amplitudes b and a (Fig.4 and 5) on AP
are quite opposite to those in the case of phase difference ¢ Fig.7. Observe that an
increase in ¢ causes a decrease in the pumping region (AP > 0). It is also noted from
Fig.7 that in free pumping and co-pumping AP increases with an increase in ¢. The
effects of F, on pressure rise AP are illustrated in Fig.6. It is seen that with the increase
in F; the pressure rise decreases in the all pumping regions (AP > 0),(AP = 0) and (AP <
0). The pressure rise increases with increase in f and D,. But this increasing in AP
accurs in the co-pumping region which are displayed in (Fig.8 and 9) respectiveiy.
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2
Fig.2. Effect of the width of Fig.3. Effect of the Weisenberg
channel d on variation of Ap number W; on variation of Ap
versus O for : a=0.5, b=04, versus O for : a=0.5, $=0.2, p=0.03,
W;=0.25,¢=0.2,u=0.03,n1=0.04, d=0.5, n=0.04, d=0.9, D=1, F=1, R=10,
D=1, F,=1, Re=10, p=0.5, e=0.2. B=0.5, e=0.2.
[a
Fig.4. Effect of the lower wave Fig.5. Effect of the upper wave
amplitude b on variation of Ap amplitude a on variation of Ap
versus @ for : a=0.5 , ¢=0.2, versus ® for : b=0.5, ¢=0.5,
pu=0.03, n=0.04, W;=0.25, d=0.5, p=0.03, n=0.04, W;=0.01, d=0.1,
D.=1. F.=1. R.=10. 8=0.5. e=0.2. Dr=1, Fr=1, Re=10, B=0.5, e=0.2.
10 s,
O,
a a 10
20t
30
05 00 05 05 00 05
Fig.6. Effect of the Froud number F, Fig.7. Effect of the phase difference ¢
on variation of Ap versus © for : on variation of Ap versus O for :
b=0.5,a=0.5,1=0.03,n=0.04,W;=0.01 b=0.5,a=0.5,1=0.03,1=0.04,W;=0.01
,d=0.1,D,=1,4=0.2,R,=10,p=0.5, ,d=0.1,D,=1,F,=1,R=10,e=0.2.

e=0.2.
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Fig.8. Effect of inclined angle B on Fig.9. Effect of the Darcy number F, on
variation of Ap versus O for : variation of Ap versus © for
b=0.5,a=0.5,u=0.03,1=0.04,W;=0.01, b=0.5,a=0.5,u=0.03,1=0.04,W;=0.01,
d=3.5,D,=1,F=1,R=10,¢=0.2,e=0.2. d=0.1,F,=1,¢6=0.2,R.=10,8=0.5,e=0.2.

4.2. Pressure gradient characteristics

The variation of the axial pressure gradient dp/dx with x for various values ¢, a ,b ,u
1, d, Dy, Fr, Re, B, ® and W; are shown in Figs.(10-21). Fig.10 studies the effects of
phase shift ¢ on the variation of pressure gradient dp/dx, and it is noticed that the axial
pressure gradient decreases by increasing ¢ . Fig.11 and 12 shows the variation of the
axial pressure gradient dp/dx with b and a respectively. It is cleare that the axial pressure
gradient increases with an increase in amplitudes of the waves. Fig.13 shows the effect of
won dp/dx. It is noted that, the magnitude of dp/dx increase with increasing x and verse to
versa in Fig.14 the magnitude of dp/dx decreases with increasing #. The effect the
Weissenberg number W; on the variation of pressure gradiant dp/dx with x is shown in
Fig.15. It is observed that, the magnitude of the dp/dx increases with increasing Wi; .
Fig.(16-21) illustrates the variation of the axial pressure gradiant dp/dx with x for
different values of Dy, S, d, Re, Fr and @. It is cleare that the axial pressure gradient
dp/dx decreases with an increase in D, Fig.16. Also dp/dx increases by increasing g and
Re (Fig.17 and 19). The situation is reversed in Figs.18, 20 and 21, the axial pressure
gradiant is decreased with an increase ind , F, and ©.
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Fig.10. Effect of ¢ on the Fig.11. Effect of b on the
variation of pressure gradient variation of pressure gradient
dp/dx with x: b=0.4, a=0.2, p=1, dp/dx with x: ¢$=0.2, a=0.2, u=1,
n=1,W;=0.01,D,=0.5,F,=1,R.=10, n=1,W;=0.01,D,=0.5,F,=1,R.=10,
$=0.5, d=0.3, e=0.8, ®=0.6. p=0.5, d=0.3, e=0.8, ®=0.6.
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Fig.12. Effect of a on the Fig.13. Effect of p on the
variation of pressure gradient variation of pressure gradient
dp/dx with x: b=0.4, ¢ =0.2, u=1, dp/dx with x: b=0.4,a=0.2,¢ =0.2,
n=1,W;=0.01,D,=0.5,F,=1,R:=10.p n=1,W;=0.01,D,=0.5,F,=1,R:=10,p
=0.5,d=0.3, e=0.8, ®=0.6. =0.5,d=0.3, e=0.8, ©=0.6.
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Fig.14. Effect of » on the
variation of pressure gradient
dp/dx with x: b=0.4, a=0.2, p=1,
¢ =02, W;=0.01, D,=0.5,F-=1,
R.=10,8=0.5.d=0.3, e=0.8, ®=0.6.
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Fig.15. Effect of W; on the
variation of pressure gradient
dp/dx with x: b=0.4, a=0.2, p=1,
n=1, ¢ =0.2, D,=0.5,F=1, R=10,
B=0.5, d=0.3, e=0.8. ©=0.6.
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Fig.16. Effect of D, on the variation Fig.17. Effect of g on the variation of
of pressure gradient dp/dx with X: pressure gradient dp/dx with x:
b=0.4,a=0.2,6=0.2,u=1,1=1,W;=0.01, b=0.4,a=0.2,¢=0.2,u=1,1=1,W;=0.01,
F=1, R=10, p=0.5, d=0.3, e=0.8, D,=0.5,F=1,R.=10,d=0.3,e=0.8,0=06.
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Fig.18. Effect of d on the variation of Fig.19. Effect of R, on the variation of
pressure gradient dp/dx with x: pressure gradient dp/dx with x: b=0.4,
b=0.4,a=0.2,6=0.2,p=1,1=1,W;=0.01, a=0.2,¢=0.2,u=1,n=1,W;=0.01,D,=0.5,
D,=0.5,F=1,R.=10,=0.5,6=0.8,0=0.6. F=1,p=0.5,d=0.3, e=0.8, ©=0.6.
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Fig.20. Effect of F, on the variation of
pressure gradient dp/dx with x: b=0.4,
a=0.2,6=0.2,p=1, n=1, W;=0.01, D,=0.5,

Re=10, p=0.5, d=0.3, e=0.8, ©®=0.6.

Fig.21. Effect of @ on the variation of
pressure gradient dp/dx with x: b=0.4,
a=0.2,¢=0.2,u=1,n=1,W;=0.01,D,=0.5,
Fi=1,R=10,$=0.5, d=0.3, e=0.8.
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4.3. Trapping phenomenon

Another interesting phenomenon in peristaltic motion is trapping. In the wave
frame, streamelines under certain conditions split to trap a bolus which moves as a whole
with the speed of the wave. The effect of Weissenberg number W; on trapping can be
seen through Fig.22 for an inclined asymmetric channel. Furthermore, Fig.22 shows that
the bolus is anti-symmetric about the center line and its size decreases with an increase in
Wi; . It is observed from Figs.23 and 24 that the trapped bolus which are moving as whole
increases in size with the increase in b and a. The effects of phase shift ¢ on trapping can
be seen from Fig.8. It is depicted that increase in ¢ the trapping bolus which is moving as
a whole decreases. The effect of Darcy number D, on the trapping is illustrated in
Fig.26 and it is observed that the size of trapped bolus rapidly increases with increasing
D, . Fig.27 depicts the effects of channel width d on trapping. The trapped bolus exists
for small values of d , its size decreases with increasing d.

(a) (b) (c)
3 g 3 : 3
=1 =58 ==
=% 0 =3 0 =8
1 1 1
h 9
0 0 0
4 & 5
-1 -1 0 -1 8
Bl
-2 1 -2 24 -2 >z
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05

Fig.22. streamelines for b=0.7, $=0.5, a=0.7, u=0.01, n=0.01, Dr=0.7, ®=1.2, d=0.5, =0.5, and for
different W; ; (2) W; =1.1, (b) W;=1.2; (c) W; = 1.3.

(a) (b) (c)
3 : 3 3

—ug e =
2 , .

9 =¥ o =3 o =3
1 1 1

6 0
0 0 0 o

& 5 5] 5
-1 -1 B -1 0

, 3 <
. 29 . 27 ., 2.5
00 01 02 03 04 05 00 01 02 03 04 05 0.0 01 02 03 04 05

Fig.23. streamelines for Wi=1.3, $=0.5, a=0.7, p=0.01, n=0.01, Dr=0.7, ©®=1.2, d=0.5, e=0.5,and for
different b ; (a) b= 0.6, (b) b=0.7, (c) b=0.8.
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(a)

Fig.24. streamelines for W;=1.3, $=0.5,b=0.7, u=0.01, n=0.01, Dr=0.7, ®=1.2, d=0.5, e=0.5,and for

different a; (a) a= 0.6, (b) a=0.7, (c) a=0.8.
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Fig.25. streamelines for Wi=1.3, a=0.7, b=0.7, u=0.01, n=0.01, Dr=0.7, ®=1.2, d=0.5, e=0.5,and for
different

(=)

(b)

¢ ; (a) $=10.3, (b) ¢= 0.6, (c) $=0.9.
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Fig.26. streamelines for Wi=1.3, a=0.7, b=0.7, n=0.01, n=0.01, ¢= 0.5, ©=1.2, d=0.5, e=0.5,and for
different D, ; (a) D,=0.6, (b) D,=0.7, (c) D,=0.9.

(@)

(b)

200

(©)


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) L'H,i_l
Vol.6, No.3, 2016 IS'E
3 " 3 - 3
= = =
0
= o =9 4 =3
1 1 1
o o o
0 0 0
G 5
-1 f -1 0 -1 o
)
4.8 3.3 R 2.7
00 01 02 03 04 05 00 01 02 03 04 03 00 01 02 03 04 05

Fig.27. streamelines for Wi=1.3, a=0.7, b=0.7, u=0.01, n=0.01, ¢= 0.5, ®=1.2, D, = 0.7, e=0.5, and for
different d; (a) d=0.3, (b) d=0.4, (c) d=0.5.

4.4 Temperature characteristics

The expressions for temperature are given by Eq.(67). To explicity see the effects of
various parameters on temperature, Eq.(67) has been numerically evaluated and the
results are presented in Fig.28-34. From Fig.28, it can be found that the temperature
profiles are almost parabolic and temperature increases with increase of channel width d .
Further, it can be noticed that the increase in Weissenberg number W; causes a decrease
in temperature are ploted in Fig.29. Also Fig.30 display the influince of amplitude ratio
of the upper wall on the temperature distribution. We note that temperature increases with
increasing a. Fig.31 displays the influince of amplitude ratio of the lower wall on the
temperature distribution. It can be noticed that temperature increases when(1< 6 < 0.4)
and decreases when (1> 0 > 0.4) that accurs by increasing b. The effects increasing Darcy
number D, and Eckert number E; on the temperature are plotted in Figs.32 and 33 ,we
note that the increasing in D, and E, causes increases in temperature. While with the
increase in Prandtl number P, , the temperature field decreases Fig.34.

Fig.28. Effect of d on Fig.29. Effect of W, on
temperature for b= 0.2, ¢= /2, temperature for b= 0.2, ¢= n/2,
a=0.2,u=0.3,1=0.4,W;=0.7,D,=0.1, a=0.2,u=0.3,1=0.4,d=0.3,D,=0.1,
E,=-4,P,=1, e=0.01, x=1, ©=0.2. E,=-4,P,=1, e=0.01,x=1,0=0.2.

201


http://www.iiste.org/

Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.6, No.3, 2016

www.iiste.org

g

STe

12 ¢

a=0.01
WOr & _.o- a=003
08 [ — a=0.06

06 F
04
02}

00 L

Fig.30. Effect of a on
temperature for b=0.2, ¢= 7/2,
pu=0.3, n=0.4, d=0.3, D,=0.1, E,=-
4, P,=1, W;=0.8, e=0.01, x=1,
®=0.2.

12 F

Fig.32. Effect of D, on
temperature for a=0.2,0=0.2,
o= w2, p=0.3, n=0.4, d=1.3,
E=-4, P=1, W;=0.8, e=0.01,
x=0.9, ©=0.2.

12 F

Fig.31. Effect of b on
temperature for a=0.2, ¢= n/2,
p=0.3, n=0.4, d=0.3, D,=0.1, E,=-
4, P,=1, W;=0.8, e=0.01, x=0.9,
0=0.2.

Fig.33. Effect of E, on
temperature for a=0.2,b=0.2,
o=n/2, p=0.3, n=0.4, d=0.3,
D,=0.1, P,=1, Wi=0.8, e=0.01,
x=1, ®=0.2.
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Fig.34.  Effect of

temperature for
o= w2, p=0.3, n=04, d=0.3,

D,=0.1, x=1,
E,=-4.0=0.2.
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5. Concluding remarks

In this paper, we investigated the peristaltic transport of a Johnson-Segalman fluid
through a porous medium in an inclined asymmetric 2-D channel under the assumptions
of long-wavelength and low-Reynolds number. A perturbation solution for small
Weissenberg number is obtained for the stream function, axial pressure gradient, pressure
rise and temperature field over a wavelength. It is found that :

e The pressure rise over a wavelength AP decreases with an increase in d in the
pumping (AP > 0) and free pumping (AP = 0), while the situation is reversed in
the co-pumping region (AP < 0).

e The pressure rise over a wavelength AP decreases with an increase in
Wessenberg number W; and phase difference ¢ in the pumping region (AP > 0),
while the situation is reversed in the co-pumping region (AP < 0) and free
pumping (AP = 0).

e The pressure rise over a wavelength AP decreases by increasing F,, while
increases by increasing Dy and £ .

e The axial pressure gradient decreases by increasing d, F,, ¢,  and @, while
increases by increasing a, b, W, Re, fand 1

e The size of the trapped bolus increases with an increase in a, b, D;, while
decreases with an increase in W;, ¢ and d .

e The temperature field increases with the increase in d, a, D, and E,, while with the
increase in W;, b and P, the temperature field decreases.
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