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Abstract 

In this study, we have proposed an alternative solution to the multi objective linear fractional programming 

problems. This method deals with every objective of multi objective linear fractional programming problems 

gradually by using geometric programming technique to find the pareto optimal solution. The proposed solution 

procedure has been used in numeric examples and results have been compared with the real solution values. 
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1. Introduction 

Multi Objective Linear Fractional Programming Problem (MOLFPP), is an optimization problem that includes 

more than one ratio functions under some linear limitations. These ratio functions are handled as objective 

functions that measure the efficiency of the system, such as inventory/sales, cost/profit, output/employee, 

cost/profit and actual cost/standards cost. The solution values that each ratio function takes under the limitations 

in the problem are different. The optimal solution of MOLFPP can be reached by compensating these different 

solution values (Guzel 2013).  

Many methods and applications have been used for solving the MOLFPP in the literature: Charnes & Cooper 

(1962) solved the single objective Linear Fractional Programming Problem (LFPP) by converting it to linear 

programming problem. Choo & Atkins (1982) provided an analysis about the bi-criteria linear fractional 

programming. Kornbluth & Steuer (1981) and Lai & Hwang (1996) have developed an algorithm for solving the 

MOLFPP for the all weak-efficient vertices of the feasible region. Mishra & Singh (2013) used the method of 

LFPP in order to solve Multi Objective Linear Programming Problem. Chakraborty & Gupta (2002) suggested a 

procedure for solution of Multi Objective Fractional Programming Problem. For this procedure, they 

reformulated Multi Objective Fractional Programming model and gave computational examples. Youness et al. 

(2014) presented a solution algorithm for bi level Multi Objective Fractional Integer Programming Problem. In 

this model right side constants have been formed by the blurred numbers. The suggested algorithm uses Taylor 

series and Kuhn Tucker conditions combinations and integer solutions have been obtained by Gomory Cutting 

method. Pal et al. (2003) showed that blurred MOLFPP can be solved by using objective programming 

procedure. Two objective functions in the computational examples have been combined by giving blurred values 

and by converting it to one objective function. At this stage two new limitations have been added. Bhatia & 

Mehra (1999) developed Lagrange multiplier theorems for the solution of MOLFPP that includes n-set function. 

Valipour et al. 2014) suggested iterative parametric method for the solution of MOLFPP. Roghanian et al. (2007) 

showed that contingent bi level linear multi objective programming problem can be used in cases when the 

production capacity, resource value and demand on the market are random in supply chain problem. Azar et al. 

(2012) used Multi Objective Programming Problems in planning the production of a metal firm and wood firm. 

Example was solved by Pal (2003) first with some suggested presuppositions as MOLFPP and then by Dutta et 

al. (1992) with suggested blurred method and they showed that the results are the same. Gomez et al. (2006) 

suggested a solution for the problem of harvesting time for timber in a wood plantation in Cuba by MOLFPP. 

Fasakhodi et al. (2010) have made an optimization by taking the “net return/water consumption” and “labor 

employment/water consumption” rates into consideration with MOLFPP.  

Aggarwal and Patkar (1978) developed a geometric programming approach for Single Objective LFPP. In this 

study, an alternative model for the solution of MOLFPP is going to be presented. The suggested model is based 
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on developing the solution of Aggarwal & Patkar (1978) by a gradual approach on MOLFPP in cases when there 

are multiple objectives. Geometric Programming (GP), a special type of nonlinear programming, is a special 

technique that is developed in order to find the optimum values of posynomial and signomial functions. The 

solution to the GP problem follows the opposite method with respect to the classic optimization technique and it 

depends on the technique of first finding the weight values and calculating the optimum value for the objective 

function, then finding the values of the decision variables. GP started to be modelled and studied as part of 

nonlinear optimization (Zener 1991; Deffin et. al 2000). Some algorithms were used when trying to solve GP. In 

this study, GP technique is used to solve MOLFPP and the obtained results are compared to the results of the 

problems given in (Guzel 2013; Dangwal et al. 2012; Sen 1983; Sulaiman & Salih 2010).  

In the next section of this study, the MOLFPP and GP will be defined respectively. In the third section, the model 

that we suggest depending on the GP technique will be clarified. 

In the fourth section, the results of the MOLFPP solved with different methods are shown together with the 

results obtained through our proposed model. In the last section, conclusion and comments will be included. 

 

2. Preliminaries 

In this section, the mathematical basis of the methods that will be used in the proposed model will be explained. 

 

2.1 Multiple Objective Linear Fractional Programming Problem 

The general format of LFPP may be written as (Chakrabory & Gupta 2002)   

 Z(x) =  
cTx+α

dTx+β
                (1) 

 subject to  

 Ax = b,                  (2) 

 x ≥ 0,                  (3) 

x ∈  Rn,                  (4) 

b, cT, dT  ∈  Rn,                (5) 

 A ∈  Rm×n,                (6) 

α, β ∈ R.                 (7) 

For some values of 𝑥, 𝑑𝑇𝑥 + 𝛽 may be equal to zero. To avoid such cases, one requires that either [𝑥 ≥ 0,
𝐴𝑥 = 𝑏] ⟹ [𝑑𝑇𝑥 + 𝛽 > 0] 𝑜𝑟 [𝑥 ≥ 0, 𝐴𝑥 = 𝑏] ⟹ [𝑑𝑇𝑥 + 𝛽 < 0].  

For convenience, assume that LFP (Eq. 1 - Eq. 7) satisfies the condition that: 

 [x ≥ 0, Ax = b] ⟹ [dTx + β > 0].           (8) 

The problem is named as a MOLFPP when there are multiple objective functions. The general format of a 

MOLFPP may be written as (Chakrabory & Gupta 2002) 

 Z(x) = {Z1(x), Z2(x), … , ZK(x)}            (9) 

 subject to 

Ax = b,                  (10) 

 x ≥ 0,                  (11) 

x ∈  Rn,                  (12) 

b ∈ Rn, A ∈ Rm×n               (13) 

Each Zi(x) in the objective function Eq. 9 is shown below:  

 Zi(x) =
cTx+α

dTx+β
                (14) 

cT, dT  ∈  Rn,                 (15) 

α, β ∈ R.                 (16) 

 

2.2 Geometric Programming Problem 
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A GP problem is generally defined as follows (Beightler & Phillips 1976): 

𝑚𝑖𝑛 𝑦0(𝑥) = ∑ 𝐶0𝑡
𝑇0
𝑡=1 ∏ 𝑥𝑛

𝑎0𝑡𝑛𝑁
𝑛=1             (17) 

subject to  

𝑦𝑚(𝑥) = ∑ 𝐶𝑚𝑡
𝑇𝑚
𝑡=1 ∏ 𝑥𝑛

𝑎𝑚𝑡𝑛𝑁
𝑛=1 ≤ 1,     𝑚 = 1, 2, … , 𝑀         (18) 

When all of the 𝐶 constants are positive, the function is called a posynomial. When at least one of them are 

negative, it is called a signomial (Boyd et al. 2007). To solve the geometric programming problem given in Eq. 

17 and Eq. 18, the dual of the GP problem will be used instead of the classic optimization theory. The dual of the 

GP problem is based on the arithmetic geometric mean inequality (Taha 2010). For the general posynomial case, 

the dual GP problem is as follows (Beightler & Phillips 1976): 

𝑚𝑎𝑥 ∏ ∏ (
𝑤𝑚0𝐶𝑚𝑡

𝑤𝑚𝑡
)

𝑤𝑚𝑡𝑇𝑚
𝑡=1

𝑀
𝑚=0              (19) 

subject to 

∑ 𝑤0𝑡
𝑇0
𝑡=1 = 1                 (20) 

∑ ∑ 𝑎𝑚𝑡𝑛𝑤𝑚𝑡
𝑇𝑚
𝑡=1 = 0𝑀

𝑚=1 ,     𝑛 = 1, 2, … , 𝑁           (21) 

𝑤𝑚0 = ∑ 𝑤𝑚𝑡
𝑇𝑚
𝑡=1 ,     𝑚 = 1, 2, … , 𝑀            (22) 

given the conditions 𝑤00 = 1 and 𝑤𝑚0 = 𝜆𝑚. Eq. 20 is named as the normality condition and Eq. 21 is named 

as the orthagonality condition. 

 

3. The Proposed Model 

3.1 The Solution of Single Objective Linear Fractional Programming Problems 

The mathematical form of the method used in solving a Single Objective LFPP is given below (Aggarwal & 

Patkar 1978): 

(𝑃𝐹) Minimize 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑚) =
∑ 𝑐𝑖𝑥𝑖+𝑐0

𝑚
𝑖=1

∑ 𝑑𝑖𝑥𝑖+𝑑0
𝑚
𝑖=1

             (23) 

subject to 

 ∑ 𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖 ≤ 0, 𝑖 = 1,2, … , 𝑛𝑚
𝑗=1             (24) 

 𝑥𝑗 ≥ 0 𝑗 = 1,2, … , 𝑚              (25) 

Where 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑖  𝑎𝑛𝑑 𝑑𝑖 are arbitrary constants and it is assumed that ∑ 𝑑𝑖𝑥𝑖 + 𝑑0 > 0𝑚
𝑖=1  over the feasible 

region. 

Making use of transformation, 𝑦𝑖 = 𝑡𝑥𝑖 , 𝑖 = 1,2, … , 𝑚, we have the following equivalent linear program 

(Charnes & Cooper 1962), 

 (𝑃𝐿) Minimize 

 𝐻(𝑦1, … , 𝑦𝑚, 𝑡) = ∑ 𝑐𝑖𝑦𝑖 + 𝑐0𝑡𝑚
𝑖=1             (26) 

subject to 

 ∑ 𝑑𝑗𝑦𝑗 + 𝑑0𝑡 − 1 ≤ 0𝑚
𝑗=1               (27) 

 − ∑ 𝑑𝑗𝑦𝑗 − 𝑑0𝑡 + 1 ≤ 0𝑚
𝑗=1              (28) 

 ∑ 𝑎𝑖𝑗𝑦𝑗 − 𝑏𝑖𝑡 ≤ 0𝑚
𝑗=1 ,      𝑖 = 1,2, … , 𝑛           (29) 

 −𝑦𝑗 ≤ 0,   𝑗 = 1,2, … , 𝑚              (30) 

 −𝑡 ≤ 0                 (31) 

Following is one-to-one transformation due to Duffin et al. (2000), 𝐻(𝑌) = log ℎ, − 1 = log 𝜇1, + 1 =
log 𝜇2, 𝑦𝑗 = log 𝑡𝑗 , 𝑗 = 1,2, … , 𝑚  and 𝑡 = log 𝑡𝑚+1. Monotonicity of logarithmic function permits the resulting 

equivalent program to be expressed as primal geometric program given below: 

(𝑃𝐺) Minimize 

 ℎ(𝑡1, 𝑡2, … , 𝑡𝑚+1) = ∏ 𝑡
𝑗

𝑐𝑗
𝑡𝑚+1

𝑐0𝑚
𝑗=1             (32) 

subject to 

 𝜇1 ∏ 𝑡
𝑗

𝑑𝑗
𝑡𝑚+1

𝑑0 ≤𝑚
𝑗=1 1              (33) 
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 𝜇2 ∏ 𝑡
𝑗

−𝑑𝑗
𝑡𝑚+1

−𝑑0 ≤𝑚
𝑗=1 1              (34) 

 ∏ 𝑡
𝑗

𝑎𝑖𝑗
𝑡𝑚+1

−𝑏𝑖 ≤𝑚
𝑗=1 1, 𝑖 = 1,2, … , 𝑛            (35) 

 0 < 𝑡𝑗
−1 ≤ 1, 𝑗 = 1,2, … , 𝑚 + 1            (36) 

 

3.2 The Solution of Multi Objective Linear Fractional Programming Problems 

Definition (Goal Optimal solution): Let �̂� be a feasible solution to MOLFPP with objective function values  

𝑍𝑖(�̂�) =
𝑐𝑖𝑥+𝑐0

𝑖

𝑑𝑖𝑥+𝑑0
𝑖 , 𝑖 = 1, … , 𝑘.  

Then �̂� is a goal-optimal solution MOLFPP if for every objective 𝑟 = 1, … , 𝑘. The LFPP 

𝑀𝑎𝑥 𝑍𝑟(𝑥) =
𝑐𝑟𝑥+𝑐0

𝑟

𝑑𝑟𝑥+𝑑0
𝑟               (37) 

𝑐𝑖𝑥+𝑐0
𝑖

𝑑𝑖𝑥+𝑑0
𝑖 ≥ �̂�𝑖 , 𝑖 ≠ 𝑟                (38) 

𝐴𝑥 ≤ 𝑏                  (39) 

𝑥 ≥ 0                  (40) 

has optimal solution value 𝑍𝑟(𝑥∗) =
𝑐𝑟𝑥+𝑐0

𝑟

𝑑𝑟𝑥+𝑑0
𝑟 . 

Definition (Pareto-Optimal solution): Let 𝑥𝑝  be a feasible solution to MOLFPP. Then 𝑥𝑝  is a 

Pareto-Optimal solution to MOLFPP if for any other feasible solution �̃�, if there is some index 𝑖 for 

𝑐𝑖𝑥+𝑐0
𝑖

𝑑𝑖𝑥+𝑑0
𝑖 >

𝑐𝑖𝑥𝑝 +𝑐0
𝑖

𝑑𝑖𝑥𝑝 +𝑑0
𝑖 ,  

there is another index 𝑙 for which 

𝑐𝑙𝑥+𝑐0
𝑙

𝑑𝑙�̃�+𝑑0
𝑙 <

𝑐𝑙𝑥𝑝 +𝑐0
𝑙

𝑑𝑙𝑥𝑝 +𝑑0
𝑙 . 

Theorem: For �̂�  be a feasible solution to MOLFPP, �̂�  is pareto-optimal solution if and only if �̂�  is 

goal-optimal solution. 

Proof: �̂� is pareto-optimal solution if and only if there does not exist a feasible �̃� satisfying  

𝑐𝑘𝑥+𝑐0
𝑘

𝑑𝑘𝑥+𝑑0
𝑘 >

𝑐𝑘𝑥+𝑐0
𝑘

𝑑𝑘𝑥+𝑑0
𝑘,  

for some 𝑘, while  

𝑐𝑖𝑥+𝑐0
𝑖

𝑑𝑖𝑥+𝑑0
𝑖 ≥

𝑐𝑖𝑥+𝑐0
𝑖

𝑑𝑖𝑥+𝑑0
𝑖 , 

for every other 𝑖. But the existence of such a �̃� is equivalent to �̂� not being optimal to one of the Geometric 

Programming problems. Thus �̂� is pareto-optimal solution to MOLFPP if and only if �̂�  is goal-optimal 

solution.                

Aggarwal and Patkar (1978) proposed an algorithm depending on the GP solution technique to solve a LFPP. In 

order to use this algorithm for the MOLFPP solution, objective functions have to be gradually dealt with and 

solved using the GP technique. Thus the pareto-optimal solution will be obtained.  

For the MOLFPP solution, the algorithm consisting of the following steps is used: 

Step 1. The objective functions of the problem are arranged as minimizations. 

Step 2. The constraints are shown as in Eq. 24. 

Step 3. The problem is arranged as a GP problem in the form of Eq. 32 – Eq. 36 considering the first objective 

and the constraints. 

Step 4. The GP problem is solved. The objective function value (𝑠) and the values of the decision variables are 

found. 

Step 5. If the last objective function is solved for, the process is terminated. Otherwise go to Step 6. 

Step 6. The last obtained objective function value (𝑠) is injected into the problem as a constrained as shown in 

Eq. 41.  

∑ 𝑐𝑖𝑥𝑖+𝑐0
𝑚
𝑖=1

∑ 𝑑𝑖𝑥𝑖+𝑑0
𝑚
𝑖=1

≤ 𝑠                (41) 

Step 7. The problem is arranged as a GP problem in the form of Eq. 32 – Eq. 36 considering the next objective 
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function and the constraints. 

Step 8. Go to Step 4.  

 

4. Numerical Examples 

To illustrate the proposed model we consider the following problems: 

Problem 1:  The problem consisting of two objective functions and three constraints and its solution (Dangwal 

et al. 2012) is given below:  

𝑀𝑎𝑥 {𝑍1(𝑥) =  
−3𝑥1+2𝑥2

𝑥1+𝑥2+3
,    𝑍2(𝑥) =

7𝑥1+𝑥2

5𝑥1+2𝑥2+1
}  

subject to 

𝑥1 − 𝑥2 ≥ 1   

2𝑥1 + 3𝑥2 ≤ 15  

𝑥1 ≥ 3  

where 𝑥1, 𝑥2 ≥ 0  

In this problem 𝑍1 < 0,  𝑍2 ≥ 0,  for each 𝑥  in the feasible region. The solution of the problem is 

𝑍1
𝑚𝑎𝑥(3.6, 2.6) =

−14

23
≅ −0.61, 𝑍2

𝑚𝑎𝑥(7.5,0) =
15

11
≅ 1.36. 

Our Solution: The transformations and solutions obtained by applying our proposed model are given below:   

Phase 1: The first objective function and the constraints in Problem 1 are arranged according to Eq. 26 – Eq. 31: 

𝑍1
𝑚𝑖𝑛 =

3𝑥1−2𝑥2

𝑥1+𝑥2+3
  

subject to 

−𝑥1 + 𝑥2 + 1 ≤ 0 

2𝑥1 + 3𝑥2 − 15 ≤ 0 

−𝑥1 + 3 ≤ 0 

The obtained single objective linear fractional programming problem is transformed into the below format as a 

geometric programming problem using Eq. 32 – Eq. 36: 

𝑍1
𝑚𝑖𝑛 = 𝑡1

3. 𝑡2
−2. 𝑡3

0 

subject to 

0,1. 𝑡1
1. 𝑡2

1. 𝑡3
3 ≤ 1 

10. 𝑡1
−1. 𝑡2

−1. 𝑡3
−3 ≤ 1 

𝑡1
−1. 𝑡2

1. 𝑡3
1 ≤ 1 

𝑡1
2. 𝑡2

3. 𝑡3
−15 ≤ 1 

𝑡1
−1. 𝑡2

0. 𝑡3
3 ≤ 1 

𝑡1
−1 ≤ 1 

𝑡2
−1 ≤ 1 

𝑡3
−1 ≤ 1 

Solving this problem, the result 𝑍1
𝑚𝑖𝑛(3.54,2.63) = 0.61 is obtained. 

Phase 2: The single objective linear fractional programming problem below is obtained after arranging the 

second objective function as minimization, injecting the first objective function into constraints and rewriting all 

constraints as≤ 0: 

𝑍𝑚𝑖𝑛 =
−7𝑥1−𝑥2

5𝑥1+2𝑥2+1
  

subject to 

−3𝑥1+2𝑥2

𝑥1+𝑥2+3
≤ 0,61 → −3.61𝑥1 + 1.39𝑥2 − 1.83 ≤ 0  

−𝑥1 + 𝑥2 + 1 ≤ 0  

2𝑥1 + 3𝑥2 − 15 ≤ 0 
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−𝑥1 + 3 ≤ 0 

The obtained single objective fractional programming problem is transformed into the below format as a 

geometric programming problem: 

𝑍𝑚𝑖𝑛 = 𝑡1
−7. 𝑡2

−1. 𝑡3
0 

subject to 

0,1. 𝑡1
5. 𝑡2

2. 𝑡3
1 ≤ 1 

10. 𝑡1
−5. 𝑡2

−2. 𝑡3
−1 ≤ 1 

𝑡1
−1. 𝑡2

1. 𝑡3
1 ≤ 1 

𝑡1
2. 𝑡2

3. 𝑡3
−15 ≤ 1 

𝑡1
−1. 𝑡2

0. 𝑡3
3 ≤ 1 

𝑡1
−3.61. 𝑡2

1.39. 𝑡3
−1.83 ≤ 1 

𝑡1
−1 ≤ 1 

𝑡2
−1 ≤ 1 

𝑡3
−1 ≤ 1  

Solving this problem, the result 𝑍2
𝑚𝑖𝑛(7.49,0) = −1.36 is obtained. 

Since the objective function is maximization, 𝑍1
𝑚𝑎𝑥 = −0.61 and 𝑍2

𝑚𝑎𝑥 = 1.36 is obtained.  

Problem 2: The problem consisting of three objective functions and four constraints and its solution (Guzel 

2013) is given below: 

𝑀𝑎𝑥 {
−3𝑥1+2𝑥2

𝑥1+𝑥2+3
,

7𝑥1+𝑥2

5𝑥1+2𝑥2+1
,

𝑥1+4𝑥2

2𝑥1+3𝑥2+2
}  

subject to 

𝑥1 − 𝑥2 ≥ 1  

2𝑥1 + 3𝑥2 ≤ 15  

𝑥1 + 9𝑥2 ≥ 9  

𝑥1 ≥ 3  

𝑥1, 𝑥2 ≥ 0  

The values of this problem’s solution are 𝑥1 = 3, 𝑥2 = 2, 𝑍1 = −0.625, 𝑍2 = 1.15,  𝑍3 = 0.79. 

Our Solution: The transformations and solutions obtained by applying our proposed model are given below:   

Phase 1: The first objective function and the constraints in Problem 2 are arranged according to Eq. 26 – Eq. 31: 

𝑍1
𝑚𝑖𝑛 =

3𝑥1−2𝑥2

𝑥1+𝑥2+3
  

subject to 

−𝑥1 + 𝑥2 + 1 ≤ 0  

2𝑥1 + 3𝑥2 − 15 ≤ 0  

−𝑥1 − 9𝑥2 + 9 ≤ 0  

−𝑥1 + 3 ≤ 0  

𝑥1, 𝑥2 ≥ 0  

The obtained single objective linear fractional programming problem is transformed into the below format as a 

geometric programming problem using Eq. 32 – Eq. 36: 

𝑍1
𝑚𝑖𝑛 = 𝑡1

3. 𝑡2
−2. 𝑡3

0  

subject to 

0.1𝑡1
1. 𝑡2

1. 𝑡3
3 ≤ 1  

10𝑡1
−1. 𝑡2

−1. 𝑡3
−3 ≤ 1  

𝑡1
−1. 𝑡2

1. 𝑡3
1 ≤ 1  

𝑡1
2. 𝑡2

3. 𝑡3
−15 ≤ 1  
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𝑡1
−1. 𝑡2

−9. 𝑡3
9 ≤ 1  

𝑡1
−1. 𝑡2

0. 𝑡3
3 ≤ 1  

𝑡1
−1 ≤ 1  

𝑡2
−1 ≤ 1  

𝑡3
−1 ≤ 1  

Solving this problem, the result 𝑥1 = 3.60, 𝑥2 = 2.60, 𝑍1
𝑚𝑖𝑛 = 0.61 is obtained. 

Phase 2: The single objective linear fractional programming problem below is obtained after arranging the 

second objective function as minimization, injecting the first objective function into constraints and rewriting all 

constraints as ≤ 0: 

 𝑍2
𝑚𝑖𝑛 =

−7𝑥1−𝑥2

5𝑥1+2𝑥2+1
   

subject to 

3𝑥1−2𝑥2

𝑥1+𝑥2+3
≤ 0.61 →  2.39𝑥1 − 2.61𝑥2 − 1.83 ≤ 0  

−𝑥1 + 𝑥2 + 1 ≤ 0  

2𝑥1 + 3𝑥2 − 15 ≤ 0  

−𝑥1 − 9𝑥2 + 9 ≤ 0  

−𝑥1 + 3 ≤ 0  

𝑥1, 𝑥2 ≥ 0   

The obtained single objective fractional programming problem is transformed into the below format as a 

geometric programming problem: 

𝑍2
𝑚𝑖𝑛 = 𝑡1

−7. 𝑡2
−1. 𝑡3

0  

subject to 

0.1t1
5. t2

2. t3
1 ≤ 1  

10t1
−5. t2

−2. t3
−1 ≤ 1  

t1
−1. t2

1 . t3
1 ≤ 1  

t1
2. t2

3. t3
−15 ≤ 1  

t1
−1. t2

−9. t3
9 ≤ 1  

t1
−1. t2

0. t3
3 ≤ 1  

t1
2.39. t2

−2.61. t3
−1.83 ≤ 1  

t1
−1 ≤ 1  

t2
−1 ≤ 1  

t3
−1 ≤ 1  

Solving this problem, the result 𝑥1 = 3.60, 𝑥2 = 2.60, 𝑍2
𝑚𝑖𝑛 = −1.15 is obtained. 

Phase 3: The single objective linear fractional programming problem below is obtained after arranging the third 

objective function as minimization, injecting the second objective function into constraints and rewriting all 

constraints as ≤ 0: 

𝑍3
𝑚𝑖𝑛 =

−𝑥1−4𝑥2

2𝑥1+3𝑥2+2
  

subject to 

−7𝑥1−𝑥2

5𝑥1+2𝑥2+1
≤ −1.15 →  −1.25𝑥1 + 1.30𝑥2 + 1.15 ≤ 0  

2.39𝑥1 − 2.61𝑥2 − 1.83 ≤ 0  

−𝑥1 + 𝑥2 + 1 ≤ 0  

2𝑥1 + 3𝑥2 − 15 ≤ 0  

−𝑥1 − 9𝑥2 + 9 ≤ 0  

−𝑥1 + 3 ≤ 0  
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𝑥1, 𝑥2 ≥ 0  

The obtained single objective fractional programming problem is transformed into the below format as a 

geometric programming problem: 

𝑍3
𝑚𝑖𝑛 = 𝑡1

−1. 𝑡2
−4. 𝑡3

0  

subject to 

0.1t1
2. t2

3. t3
2 ≤ 1  

10t1
−2. t2

−3. t3
−2 ≤ 1  

t1
−1. t2

1 . t3
1 ≤ 1  

t1
2. t2

3. t3
−15 ≤ 1  

t1
−1. t2

−9. t3
9 ≤ 1  

t1
−1. t2

0. t3
3 ≤ 1  

t1
2.39. t2

−2.61. t3
−1.83 ≤ 1  

t1
−1.25. t2

1.30. t3
1.15 ≤ 1  

t1
−1 ≤ 1  

t2
−1 ≤ 1  

t3
−1 ≤ 1  

Solving this problem, the result 𝑥1 = 3.61, 𝑥2 = 2.59, 𝑍3
𝑚𝑖𝑛 = −0.81 is obtained. 

Since the objective function is maximization, 𝑍1
𝑚𝑎𝑥 = −0.61, 𝑍2

𝑚𝑎𝑥 = 1.15,  𝑍3
𝑚𝑎𝑥 = 0.81 is obtained.  

Problem 3: The problem consisting of four objective functions and five constraints and its solution (Sen 1983; 

Sulaiman & Salih 2010) is given below: 

𝑀𝑎𝑥 {
5𝑥1+3𝑥2

𝑥1+𝑥2+1
,

9𝑥1+5𝑥2

3𝑥1+3𝑥2+3
,

3𝑥1−4𝑥2

𝑥1+𝑥2+1
,

3𝑥1+2𝑥2

2𝑥1+2𝑥2+2
}  

subject to 

2𝑥1 + 4𝑥2 ≥ 8  

𝑥1 + 𝑥2 ≤ 3  

𝑥1 + 2𝑥2 ≤ 10  

2𝑥1 + 𝑥2 ≤ 5  

𝑥1 ≤ 2  

𝑥1, 𝑥2 ≥ 0  

The values of this problem’s solution are: 

𝑥1 = 2, 𝑥2 = 1, 𝑍1 = 3.25  

𝑥1 = 2, 𝑥2 = 1, 𝑍2 = 1.92  

𝑥1 = 2, 𝑥2 = 1, 𝑍3 = 0.5  

𝑥1 = 2, 𝑥2 = 1, 𝑍4 = 1.  

Our Solution: The transformations and solutions obtained by applying our proposed model are given below:   

Phase 1: The first objective function and the constraints in Problem 3 are arranged according to Eq. 26 – Eq. 31: 

𝑍1
𝑚𝑖𝑛 =

−5𝑥1−3𝑥2

𝑥1+𝑥2+1
  

subject to 

−2x1 − 4x2 + 8 ≤ 0  

x1 + x2 − 3 ≤ 0  

x1 + 2x2 − 10 ≤ 0  

2x1 + x2 − 5 ≤ 0  

x1 − 2 ≤ 0  
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x1, x2 ≥ 0  

The obtained single objective linear fractional programming problem is transformed into the below format as a 

geometric programming problem using Eq. 32 – Eq. 36: 

𝑍1
𝑚𝑖𝑛 = 𝑡1

−5. 𝑡2
−3. 𝑡3

0  

subject to 

0.1t1
1. t2

1 . t3
1 ≤ 1  

10t1
−1. t2

−1. t3
−1 ≤ 1  

t1
−2. t2

−4. t3
8 ≤ 1  

t1
1. t2

1 . t3
−3 ≤ 1  

t1
1. t2

2. t3
−10 ≤ 1  

t1
2. t2

1 . t3
−5 ≤ 1  

t1
1. t2

0. t3
−2 ≤ 1  

t1
−1 ≤ 1  

t2
−1 ≤ 1  

t3
−1 ≤ 1  

Solving this problem, the result 𝑥1 = 2, 𝑥2 = 1, 𝑍1
𝑚𝑖𝑛 = −3.25 is obtained. 

Phase 2: The single objective linear fractional programming problem below is obtained after arranging the 

second objective function as minimization, injecting the first objective function into constraints and rewriting all 

constraints as ≤ 0: 

𝑍2
𝑚𝑖𝑛 =

−9𝑥1−5𝑥2

3𝑥1+3𝑥2+3
  

subject to 

−5x1−3x2

x1+x2+1
≤ −3.25 →  −1.75x1 + 0.25x2 + 3.25 ≤ 0  

−2x1 − 4x2 + 8 ≤ 0  

x1 + x2 − 3 ≤ 0  

x1 + 2x2 − 10 ≤ 0  

2x1 + x2 − 5 ≤ 0  

x1 − 2 ≤ 0  

x1, x2 ≥ 0  

The obtained single objective fractional programming problem is transformed into the below format as a 

geometric programming problem: 

𝑍2
𝑚𝑖𝑛 = 𝑡1

−9. 𝑡2
−5. 𝑡3

0  

subject to 

0.1t1
3. t2

3. t3
3 ≤ 1  

10t1
−3. t2

−3. t3
−3 ≤ 1  

t1
−2. t2

−4. t3
8 ≤ 1  

t1
1. t2

1 . t3
−3 ≤ 1  

t1
1. t2

2. t3
−10 ≤ 1  

t1
2. t2

1 . t3
−5 ≤ 1  

t1
1. t2

0. t3
−2 ≤ 1  

t1
−1.75. t2

0.25. t3
3.25 ≤ 1  

t1
−1 ≤ 1  

t2
−1 ≤ 1  

t3
−1 ≤ 1  
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Solving this problem, the result 𝑥1 = 2, 𝑥2 = 1, 𝑍2
𝑚𝑖𝑛 = −1.92 is obtained. 

Phase 3: The single objective linear fractional programming problem below is obtained after arranging the third 

objective function as minimization, injecting the second objective function into constraints and rewriting all 

constraints as ≤ 0:  

𝑍3
𝑚𝑖𝑛 =

−3𝑥1+4𝑥2

𝑥1+𝑥2+1
  

subject to 

−9𝑥1−5𝑥2

3𝑥1+3𝑥2+3
≤ −1.92 →  −3.24𝑥1 + 0.76𝑥2 + 5.76 ≤ 0  

−1.75𝑥1 + 0.25𝑥2 + 3.25 ≤ 0  

−2𝑥1 − 4𝑥2 + 8 ≤ 0  

𝑥1 + 𝑥2 − 3 ≤ 0  

𝑥1 + 2𝑥2 − 10 ≤ 0    

2x1 + x2 − 5 ≤ 0  

x1 − 2 ≤ 0  

x1, x2 ≥ 0  

The obtained single objective fractional programming problem is transformed into the below format as a 

geometric programming problem: 

Z3
min = t1

−3. t2
4. t3

0  

subject to 

0.1t1
1. t2

1 . t3
1 ≤ 1  

10t1
−1. t2

−1. t3
−1 ≤ 1  

t1
−2. t2

−4. t3
8 ≤ 1  

t1
1. t2

1 . t3
−3 ≤ 1  

t1
1. t2

2. t3
−10 ≤ 1  

t1
2. t2

1 . t3
−5 ≤ 1  

t1
1. t2

0. t3
−2 ≤ 1  

t1
−1.75. t2

0.25. t3
3.25 ≤ 1  

t1
−3.24. t2

0.76. t3
5.76 ≤ 1  

t1
−1 ≤ 1  

t2
−1 ≤ 1  

t3
−1 ≤ 1  

Solving this problem, the result 𝑥1 = 2, 𝑥2 = 1, 𝑍3
𝑚𝑖𝑛 = −0.5 is obtained. 

Phase 4: The single objective linear fractional programming problem below is obtained after arranging the 

fourth objective function as minimization, injecting the third objective function into constraints and rewriting all 

constraints as ≤ 0: 

Z4
min =

−3x1−2x2

2x1+2x2+2
  

subject to 

−3x1+4x2

x1+x2+1
≤ −0.5 →  −2.5x1 + 4.5x2 + 0.5 ≤ 0  

−3.24x1 + 0.76x2 + 5.76 ≤ 0  

−1.75x1 + 0.25x2 + 3.25 ≤ 0  

−2x1 − 4x2 + 8 ≤ 0  

x1 + x2 − 3 ≤ 0  

x1 + 2x2 − 10 ≤ 0  

2x1 + x2 − 5 ≤ 0  
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x1 − 2 ≤ 0  

x1, x2 ≥ 0  

The obtained single objective fractional programming problem is transformed into the below format as a 

geometric programming problem: 

Z4
min = t1

−3. t2
−2. t3

0  

subject to 

0.1t1
2. t2

2. t3
2 ≤ 1  

10t1
−2. t2

−2. t3
−2 ≤ 1  

t1
−2. t2

−4. t3
8 ≤ 1  

t1
1. t2

1 . t3
−3 ≤ 1  

t1
1. t2

2. t3
−10 ≤ 1  

t1
2. t2

1 . t3
−5 ≤ 1  

t1
1. t2

0. t3
−2 ≤ 1  

t1
−1.75. t2

0.25. t3
3.25 ≤ 1  

t1
−3.24. t2

0.76. t3
5.76 ≤ 1  

t1
−2.5. t2

4.5. t3
0.5 ≤ 1  

t1
−1 ≤ 1  

t2
−1 ≤ 1  

t3
−1 ≤ 1  

Solving this problem, the result 𝑥1 = 2, 𝑥2 = 1, 𝑍4
𝑚𝑖𝑛 = −1 is obtained. 

Since the objective function is maximization, 𝑍1
𝑚𝑎𝑥 = 3.25, 𝑍2

𝑚𝑎𝑥 = 1.92,  𝑍3
𝑚𝑎𝑥 = 0.5, 𝑍4

𝑚𝑎𝑥 = 1 is obtained.  

 

5. Conclusion 

In this study, we developed an alternative solution to the MOLFPP by using GP technique as a useful and 

effective method. In this method, depending on the number of the objectives in the objective function, 

maximization or minimization of the objectives and the number of limitations, different conversions are not done, 

only one conversion is done. In this way the complications of conversion in the other methods is minimized. It is 

observed that in the literature conversion methods and methods based on Fuzzy theory are used in solving the 

MOLFPP problems. The use of GP in the solution of MOLFPP is an interesting approach. It is also observed that 

same or close results to the real solution values are obtained in all examples. Three numerical examples have 

been solved to illustrate the proposed model. Same results with the results in resources were obtained in the first 

and the third problem. In the second problem, on the other hand, close results were obtained. 
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