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Abstract 

The problem of static fluid sphere in the framework of Einstein-Cartan theory is considered and a new technique 

to obtain the solution of Einstein –Cartan Field Equations in an analytic form by the method of quadrature is 

developed. The application of the technique in general cases give some exact solutions in a quite easy manner.  
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1.    Introduction 

In the Einstein theory of gravitation, the role of spin is not so important, because the effect of spins of many 

particles cancel out one another, whereas the effect of mass is additive. Hence only curvature due to mass is 

considered. Einstein-Cartan theory is the generalization of Einstein’s theory. In this both curvature and torsion 

are incorporated. Spin is a source of torsion. One can consider Einstein-Cartan theory as the theory of two tensor 

fields, the metric field g and the torsion field Q.  

Since the prediction of E-C theory differs from those of general relativity only for matter filled regions, 

therefore, besides cosmology an important application field for E-C theory is relativistic astrophysics dealing 

with the interior of stellar objects like neutron starts with some alignment of spins of the constituent particles and 

under conditions when torsion may produce some observable effects. As such it seems desirable to understand 

the full implication of the E-C theory for finite distributions like fluid spheres with non-zero pressure. With this 

view the problem of static-fluid spheres in the E-C theory have been considered by many workers (Prasanna 

1975, Kerlick 1975, Kuchowicz 1975 and Skinner and Webb 1977).  

In this paper, the problem of static fluid sphere in the framework of Einstein-Cartan theory is considered and a 

new technique to obtain the solution in an analytic form by the method of quadrature is developed. The 

application of the technique in general cases give some exact solutions in a quite easy manner.  

2.    The Einstein –Cartan Field Equations 

Let M be a C∞ four dimensional, oriental, connected Hausdorff differential manifold with a Lorentz metric g 

defined on it. All geometric objects other than the forms are defined by their components with respect to a field 

of coframes νi 
(in the contingent space of M) which are linearly independent at each point of M. Since we are 

interested in spinor fields, we take Ѳi 
to be in general non-holonomic and the associated tetrad to be orthonormal. 

Since the manifold is paracompact, there exists a connection on it which we assume to be metric linear 

connection. The metric g and the connection w are described with respect to the chosen co-frame Ѳi
 by the 

metric components 𝑔𝑖𝑗  and by the set of one form 𝜔𝑖, defining the covariant derivative respectively.  

Hence we have 

(2.1)        g = ds
2
 = 𝑔𝑖𝑗 𝜃𝑖 𝜃𝑗 , 𝑖𝑗 themselves are completely determined by 64 functions Γ𝑘𝑗

𝑖
  such that 

(2.2)        𝜔𝑗
𝑖   =  Γ𝑘𝑗

𝑖    𝜃
𝑘 

The Einstein –Cartan field equations are  
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(2.3)        𝑅𝑖
𝑗
 - 

1

2
 R 𝛿𝑖

𝑗
 =   - χ𝑡𝑖

𝑗
, where 𝑅𝑗

𝑖 is Ricci curvature tensor, R is curvature scalar, δ𝑗
𝑖 metric tensor and  𝑇𝑗

𝑖
 

is stress energy momentum tensor. χ = 8π 

(2.4)        𝑄𝑗𝑘
𝑖  - 𝛿𝑗

𝑖  𝑄𝑙𝑘
𝑖  - 𝛿𝑘

𝑖   𝑄𝑗𝑖
𝑖  =   - χ 𝑆𝑗𝑘

𝑖  , where 𝑄𝑗𝑘
𝑖  is torsion tensor and 𝑆𝑗𝑘

𝑖  is spin tensor and  𝑡𝑖
𝑗
 and 𝑆𝑗𝑘

𝑖  are 

defined through the relations  

(2.5)         𝑡𝑖 =  𝜂𝑗 𝑡𝑖
𝑗
  ,     𝑆𝑗𝑘 = 𝜂𝑖 𝑆𝑗𝑘

𝑖  . 

A static spherically symmetric matter distribution is considered which is represented by the space –time metric 

(2.6)       ds
2
 =   𝑒𝜈dt

2
 - 𝑒𝜆dr

2 
- r

2
 (dθ

2 
+ sin

2
θ d∅2   

), ν and λ being functions of r. If θ
𝑖
 represents an orthonormal 

co-frame we have from (2.1) and (2.6) 

(2.7)        θ
1
 = 𝑒λ /2 dr,  θ

2
 = r dθ ,  θ

3
 = r sin θ d∅,   θ

4
 = 𝑒ν /2 dt , 

                 so that 𝑔𝑖𝑗 = diag (1, -1, -1, -1). 

Assuming that the spins of the individual particles composing the fluid are all aligned in the radial direction, we 

get for the spin tensor 𝑆𝑖𝑗  the only independent non-zero components to be  𝑆23 = k (say). Since the fluid is 

supposed to be static, has the velocity four-vector 𝑢𝑖= 𝛿4
𝑖 . 

Thus the non-zero components of  𝑆𝑗𝑘
𝑖  are 

(2.8)          𝑆23
4   = - 𝑆32

4   = k. 

Hence from the Cartan equations (2.4), the non-zero components of 𝑄𝑗𝑘
𝑖  are obtained. 

(2.9)          𝑄23
4  = - 𝑄32

4  = - x k. 

Thus for a perfect fluid distribution with pressure p and density ρ the field equation (2.3) finally reduce to 

(2.10)        8 π p = 16 π2 𝑘2 - 
1

𝑟2 + 𝑒−𝜆 ( 
1

𝑟2  +   
  𝜈′  

𝑟
), 

(2.11)        8 π ρ = 16 π2 𝑘2 + 
1

𝑟2 -  𝑒−𝜆 ( 
1

𝑟2  -   
  𝜆′  

𝑟
), 

(2.12)        
𝑒𝜆 

𝑟2  = 
1

𝑟2 - 
  𝜈′2  

4
 - 

  𝜈′′  

2
 + 

  𝜈′  𝜆′  

4
 +  

  𝜈′ + 𝜆′  

2𝑟
 , where dashes denote differentiation with respect to r. 

The conservation law gives us the relations  

(2.13)        ∇𝑖 [(ρ + p)   𝑢𝑖] = 0                     (matter conservation) 

(2.14)        ∇𝑖 ( 𝑘 𝑢𝑖) = 0                              (spin conservation)      and 

(2.15)        𝑝′ + 
1

2
 (ρ + p)  𝜈′  + λ k (𝑘 ′ +  

𝑘  𝜈′ 

2
 ) = 0. 

If the equation of hydrostatic equilibrium is used 

(2.16)        𝑝′ + 
1

2
 (ρ + p)  𝜈′  = 0, 

The following equation is obtained. 

(2.17)        𝑘 ′ +  
𝑘  𝜈′ 

2
 = 0. 
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From (2.17) we have 

(2.18)         k =  𝐴1 𝑒−𝜈/2, where 𝐴1 is a constant of integration. 

In principle we have a completely determined system if an equation of state is specified. However, as is well 

known that in practice this set of equations is formidable to solve using a pre-assigned equation of state , except 

perhaps for the case ρ = p, which may not be physically meaningful. Secondly, we have the equation of 

boundary conditions to be chosen for fitting the solutions in the interior and the exterior of the star. A very 

interesting aspect of the Einstein- Cartan theory is that outside the fluid distribution the equations reduce to 

Einstein’s equations for empty space viz.  𝑅𝑖𝑗 = 0, since there is no spin density. 

Now, if we define 

(2.19)        ρ̅  = ρ – 2 π  𝑘2 ,        �̅�   = p – 2 π   𝑘2, then the equations (2.10) and (2.11) take the usual general 

relativistic form for a static fluid sphere as given by 

(2.20)        8 π  �̅� =   - 
1

𝑟2 + 𝑒−𝜆 ( 
1

𝑟2  +   
  𝜈′  

𝑟
), 

(2.21)        8 π ρ̅ =  
1

𝑟2 +  𝑒−𝜆 (−
1

𝑟2  + 
  𝜆′  

𝑟
), along with (2.12).  

The equation of continuity (2.15) now becomes 

(2.22)        
𝑑�̅�

𝑑𝑟
 + 

1

2
  (  ρ̅  +  �̅� )   𝜈 ′  = 0. 

In �̅� and ρ̅ the square term of spin behaves as the effective repulsive force. The repulsion can be important if the 

expression 2 π 𝑘2 is of the same order as the energy density ρ. It is clear from these equations that it is the �̅� and 

not p which is continuous across the boundary r = 𝑟0 of the fluid sphere. The continuity of  �̅� across the boundary 

ensures that of  (  𝜈′ 𝑒𝜈 ). Further with �̅� and ρ̅ replacing p and ρ respectively, we are assured that the metric 

coefficients are continuous across the boundary. Hence we shall apply the usual boundary conditions to the 

solutions of equations (2.12), (2.20) and (2.21).  

The boundary conditions are  

(2.23)        [𝑒−𝜆] 𝑟=𝑟0
 =  [𝑒𝜈] 𝑟=𝑟0

  =   (1 - 
2𝑚

𝑟0
 ), 

�̅� = 0 at 𝑟 = 𝑟0, where 𝑟0 is the radius and m is the mass of the fluid sphere. The total mass, as measured by an 

external observer, inside the fluid sphere of radius  𝑟0 is given by 

(2.24)        m = 4 π ∫ �̅�
𝑟0

0
 𝑟2 d r  = 4 π ∫ 𝜌

𝑟0

0
 𝑟2 d r - 8 π2  ∫ 𝑘2𝑟0

0
(𝑟)  𝑟2 d r. 

Thus the total mass of the fluid sphere is modified by the correction,  

8 π2  ∫ 𝑘2𝑟0

0
(𝑟)  𝑟2 dr. 

3.    Solution of the Field Equations 

We have to solve equation (2.12) for ν and λ. This may be fulfilled by quadrature in a number of ways e.g. 

Tolman specifies various conditions on the functions ν and λ that simplify, the equation and allow immediate 

integration while Adler in 1974 and Whitman in 1977 find λ by judicious choice of ν (r). We note that λ may be 

obtained if ν is given and vice-versa. Once ν and λ are obtained, p and ρ follow directly from equations (2.10) 

and (2.11). 

We define 

(3.1)         ν = 2 log Y 
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Then using equation (2.12), we get the differential equation 

(3.2)        𝑌′′ - (
1

𝑟
  + 

𝜆′

𝑟
) 𝑌′+ ( 

𝑒𝜆 

𝑟2  - 
𝜆′

2𝑟
 -  

1

𝑟2 ) Y = 0 

It is not always possible to get a traceable solution from the analytic specification of the equation of state. In 

these cases numerical and graphic technique are easy to apply. Exact solution in terms of known functions are 

most easily obtained by requiring one of the field variable to satisfy some subsidiary condition which simplify 

the full set of equations. Once the field equations are solved in this manner, an equation of state then can be 

extracted. Such solutions may be useful in understanding a system in the extreme, relativistic limit where we 

cannot specify a priori what the equation of state might be.   

As stated above, the set of equations (2.10) to (2.12) cannot be solved without either choosing an equation of 

state or making a specific assumption on one of the functions p, ρ, ν and λ. For this we assume 

(3.3)        𝑒λ(r)  =   A  𝑟𝑛 , where A and n are constants. 

Substitution of equation (3.3) in (3.2) provides 

(3.4)        𝑌′′ - ( 
1

𝑟
 +  

𝑛

2𝑟
 ) 𝑌′ + (A 𝑟𝑛−2 - 

𝑛

2𝑟2  -  
1

𝑟2 ) Y = 0. 

This is a second order differential equation in Y for the general value of n and A.  

We solve it for   n = - 2 

Equation (3.4) reduces to 

(3.5)        𝑌′′ -  
𝐴

𝑟4 Y = 0 

which has the solution 

(3.6)        Y =  
𝐴

6𝑟2 + 𝐵4 r + 𝐶4. 

Thus 

(3.7)        𝑒𝜈  =   (
𝐴

6𝑟2  +  𝐵4 r +  𝐶4)2,   𝑒𝜆    =  
𝐴

𝑟2, where 𝐵4 and  𝐶4 are constants. 

In this case pressure and density are  

(3.8)        8 π 𝑟2 ρ ( r )  =  1 - 
2𝑟2

𝐴
 + 16 π2 𝐴1

2  (
𝐴

6𝑟2  +  𝐵4 r +  𝐶4)−2 

(3.9)        8 π 𝑟2 p ( r )  =  -1 +   
2

𝐴
 [ 

− 
𝐴

𝑟3+ 𝐵4 𝑟3

𝐴

6𝑟2 + 𝐵4 r + 𝐶4

 ] 

+ 16 π2  (
𝐴

6𝑟2  +  𝐵4 r + 𝐶4)−2 . 

Spin density K is given by 

(3.10)      K =  𝐴1   [
𝐴

6𝑟2  +  𝐵4 r +  𝐶4]−1  . 

The constants A, 𝐵4, 𝐶4 and  𝐴1 are given by 

(3.11)      A =   
1

𝑅𝑏
 (1 − 

2𝑀

𝑅𝑏
)−1 
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(3.12)      𝐵4 =  
1

3 𝑅𝑏
5(1− 

2𝑀

𝑅𝑏 
)
  +  

𝑀

𝑅𝑏
2(1− 

2𝑀

𝑅𝑏
)1/2

 , 

(3.13)      𝐶4 = (1 −  
2𝑀

𝑅𝑏
)1/2 - 

1

2 𝑅𝑏
4(1− 

2𝑀

𝑅𝑏 
)
 + 

𝑀

𝑅𝑏(1− 
2𝑀

𝑅𝑏
)1/2

 

(3.14)      8 π 𝑅𝑏
2 ρ (𝑅𝑏) = 1 -   

2𝑅𝑏
2

𝐴
   + 16  π 𝐴1

2 (
𝐴

6𝑅𝑏
2  +  𝐵4 𝑅𝑏  +  𝐶4)−2 

4.    Conclusion 

The Einstein –Cartan Field Equations are written for a perfect fluid distribution with pressure p and density ρ.  

For solving this, the method of quadrature is used. Since exact solution in terms of known functions can be 

obtained by requiring one of the field variable to satisfy some subsidiary condition which simplify the full set of 

equations, we define ν = 2 log Y. Also it is assumed that 𝑒λ(r)  =   A  𝑟𝑛 , where A and n are constants. The 

equation is solved for n = -2. The equations for pressure p, density ρ and spin density K are obtained. 
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