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Abstract

The first main objective of the work was to create a combinatorial answer to an essential question; "How Terao
generalization of the class of supersolvable arrangements preserved the tensor factorization of the O-S algebra?",
by finding a relation among several bases of the O-S algebra. This was achieved in two parts. First, the class of
factored arrangements was classified in two subclasses, the subclass of completely factored arrangements and the
subclass of factored arrangement that not completely factored. Our classification criteria was, "the existence of
an ordering 2 on the hyperplanes of a factored arrangement <A such that the set of all monomials that related
to the sections of a factorization @ on A forms an NBC basis of the O-S algebra as a free module™. The second
part was, a comparison among the structures of the O-S complex, the NBC complex and the partition complex.
In spite of, our classification criteria was failed of the second subclass of factored arrangement that not
completely factored, the existence of a one to one correspondence between the set of all NBC bases of A and
the set of all sections of a factorization m on A, provides a tensor factorization fashion to the O-S algebra.

The second main aim of the work was to prove that our classification is compatible with the product
construction for arrangements, by constructing the O-S complex, the NBC complex and the partition complex of
the reducible factored arrangements. Finally, several illustrations and applications were indicated.

Keywords: Hyperplane arrangement, Supersolvable arrangement, factored (Nice) arrangement, Orlik-Solomon
algebra, NBC module and Partition tensor module.

Introduction:

A hyperplane arrangement A is defined to be a finite collection of hyperplanes of a finite dimensional
vector space V over a field F = R or C. The field of hyperplane arrangements becomes increasingly popular
during the previous century, from the time when its applications used in numerous areas, including Geometry,
robotics, graphics, molecular biology, computer vision. The best general reference here is [8].

The chomological group of the complement M(cA) = V\ Ugea H of an arrangement A in a complex
space had been studied by E. Fadell, R. Fox and L. Neuwirth (1962, [5,6]), in a connection of the Braid
arrangement. They gave a presentation of the cohomological ring of the complement M(A) as generators and
relations. In (1973, [4]), E. Brieskorn replaced the Braid arrangement by a Coxeter arrangement and the
complexification of its reflection arrangement in order to generalize the previous work and give a presentation to
the cohomological ring H*(M(A)) of the complement M(A). Orlik and Solomon in (1980, [9]) generalized
Brieskorn results to construct a graded algebra A(cA) (that named by their names and for simplicity denoted by
O-S algebra) associated to any complex arrangement A and their description involves the intersection lattice
L(A) = {X|X = Nyep H and B € A} of A. They proved that, A(A) is isomorphic to the cohomological ring
H*(M(A)) of the complement M(A).

In (1984, [10]), Orlik, Solomon and Terao showed that a supersolvable (Stanely (1972, [13]))
arrangement A admits a partition 7 which gives rise to a tensor factorization of O-S algebra A(A). Bjorner
and Ziegler in (1991, [3]), gave a sufficient condition for such factorizations of A(cA). In (1992, [14]), Terao
was able to capture this tensor factorization property of A(cA) purely combinatorially in terms of the underlying
partition 7 to introduce firstly the class of factored arrangements as a generalization of Stanely class of
supersolvable arrangements. In section (1), we review some of the standard facts about the Terao class of
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factored arrangements.

Terao generalization turn raises several questions and conjectures, one of them is: Why does Terao
generalization still reserve the tensor factorization of the O-S algebra? In order to create a conjecture to answer
this question, we study the notion of "quadratic arrangement"”. In (2001, [11]), K. J. Pearson showed that: an
arrangement A is supersolvable if, and only if, A is quadratic via an order = defined on its hyperplanes. Ali
in (2014, [1]) gave a sufficient and necessary condition on the structure of O-S algebra A(A) that induced to a
central arrangement, a structure as a supersolvable arrangement. Due their work, section (2) includes a
classification to the class of factored arrangements into two subclasses. Our classification criteria is, the
existence of an ordering < on the hyperplanes of a factored arrangement A such that the NBC monomial basis
of the O-S algebra A(A) as free module, is the same basis that provides a tensor factorization fashion to A(A).
First, we introduce the subclass of factored arrangements that included arrangements satisfied our criteria, called
completely factored arrangements. The second subclass consists factored arrangements fails to satisfied our
classification criteria. We showed, how the NBC monomial basis of the O-S algebra A(A), exhibits the tensor
factorization fashionto A(A) for a factored arrangement A that not completely factored.

Hoge and Rohrle in (2014, [7]), showed that the notion of "factored arrangement" is compatible with the
product construction for arrangements. Section (3), is motivated to prove that our classification is compatible
with the product construction. This was realized by a comparing among the O-S complex, the NBC complex and
the partition complex of the product of factored arrangement by using our classification. Section (4), indicates
some illustrations to ensure our work.

1. Basic facts
This section goal is to introduce Terao class of arrangements (1992, [14]) with some basics of the
structure of O-S algebra, NBC module and Partition tensor module with their complexes. The following
assumptions will be needed throughout the Paper; Assume A be an arrangement of a finite dimensional vector
space V overafield F = RorC and let L = L(A) = {X|X = Nyep H and B < A} be its intersection lattice
that ordered by reverse the inclusion, (ie. X< Y & Y c X, for X,Y € L(A)), and ranked by rk(X) =
codim(X) = dim(V) — dim(X), for X € L(A). When we want to emphasize rk(A) = rk(Ngey H) = ¥, we
will write A be an f-arrangement.
1.1. Definition: [8]
Let 7w = (my,...,m,) be apartition of an f-arrangement A.
1. A section S of m is a subarrangement of A satisfied for each 1 < k < ¢, either S nm, is empty or a
singleton. By S(mr) we denote the set of all sections of m and the set S, () denotes the set of all sections
S of m with |S| =k, we call such sections of , k-sections of w. We will agree that the empty section
@, isa 0-sections of m.

2. Theinteger ¢ is called the length of = and denoted by #(m).

3. rk(m) = rk(Nyenyu..um H)-

4. m is called independent if for every choice of hyperplanes H, € m;, for 1 <k <, the resulting ¢
hyperplanes are independent, i.e. rk(H; N..N H,;) =£.

5. Let X € L.Let w = (my, ..., m,) be a partition of A. Then the induced partition 7wy is a partition of Ay,
its blocks are the nonempty subsets m, N Ay, 1 <k < 4.

6. m is called a factorization of A or nice, if 7 is independent and if X € L\{V} then the induced partition
my contains a block, which is a singleton.
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7. A is called factored (or nice) arrangement if, it has a factorization = = (m4, ..., ;). The vector of integers
d = (d,,..,d,) issaid to be the exponent vector of A, if d, = |m|, 1<k <¢.

It is clear that, S(m) = Uf_,S,(m) and in general, rk(m,) = rk(A) < £(w). If 7 is independent, then

every section S of m isindependent subarrangement of A, i.e. |S| =rk(S) =k and £(r) = rk(A).

1.2. Definition: [1]

1. A subarrangement C of A is said to be a circuit, if it is a minimal dependent subarrangement of A, i.e.
C\{H} is linearly independent, forany H € C, i.e. rk(C) = |C| -1

2. Via a total ordering @ on the hyperplanes of A, the corresponding broken circuit of a circuit C is
C = C\{H}, where H is the smallest hyperplane in C. If |C| =k, then C is said to be k-broken circuit.
The set of all k-broken circuits of <4 will be denoted by BCy(A) and BC(A) = Uk_, BCx(A).

3. We call B < A, an NBC base of A, if it contains no broken circuit. Note that, such a set must be
independent and we will write k-NBC base for B if |B| = k and we will agree that @’ is the 0-NBC
of A.By NBC,(A) we denote the set of all k-NBC bases of A and NBC(A) = Us_y NBC,(A) .

4. If X € L(A). Then the NBC base B € Ay, (i.e. Nyep H = X) is said to be an NBC base of X.

5. If A is a factored arrangement with a factorization m. Due a total ordering < on the hyperplanes of A,
define, po(A) = Max{k| NBC,(A) = S, (m)}. We remarked that, 1 < p4(A) < 4.

1.3. Remark: [8]

Let A be afactored £-arrangement. Then:

1. If d =(dy,..,d,) bethe exponent vector of =, it is known that;

P(A,0) =[Ther(L+dit) =1+ (dy+..+d)t+ (T4 X0 240 diydy, )02 + -+ dy ody £F)
2. Independent of our choice of an ordering = on the hyperplanes of A, Rota in ([12], 1964) proved that, the
k" Betti number of the Poincare polynomial P(A,t) = b,(A) = [NBC,(A)|. Accordingly, we have,

bi(A) = INBCy(A) = XK Tkt B i v1diydiy ndy , 1Sk <2
3. For 1 <k < ¢ the number of k- sections of ;
1Sk = X5 N i+ Ay, ey

Thatis, [NBCy(A)| = IS, ().

1.4. Definition: [11]

Let A be an arrangement and < be an order defined on its hyperplanes. A is said to be quadratic via
< if, and only if, every broken circuit of A contains a broken circuit of order 2, i.e. if B € BC,(A), k >
2, then there exists B’ € BC,(A) such that B’ < B.

1.5. Theorem: [1]

Let A be a central £-arrangement. A is supersolvable if, and only if, there exists an ordering < on
the hyperplanes of A4 such that every subarrangement of A4 which contains no 2-broken circuit from an
NBC-base of A.

1.6. Corollary: [11]

A central £-arrangement A is supersolvable if, and only if, it is quadratic via an ordering <.
1.7. Definition: [8]

Let K be any commutative ring and Let < be an arbitrary total order that defined on the hyperplanes of an
f-arrangement A. The Orlik-Solomon algebra (or for simplicity O-S algebra) A,(A) is defined to be the

quotient of the exterior K-algebra E, = Ag»o(@req Keyn), by the homogeneous ideal I,(A) is generated by
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the relations, ¥_,(~1)*'ey, .., ey, for all 1<i; <+ < i <n such that {H;,, ..H;} is dependent

subarrangement of A,i.e. (rk(H;,,..H;) < k) and the circumflex * means ey, Is deleted. Define a K-linear
mapping 0F:E, > E. as; 0§(e;,)=0 , 0f(ey)=1, for al HeA and for 2<k<+¢,
0 (ec) = Tfer (D" ey, ey, eny, €= {Hy,...Hy}. 0F is a differentiation on E. and the chain complex
(E,, 9EY: O Ej "-E»EH oy % E, i E, i 0, is called the exterior complex;
1.8. Theorem: [8]

The complex (A4,(A),d2) inherits a structure as acyclic chain complex from the exterior complex
(E,,0E), where 924 =1, 0o dF and y,: E, —» A,(A) is the canonical chain map. The acyclic chain complex
(A,(A), 02) is called the O-S complex.

E E E
0041 9y o, 0 of a5
wo— E, » E,, —-> E - E, -0

Yol Pl P, Yo !
a7 o, 0F a4 g
0-Ay(A) > Ap_1(A) — =+ > A1 (A) > Ag(A) =0

1.9. Definition: [8]

Let K be any commutative ring. The broken circuit module NBC,(A) of the exterior K -algebra
E, = Aiso(@®pen Key) , is defined as; NBCy(A) =K and for 1<k<+¢, NBC,(A) be the free
K-module of E;, with NBC (no broken circuit) monomials basis {e;|C € NBC,(A)} S Ey, i.e.;

NBCy(A) =DBcenpcy(a) Kec and NBC,(A) =@%_o NBC,(A).

1.10. Theorem: [8]
The broken circuit subcomplex (NBC,(A),d¥5¢) inherits a structure as acyclic chain complex from the

exterior complex (E,, ), where aV¥8¢ = 9f o i, and i,: E, —» NBC,(A) is the inclusion chain map.

NBC NBC NBC 611VBC NBC

a 0p_
0> NBC,(A) — NBC,_,(A) —> -2 NBC,(A) —> NBCy(A) — 0
iy ipq il ip L

ok aF aF ok ok ok
+1 k4 -1 2 1 0
E, — Ep, — - — E, — E, —0

Moreover, the restriction of the canonical chain map .:E, - A.(A) of the broken circuit module
NBC.(A) , is a chain isomorphism, defined as; for 1<k<+?, Yrlec) =ec+ [ (A) =ac ,
C € NBC,(A).

aI{yBC aI{yBlC aIZVBC 611VBC aéVBC
0 - NBC,(A) — NBC,_,(A) —> - 2 NBC,(A) —> NBCy(-A) —> 0
e d Yoq ! Pyl Yo L
A A A A A

at’ 6{7—1 a2 61 00
0 Ay(A) — Apy(A) — - A(A) — Ag(A) —0
Thus the O-S algebra has the following structure as a free K-module: A,(A) =% _, (Dcenpey ) Kac)-
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1.11. Definition: [8]

Let m = (my,..,m,) be a partition on an £-arrangement A and let K be any commutative ring. A
partition K-module is defined to be (m), = (m,).® ...®(m,)., where for 1 <k <?¥, (). is the free
K-module with basis 1 and the elements of 7. For each B = {H; ,...H; } € S, (n), ie. H; €m , 1<i; <

< <fand 1 <m <k, defing;qg = x; ® ... ®x, € (1), as;

_{Hj ifj=ij,forsomel <m<k

7701 ifj#ipforalll<m<k

We agree that each of g4, =1®..®1 and qp is homogeneous of degree k. We denoting the
k™ -homogeneous part of (m). by (m), . Therefore, (). =@%-o (Wi =Bf=o (Bpes, () Kqz) and
{qs|B € S, (m)} forms a basis to the free K-module (r),.. Furthermore, {qgy;|H € m, } forms a basis to the
free K-module ()., 1 < k < 4. Define a K-linear mapping o7: (m). — (n). as; 95 (q;;) =0,  87(qy) =
1, for all HE A and for 2<k < ¢, 97(qs) = Xj=1(—~1)*" G5, where B=
{Hi,,..H,} €S (m), q5 =%, ®..Qx, as given in (1.8), and 35, =®..®H,®..Qx, by means of
I-Tl] = 1. a7 is a differentiation on (m), and the chain complex ((m).,dF) is called the partition complex;

o7 a7, a7 o7 o
£ £-1 2 1 0
0= (m) = (Mg — = (@)1 = (1) = 0.

1.12. Definition: [8]

For 1<k <¢¥, define the a map @y:{qg|B € S(m)} = A.(A), as ¢, (qs) = ag =eg + [ (A),
B € S, (). Let ¢y: (), = A, (A) be the unique K-linear map that extend this assignment as follows:

(a51B € Sy (M} % A, (A)

7 VN = Ly
()
Accordingly, there is a unique K-chain mapping ¢,: (), = A,(A) between acyclic chain complexes as showed
in the following diagram;

o7 o7, o7 aT o7
£ -1 2 1 0
0= )y » Wy — = (M1 = (W =0

Ped Po-1l P11l @0
o oy 9% af a4
0-A,(A) > Ap_1(A) — > A1(A) 5 Ag(A) =0
1.13. Theorem: [8]

The chain map ¢,: (), » A,(A) is a K-isomorphism between chain complexes if and only if the

partition m is a factorization of A.
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1.14. Remark:

The theorems (1.8.), (1.10.) and (1.13), afford a K-isomorphism, y, =10 ¢,: (), » NBC,.(A)

between the partition complex and broken circuit complex as shown in the following diagram;

oy 5,  oF o7 o7
0- (ﬂ)e E— (”)3—1 —_> e — (77)1 — (”)0 —0
Xed Xe-1d xid Xod

NBC NBC aNBC aNBC aNBC

a 0y
0> NBC,(A) ~—>NBC,_;(A) = -2 NBC,(A) —> NBCy(A) — 0

2. A Classification Of The Class Of Factored Arrangement:

This section is devoted to classify Terao class of arrangement ([13], 1992) into two subclasses, in order to
study the K-isomorphism, y,: (m), » NBC,(A) technique (as remarked in (1.14.)), that joining the NBC
monomial basis and the section monomial basis of the O-S algebra, by a one to one correspondence. We will
show that, each one of the subclasses has a different technique to produce several fashions to the O-S algebra. So,
we will start with another way to define the class of supersolvable arrangements:

2.1. Construction:

Let A be a factored ¢-arrangement with a factorization m = (n',...,m%) and exponent vector
d= (dl,..,d"). Assume that, there exists an ordering < defined on the hyperplanes of <A such that
NBCy (A) = S (), for 0 <m < k < £, i.e. suppose ps(A) = £. In order to emphasis such property of the
class of factored arrangements, we will call such arrangement, a completely factored arrangement via <. We
will reorder the blocks of 7 as follows:

i. Put m; be the block of 7 that contains the minimal hyperplane H; of A. According to our assumption we
have that, every #-section of m contains H; is an ¢ — NBC base of A. As well as, if H € m; be
another hyperplane of m,, then every #-section S of m that contains H forms an £ — NBC base of A.
But that contradicts that {H;} U S is a circuit of A, (since H; @ H, rk({H;}u S)=¢ and [{H,} US| =
£ + 1). Therefore, the block m; must be a singleton which contains the minimal hyperplane H; of A via
Q,ie m ={H}

ii. Actually, for each H € n*, 1<k < ¢ and n* # m;, we have rk (m; U {H}) = 2. Accordingly, we can
choose m, to be the block of 7 that contains the second hyperplane H, via <. The important point to note
here that rk(m, U m,) = 2. To explain that, assume |m,| > 1. Then for each H € m,, we have {H, H} ¢
S, (). Form our assumption {H,,H} is a broken circuit. Since H, is the second hyperplane of A via
<, hence {H,,H,,H}is a circuit of A related to {H,,H}, i.e. rk {H, ,H,,H} =2, for each H € 7, \
{H,}. Therefore, rk(m; U m,) = 2. Indeed, if |m,| = d,, then m, will contain the second hyperplane, the
third hyperplane and the (d, + 1)** hyperplane of A via <.

By continuing the above process we will induce a factorization m = (m, ..., m,) satisfied; If H € m,, and
H em forsome 1<m<k<?thenH SH
The following results highlight the properties of m:
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2.2. Lemma:

Let A be a factored ¢ -arrangement with a factorization w = (my,...,m,). For X € L(A), if
B=Ay={HeEA|IXCSH} S A such that rk(B) =2, then there exists 1<m<k<¢ such that

B <€ m, U m andeither |r,, NB| =1 or |r, NB| =1.

Proof: We need to prove the following:
i. Thereexists 1<m <k < ¢ suchthat, B S m,, U m
ii. Either |m, NnB|=1or|m, NB|=1

For i: By contrary assume, either (there is 1<m < fwithB € mw,, ) or (thereis 1 <m <k <n <
£ suchthatB € m,, U m, U @, ).
In fact, vk B =2, so |B| > 1 and from definition (1.1) item 6, the hyperplanes of B must be distributed
between at most two different blocks of m and cannot be contained in just one block. Therefore, our first
assumption above contradicts this fact.
Secondly, if there are 1<m<k<n<¥suchthatB € n,, Um, Um, , then B nm; # ¢ for
i=mkn . If Hemn, HE€m ad H'e€mn, , suh that H,H,H' € B , then
rk{H,H',H"} = rk (B) = 2. This is a contradiction, since { H, H', H''} is a section of an independent partition
m, i.e. rk {H,H',H"'} = 3. Thus, B cannot be distributed among three blocks (or more) of 7. So, B must be
distributed between just two blocks of 7 and our claim is hold.
Forii: Itisadirect result of definition (1.1) item 6. m
2.3. Corollary:

Let A be a completely factored ¢-arrangement and = = (w4, ...,7,) be its induced factorization due
construction (2.1.). For X € L(A), if B = Ay such that rk(B) = 2, then there exists 1 <m < k < ¢ such

that B € m,, U m, and |B Nnm,| =1.

Proof: By applying Lemma (2.2.), there exists 1<m <k <+¥ such that B € m,, U m, and either
|IBNnm,| =1 or |Bnm,| =1. By contrary assume |BNm,|>1, |[BNnm| =1 and B nm, = {H}. Now,
let H',H" € B nm,, satisfied H' < H". Then rk {H',H"".H} = rk {B} = 2. That is, {H"',H} is a 2-broken
circuit of A. But H' €m,, and He€m,, so {H',H} is a 2-section of m and this contradicts our
assumption that NBC, (A) = S, (). Therefore, |m,, NB|=1. =

We can summarize our goal in construction (2.1.) and corollary (2.3.), by the following results:
2.4. Theorem:

Let w = (!, ..., %) be a factorization of a factored £ —arrangement A that has an ordering < on its
hyperplanes such that NBCy (A) = S (1), forall 1 < k < . Then, every subarrangement which contains no

2-broken circuit forms an NBC base of A via <.

Proof: Firstly, reorder the blocks of m as given in construction (2.1.) to obtain the induced factorization
w = (my, ..., mp). Secondly, assume B be a subarrangement of A which contains no 2-broken circuit of A via
<. We need to show that B is an NBC base of A, i.e. we need Bis a k-section of m. By contrary,
suppose B is a k-section of m, i.e. there exists 2 <m < ¢, such that |r,, nB| > 1. Let H,H' € r,, N B.
Definitely, {H,H'} is a 2-broken circuit, since vk {H,H'} = 2 and it is not a 2-section. This is a contradiction
since our assumption states that B contained no 2-broken circuit. Therefore, every subarrangement which
contains no 2-broken circuit froman NBC base of A. =

2.5. Corollary:
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If A is acompletely factored £ —arrangement with a factorization 7 = (%, ...,m%) and an ordering <

defined on its hyperplanes such that NBC, (A) = S, (), forall 1 <k < ¢, then A is quadratic via <.

Proof: Let m = (my,..,m,) be the induced factorization that given in construction (2.1.). Suppose
B € BCy(A), k > 2. Wanted, B’ € BC,(A) such that B’ < B. By contrary, assume there is no B’ € BC,(A)
such that B’ < B; i.e., B contains no 2-broken circuit via <. According to the theorem (2.4.), B € NBC; (A)
and this is a contradiction. Therefore, then A is quadratic. m

The following result is motivated to classify the class of completely factored arrangements into two
subclasses by the structure of its NBC bases:

2.6. Corollary:
A factored ¢ —arrangement A is completely factored arrangement via an ordering < if, and only if,

A is supersolvable.

Proof: This is a direct result to construction (2.1.), theorem (1.5.) and corollary (1.6.). =
2.7. Construction:

Let A beacompletely factored ¢ —arrangement via an ordering < and let @ = (4, ..., m,) bethe
induced factorization due construction (2.1.). So, the identity map I: Sy (m) - NBCy(A), define a one to one
correspondence between the sections basis of the tensor partition module (), and the NBC monomial basis of

the O-S algebra as free module;

J:{qclC € Sy (m)} - {eg|B € NBC(A)};
as; 7,(qc) = e, for C € Sy (7). This induces a unique K-linear isomorphism 7;: (), = NBC,(A) between
the k™ partition module and k™ broken circuit module that extend this assignment as follows:

(4eIC € Se(m} = ()

AN

{ez|B € NBC,(A)} | 317,

AN

NBC, (A)

2.8. Theorem:
Assume we have the conclusions of construction (2.7.). Then 7,: (), - NBC,.(A) forms a K-chain
isomorphism between acyclic chain complexes, achieved by the fact that NBC monomial basis and sections

monomial basis are equal.

Proof: For afixed 1 < k < £, we need to show the following diagram is commutative:

ok
M — (Wi

7kl/ -1 l/
aNBC

NBC, (A) ~— NBC;_,(A)
Let C = {H;,,...H; } € S(m). Then;

11’

aIIcVBC 0% (qc) = aIIcVBC(jk(qC)) = aIIcVBC(ec)
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K K
= Z 1(—1)"‘1 en;, ...e/H\LJ ey = Z (=117, (qu1 ...q’H\L] ...quk)
j=

j=1

K
=TJr1 <Z (=1t qu;, - q/H\LJ quk) = J—1 20 (qc)
Jj=1

Thus, 08¢ 07, = J,_, o a7 and our claimis hold. m

The important point to note here is, not every factored arrangement is completely factored (supersolvable,
quadratic) arrangement. We will consider a construction of a factorization of a factored arrangement that not
completely factored as follows:

2.9. Construction:

Let A be a factored #-ararrangement such that there is no factorization = = (w4, ...,,) and no
ordering < can be defined on the hyperplanes of A satisfied, NBC,(A) = Si (1), for all 0 < k < 4. Thus,
for any factorization 7 = (m,...,m,) and any ordering < defined on the hyperplanes of A we have,
NBC(A) # S(m), i.e. 1 <pg(A) +1 < €. However, for any given factorization © = (my,...,m,) on A we
can define an ordering = on the hyperplanes of A that reserve the structure of m as follows:

i. If HHH € A suchthat H € m,, and H' € ; forsome 1<m<k<{,putH QH'
ii. For 1 <k < ¢, order the hyperplanes of m, by arbitrary order.

Now, compute NBC(cA) via <. Under our assumption NBC(A) #+ S(m), i.e. there is a k-section of
but it is nota k-NBC base of A via 2 and there isa k-NBC base of A via < that it is not a k-section of
 for po(A) +1 < k < £. We can emphasis the properties of 7 by the following lemmas:
2.10.Lemma:

Let A be a factored ¢-ararrangement and mw = (my,..,m,) be its factorization. Then, there is

1<k<¥ suchthat m, N A; = m, N A isasingleton, where T = Nyeq H € L(A).

Proof: This is a direct result to definition (1.1), item 6. m
2.11. Lemma:
Let A be afactored £-arrangement and its factorization is @ = (my, ..., mp). If X € L (A), for some

1 < k < ¢,then m admits the induced partition my a structure as a factorization of Ay and #(wy) = k.

Proof: According to definition (1.1.), my is independent and for each X' € L(Ay), there is a block of my
contains just one hyperplanes from cAys. Therefore, we need to show only #(myx) = k. We will prove
f(my) = k, inductively as follows:

For k=2: Recall Ay ={H € A|X S H} S A. Since rk(Ayx) =2, hence |Ayx| = 2. According to the
properties of w, €(my) = 2.

For k = 3: By contrary assume that, £(my) = 2, (i.e. my = (s, 7%)), and without loss of generality, assume
|| = 1. Thus, for every two hyperplanes H',H" € Ay, there is X' € L,(Ay) suchthat H',H" € Ay and if
H',H" € ¥, then H € A, and this contradicts that rk(Ay) = 3. That is, under our assumption [Ay| > 3.
Suppose X, X, € L,(Ay). Thus, Ay, and Ay, have with my the same singleton block ¥ = {H}. Itis clear,

rk (ngeﬂxluﬂx2 H) =rk(Ax) 18, Nieay, vay, H =X, nX,=X.Aswell as, if each of Ay and Ay, has

just two hyperplanes, then X; = X,. Thus, one of Ay or Ay, contains more than two hyperplanes say
Hi,H, € Ay, and let H; € Ay,.Actually, X; =HNH; NH,, X,=HnNH; and;

X=HNH, NH,NH; =H,NH,NH; =HNH, NHy =HNH, N H,.
Consequently, X; =HNH;, NH; € L,(Ayx), X, =HNH,NH; €L,(Ay) and this is a contradiction.
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Therefore, £(my) = 3.
Suppose, our claimis hold for k = s —1 and we will prove it for k = s as follows:
By contrary assume that, #(my) =s —1, (i.e. my = (7f,...,mX,)) and without loss of generality, assume
|mX| = 1. Since |Ax| = s, hence there is a block say wX, of my with [zX| =2, 2<m<s—1 and Ay
contains s independent hyperplanes. Accordingly, we can choose them as; {Hy, H,, ..., Hy, HZ, ..., Hs_1} € Ay
is independent,where H; €en¥, 1<i<s—1 and H} HZ €nf. Let X, X, € L,_1(Ay) such that,
X, =H NnH,n..nHLNH:2N..nH_, and X,=H,Nn..NnHYNH%N..Nn He_;. It is clear that,
X,NX,=X and H, & Ay, S Ax. Thus, the induced partition my, has length £(my,) =s—2 and this
contradicts induction hypothesis. Therefore, our claim is true. =
2.12.Lemma:

Suppose we have the assumptions of construction (2.9.). For po(A) +1 <k < ¢, if B isa k-section
of m anditisnot k — NBC base of A suchthat, BES m;, U..Um;,, 1 <i; <--<i < Thenthereisa
k—NBC base Ccm U..uUm, of A  which is not a k -section of m that is satisfied, if

X =NyegH € L(A),then C isa k — NBC of Ay.

Proof: We will prove our conjecture inductively as follows:

For k=p_(A)+1=2: If B is a 2-section of m which is not a 2— NBC base of A, then
B ={H;,H,} € m,, U, , for some 1 <m <p < £ and there exists H € A be the minimal hyperplane of
A via 2 satisfied H < H;, H 2 H, and {H}UB is a circuit with B its broken circuit. Clearly, H € m,,
and C={H,H}<Sm, is a 2—NBC of A that is not a 2-section of = . Moreover, if
X=H,NnH,=HNnH, NH,=HNH,, then C isa 2— NBC of Ay.

Suppose, our claimis hold for k = s —1 and we will prove it for k = s as follows:

If B is an s-section of = which not an s — NBC base of A, then BSm, U..Um, 1<i; < <ig <4

Deduce that, either (B contain broken circuits of A4 have ranks less than s) or (B is an s-broken circuit of
A).
Firstly, if By, ..., B, S B be is the broken circuits of A that have ranks my, ..., m, respectively, with m; <,
j=1,..,t Foragiven 1<j<t, B; isan m-section of = and m;-broken circuit base of A. Let H €A
be the minimal hyperplane of A via < satisfied H/ < H, for all H € B; and {H'}u B; s a circuit with
B; its broken circuit. If p =min{l |7, N B; # 9,1 <1 <s}, clearly, H/ e m, and C; = {H/}u (B; \ {H/})
isan m;-NBC base of A and it is not an my-section of m, where H; is the maximal hyperplane of B; via <
where Hj is the maximal hyperplane of B; via < that contains the singleton block of the induced partition
my,, where X; = Nyep; H. Consequently, if c'={H, .. ,H}U(B\{H], .., H}) is an s- NBC base of A,
then put C = C’', otherwise put B’ = C' and repeated the method above for B’ by computing the broken
circuits of it and add the minimal hyperplanes of A that make them circuits and removing the maximal
hyperplane of them that contained of the singleton block of the induced partition of them flat of the intersection
lattice. Continue this procedure unless C isan s- NBC base of A that is not an s-section of m. Furthermore,
if X=NygegH = NyecH,then C isan s- NBC base of Ay.
Secondly, if B is an s-broken circuit of <A and H be the minimal hyperplane of A via <, that satisfied
{H} U B is a circuit with B its broken circuit, then € ={H} U (B\ {H'}) isan s- NBC base of A and it is
not an s-section of 7, where H' is the maximal hyperplane of B via = that contained of the singleton block
of the induced partition my, where X = Nyeg H = Nyec H. Then, € isan s- NBC base of Ay. m
2.13.L.emma:

Suppose we have the assumptions of construction (2.9.). For po(A) +1 <k <?,if C isa k — NBC

base of A and itisnota k-sectionof m suchthat, C < my, U..Um , 1 <i; < <i, <¥ and m <k,

45


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper)  ISSN 2225-0522 (Online) J!Ti.l
Vol.6, No.5, 2016 NIS'E

then there isa k-section B of m whichisnota k — NBC base of A that satisfied, if X = NyecH €
L, (A),then B isa k-section of my.

Proof: We will use our assumption to show the lemma inductively as follows:

If p.(A)+1=2andk=2: If C is a 2—NBC base of A which is not a 2-section of m, then
C ={H,H,} S m, for some 1<m<+¥. Since C is a 2— NBC base and we assume < respect the
structure of m, hence there is no H' €m, U..Um, such that {H',H,,H,} is a circuit. Indeed, if
X=H, N H, € L,(A), then by applying lemma (2.1.8), Ay S m, Unm, for some m+1<t<+¢ and
Ay N, is a singleton. However, there exists a unique H € m,,,, U ...U 1, satisfied, (C U {H}) = 2. Thus,
B ={H,,H} S m,, Um, is a 2-section of m, that is not a 2 — NBC base of Ay. Notice that, {H,,H} is
2 — NBC base of Ay and a 2-section of my.

If po(A)+1<kandk=3: Let C ={H,,H,,H;} isa 3 — NBC base of A which is not a 3-section of
m. Let X =H; N H, N H; € L3(A), then by applying lemma (2.10.), Ay S 1y, U Ty, U, for some
1<m; <m, <my < ¢ and without loss of generality assume that, Ay N m,,, is a singleton. Since C is not
a 3-section of m, hence there are three ways to distribute the hyperplanes of 7 as, either (C < mp, ), or
(CEmpm, Umy, ), of (CEmy, Umy, ). Since C is a 3—NBC base via =, hence there is no

H € m U..Um,, such that {H',Hy,H,, Hs} is a circuit. Thus, the guess C C mp,, U m,y,, is not agree the
structure of C as 3 — NBC base of Ay. Therefore, we have just three possible cases:
Firstly, if ¢ < m,, , then each of {H,,H,}, {H,,H3} and {H,, Hs} is a 2— NBC of A and according to
lemma (2.1.8), there are unique Hy,, Hys, Hy3 € T, Uy, such that {H;,Hp H,,}, {H;, H;3 Hy3} and
{Hy, Hs, H, 3} are circuits since Hy,, Hys Hys € Ay. If {Hyg Hyg Hys} N1y, # @, put B = {Hs, H',H}
where H' be the maximal hyperplane via =2 of {HLZ,H1,3,H2,3} N7y, and {H} = Ay Nm,y,. Certainly, B
is a 3-section of my that is not a 3 — NBC base of Ay. On the other hand, if {H1,2,H1‘3,H2‘3} C Ty, put
B = {H3,H,3,H} where {H} = Ay N1y, . Indeed, B is a 3-section of my, that is not a 3 — NBC base of
Ay.
Secondly, suppose C < m, Um,, and without loss of generality, assume |C n nm1| =1 and
|C N7, | = 2. Since {H,,Hs} isa 2 —NBC of A, hence {H,,Hs, H} is a circuit, where {H} = Ay N 1y,
Put B = {H;, H;,H}. Indeed, B isa 3-section of my thatisnota 3 — NBC base of Ay.
Thirdly, suppose C S m,,, U mp,,. Then Hy, H, € C Ny, and Hy € C N1y, Put B = {H,, Hy 5, H3}, where
H,, € my,be the unique hyperplane of Ay such that {H,, H,, H;,}. Indeed, B is a 3-section of my that is
nota 3 — NBC base of Ay.
Suppose, our statement is hold for k = s — 1 and we will prove it for k = s as follows:

Let C ={H,..,Hy} is an s— NBC base of A and it is not an s-section of m. As the technique
given in the case k =3 above we can assume that, C S mp, U..Umy , 1<m < <ms; <7.

Accordingly, there is 1 <p <s-—1, such that |Cn7rmp|=2. So, rk(CnTrmp)=2 and Cnmy, Is a

2—NBC base. Then there is H€m , my+1<I1<+¢, such that (Cmrmp)u{H} is a circuit. If

l# my,q,...,ms_y, then B = (C\ {H'})U{H} is an s-section of m that is not an s — NBC base of A. Else,
apply lemma (2.2.3) as, let X = Nyec H € Ls(A), then the hyperplanes of Ay distributed among s blocks
of m say, Ay & mp, U.. Umy, _ Umy, , for some 1<m, <£. Let C'=C\{H"}, where H"" be the
maximal hyperplane of C such that, H'" ¢ C n Tmy, 1. H'"" be the maximal hyperplane of C that contained

in the singleton block of the induced partition my. Observe that, H"' is not collinear with the hyperplanes of
C Ny, It is clear that, C' is an (s —1) — NBC base of A and it is not an (s — 1)-section. Inductively,

there exists an (s — 1)-section of my say B’ whichis notan (s — 1) — NBC base of A. Thus, if B'UH'"
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is an s-section of my that is not a s — NBC base of Ay, put B =B’ U H'", otherwise put ¢’ = B’ UH"’
and repeated the method above for C'. Continue this procedure unless B is an s-section of m that is not
s-NBC baseof A. =

In spite of, a factored ¢-arrangement A that has no factorization = = (m, ..., m,) and no ordering <
such that NBC,(A) = S (), for all 1 <k < ¢, is not quadratic under any ordering can be defined on its
hyperplanes, the equality, INBCy(A)| = Xi 2 305, Bl c i 41 diydiy o dy, =1Se(m)], for 1<k <,
affords a one to one correspondence between NBC(A) and S(A) as shown in the following result:

2.14. Theorem:

Suppose we have the assumptions of construction (2.9.). Then, for all 0 < k < ¢, there are one to one
correspondences fi: NBCy(A) = S, () and g, = fi *: S (1) > NBC(A).
Proof:

First, for 0 <k < p4(A), define f, =g, to be the identity mapping and it is one to one
correspondences as we claimed.

Secondly, for po(A) +1 < k < £, we can partition S, (m) and NBC,(A) into two parts as;

S, (m) = S}(m) U SZ(m) and NBC,(A) = NBCL(A) U NBCZ(A), where;
St(m) isthe setofall k-sectionsof m thatare k — NBC bases of A;
SZ(m) isthe set of all k-section of m thatare not k — NBC bases of cA;
NBC(A) isthesetofall k — NBC bases of A thatare k-sections of m, and;
NBC?(A) isthesetofall k — NBC bases of A thatare nota k-sections of .
Clearly, NBCL(A) = Sk(m). Moreover, NBCZ(A) # S2(m) within |[NBC2(A)| = |SZ(m)|. Accordingly, we
can define f,: NBC,(A) — Si(m) as;
C ifC € NBCL(A)

fie©) = {B’ if C € NBC2(A)'
where B’ is the k-section of 7 that is nota k — NBC base of A given in lemma (2.13.), and we can define
gi: Sk (m) = NBCy(A) as;
B ifB € Si(m
9+(B) = {c' ifB € sg((n));

where C' is the k — NBC base of A which is not a k-section of 7 given in lemma (2.12.). We emphasize
that, when we choose each of B’ and C’ in the lemma (2.13.) and lemma (2.12.), we used the concepts
"unique’, "minimal hyperplane™ and "maximal hyperplane" via a total ordering <, that are unique and that
admits each of f, and g,, a structure as well-defined maps.

If C €NBCg(A), it is clear that, gy o fi(C) = C = Iypc,ay(C) and since Si(w) = NBCy(A),

fie o gk(C) = C =I5, 1y(C) . Therefore, we need only to show g o fi(C) = C = Iypc,a)(C) , for
C € NBCZ(A) and fi o gx(B) = B = I, (4y(B), for B € S¢ (). However, we will prove that by induction as
follows:
For k =2: Let C = {H,,H,} € NBCZ(A). By applying lemma (2.13.), let H be the hyperplane contained in
the singleton block of the induced partition my, where X = H; n H,. Then, f,(C) = B’ = {H,, H}. Clearly, H;
is the minimal hyperplane of A satisfied {H;, H,, H} is a circuit. As have shown in lemma (2.12.), g,(B") =
9z ° f(C) = {Hy, Hy} = C = Iypc,a)(C). As well as, B = {H;, H,} € S7 (), we will apply lemma (2.2.4) and
let H' be the minimal hyperplane of A satisfied {H', H{, H;} is a circuit and g2(B)=C' =
{H',H{}. Since H' and H; are contained of the same block, hence H; will be the hyperplane contained in the
singleton block of the induced partition mys, where X' = H'n H;. Thus, f(C)=fyo
92(B) = {H;,Hy} = B = I5,(.4y(B). Therefore, g, = f;*.
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For k=3: Let C = {H,,H,,H;} € NBCZ(A). Let X = H, N H, N Hy € L;(A), then by applying lemma
(223), Ay S mp, Umy, Umy,, for some 1 <m; <m, <mz < ¢ and without loss of generality assume
that, Ay Nm,,, is a singleton. Lemma (2.13.) discussed three cases, so we will separate our discussion for
each one of them as follows:
Case 1: (C & mpy,)

Recall the unique hyperplanes H;,, Hy3, Hy3 € My, Uy, such that such that {Hy, Hy, Hy,},
{H,,H3,Hy 3} and {H,, Hs, H,3} are circuits.

Case (1.1):

If {Hyp Hys Hys}Nmp, =@, then  f3(C) =B’ ={Hs,H',H}, where H' is the maximal
hyperplane via = of {H,, Hys, Hys} N1y, and{H}=AxNm,, . If H =H3 and H=H,;, then
B’contains two broken circuit, {Hz, H;3} and {Hs, H,3}. Therefore,

93(B") = gz o f3(C) = (B' \ {H13,Hy3}) U {H;, H,} = C = Inpey ) (€).
If H' = H,, and H = H,3. Then B’contains unique broken circuit {Hs, H,3} and (B’ \ {H,3}) U {H,} also
contains unique broken circuit {H,, H; ,}. So,
93(B") = g3 ° f3(C) = (((B' \ {Hz,a}) U{H}\ {Hz,a}) U {H} = C = Inpc, ) (C).
Similarly, for any other ordering of the hyperplanes H, ,, H,z and H, 3.

If {Hyy Hys Hys} Sy, ., then  f3(C) =B’ ={Hs,Hy3,H}, where {H}=AyxnNm,, . Then
(B"\ {H3}) U{ H,}) isa3-broken circuit since {H;}U (B"\ {H,3}) U{H,}) isa circuit. Therefore;
93(B") = gz ° f3(C) = (((B' \ {Hz,a}) U{H,D\{HHU{H} =C= INBC3(:/1)(C)'
Case 2! (C S Ty, UTpy,)

If |Cnmy,|=1 and |CNm,y,|=2. Since {Hy,Hs} is a 2— NBC of A, hence {H,, Hs, H} is a
circuit, where {H} = Ay Nmy,. Then, f3(C) =B' ={H;,H;, H} is a 3-section of 7 contains broken
circuit {Hs, H}. Therefore, g;(B") = g5 ° f3(C) = (B’ \ {H}) U {H,} = C = Iypc,(a)(C).

Case (2.1):

If |cnmy,|=1and |CNm,,|=2. Since {H,,Hs} is a 2— NBC of A, hence {H,, Hs, H} is a
circuit, where {H} = Ay Nmy,. Then, f3(C) =B’ ={H;,H;,H} is a 3-section of m contains broken
circuit {Hs, H}. Therefore, gs(B") = g5 ° f3(C) = (B'\ {H}) U {H,} = C = Iypc,a)(C).

If |CNmy,|=2and |CNmy,|=1. Then, f3(C) = B’ = {H,, Hs, H} is a 3-section of m and it is a
broken circuit of A, where {H} = Ay N m,,,. Therefore,
93(B") = gz ° f3(C) = (B'\ {H}) U {H,} = C = Iypc,)(C).

Case3: (C S mp, Umy,):

In this case, f3(C) = B' = {Hy, H,,, H3}, where H,, € m,, be the unique hyperplane of Ay such that
{H,, Hy, Hy 2}. Thus, g5(B) = g5 © f3(C) = (B \ {H12}) U {H;} = C = Iypc, (0.
Let B = {H{,H;,H}} € S2(A) and B is a broken circuit, we will apply lemma (2.12.) and let H' be the
minimal hyperplane of A satisfied {H', H;, H;, H3} is a circuit. So, g;(B) =C' = (B\ {H"}) U{H'}, where
H" will be the maximal hyperplane of B that contained in the singleton block of the induced partition 7y,
where X' = H] n H, n Hi. Apply lemma (2.13.) for C' € NBC;(A). Suppose H'' = H}, so C' = {H',H{, H}}.
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Since H' and H; are contained in the same block, similarly as case (2.2) above we choose H'' = Hj and
93(B) =gz fz(C) = (B'\{HHU{H}=C= Inpcya)(C). Therefore, g; = fit

Suppose, the statement is hold for k = s —1 and we will prove it for k = s as follows:

Let C ={H,,..,Hs} € NBC}(A). Assume that, C S mp U.. UM, , 1<m < <my_y <L,
Accordingly, there is 1<j<s—1. Without loss of generality, assume |C mrm1| =2 . So,
rk(Cnmy,) =2 and CNm,, ={H],Hy} isa 2— NBC base. Then there is H € m;, my + 1 <1 < ¢, such
that, {H{,Hy, H} is a circuit. If #m,,...,ms_; , then f,(C) =B =(C\{H,}) U{H} and by applying
lemma (2.12.), since {H;, H} is the broken circuit of B’, hence;

gs(B) = gs o £s(C) = (B'\ {H}P U {H1} = C = Iypc,)(C).
Else, continue as we have discussed in case k = 3.

Let B ={Hj,...,H.} € S2(m) and B is a broken circuit, we will apply lemma (2.12.) and let H' is the
minimal hyperplane of A satisfied {H',Hy, ..., H;} is a circuit. So, g4(B) = C' = (B\{H"}) U{H'}, where
H" will be the maximal hyperplane of B contained in the singleton block of the induced partition s, where
X' =H;n..nH,. Apply lemma (2.13.) for C' € NBC,(A). Suppose H" = H., so C' = {H',Hj, ..., H{_;}.
Since H' and H; are contained in the same block, so;

95(B") = gy o £,(C) = (B' \ {H'}) U{H} = € = Iypc,a)(C).

Therefore, g, = f;t.m
2.15.Remark:
In view of theorem (2.14.), we notice that:
1. |[NBCZ(A)| = INBCy(A)| — |SE(m)|, for 0 <k < ¢.
2. pa(A) + 1 = min{k| INBCZ(A)| # 0}.
3. fi isidentity map, for 0 < k < p(A).

Moreover, theorem (2.14.) create a connection between two fashions of the O-S algebra of factored
arrangement that not completely factored, a fashion as free submodule of the exterior algebra, and a fashion as a
tensor factorization module. We provide this goal as follows:

2.16. Construction:

Let <A be a factored ¢ —arrangement with a factorization © = (7, ...,m,) such that A is not
completely factored via any ordering can be defined on its hyperplanes, i.e. NBC,(A) # Sy (1), for po(A) +
1<k <+¥. Recall the one to one correspondences f,: NBC,(A) — S, () and I S (m) -
NBCy(A), that given in theorem (2.14.). Accordingly there are one to one correspondences, #:{eg|B €
NBC,,(A)} - {qcIC € S, (M)} and g:{qc|C € S, (M)} = {eg|B € NBC,(A)}, defined as;

qs ifB € NBCE(A)
ﬁk(eB) = . 2 ’
qcr if B € NBCZ(A)
where C' isthe k-section of 7 thatisnota k — NBC base of A given in lemma (2.13.), and;
_(ec ifBeSi(m),
9x(4c) = {eB, if B € S2(r)’
where B’ isthe k — NBC base of A which is not a k-section of 7 given in lemma (2.12.). That induces unique
K- linear isomorphisms, #;: NBC, (A) = (1)zand gy: (), = NBC,(A) between the k™ partition module and
k™ broken circuit module that extend this assignments as follows:

iNBC .S
{e|B € NBCy(A)} —— NBC(A) {4c|B € Su()} 5 (1),
Fr Ik
{ac|C € S (m) Al {eg|B € NBC(A)} Alg,
i
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2.17.Theorem:

Construction  (3.16.)
g.: (), » NBC.(A) between acyclic chain complexes and this creates a joining between two fashions of the

produces K -chain isomorphisms,  #,:NBC,.(A) - (m), and

O-S algebra as shown in the following commutative diagram;

a7 ap, o4 a4 a8

0 Ay(A) — Ay 1(A) —— A (A) — A(A) —0
Yt P L Yt Yo'l
QIBC 69”31(: aIZVBC 611VBC a{)VBC
0 - NBC,(A) —> NBC,_,(A) —> -+—— NBC,(A) — NBCy(A) — 0
Fol Fo-1d F1d Fo l

oF ., o oF T

0- (@, — @My —— @7 — (@, —0

e o1l @4 ®o 1

A A 94

a? a{’—l a2 1 064
0 Ap(A) — Api(A) — - Ay(A) — Ap(A) —0

Proof: For afixed 1 < k < £, we need to show that the following two diagrams are commutative:

T NBC

@~ (et NBC,(A) 25 NBC,_, (A)

gvkl/ 9k—1\L ’ﬁk\L #k—l\L
aT[

NBC,(A) ~> NBC,_,(A) @ — (@1

0] (i)
Fori: Let C € S, (). Then;

"¢ o gi(qc) = 0" (gne(ac))
_ gnac | ec if C € Si(m)
ey ifC € S2(m)

(0B (ee) ifCESE(mM)

j=1
B {a,Q’BC(eB,) ifC € S2(m)

( k
{Z (-1 e, ifCESim)
(Zk (D ey ifC € SE(m)

j=1

= ijl(—l)k_l Pr-1 (QC]-) = Gk-1 <Zj:1(_1)k_1 ch> = Gr-1° 07 (qc)

Thus, 0y%¢ © gy = g1 ° OF.
Forii: Let B € NBC,(A). Then;
Ok ° fr(ep) = al’cr(fk(ea))
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(qs ifB € NBCL(A)
= ak . 2
qc if B € NBC;(A)

_ (0%(qs) ifB € NBCi(A) _ j=1
~ |0F(q.r) ifB € NBCZ(A) sz

j=1

Izk (~1)*qy, ifB € NBCA(A)

(-D*" gy ifB € NBCY(A)

=D D e (o) = s (Z;(—nk-l ij) — fi1 00 e)

Thus, 97 o #x = Fx_q © ONEC . Therefore, each of #.:NBCy(A) - (r), and g,:(n), > NBC.(A) are
K-chain isomorphisms between acyclic chain complexes. It is clear that, ¢ = #, o1, @, =, o g, and the
K -chain isomorphisms £ = @, o#, ot and A1 =1, 0g, o ! produce a connection between two
fashions of the O-S algebra and this is precisely the assertion of the theorem. =

3. On the Product of factored arrangement
This section is motivated to prove that section two classification of the class of factored arrangement is
compatible with the product construction.
3.1. Construction:
For i =12, let A; = {Hi,..,H}} be factored ¢;-arrangement with a factorization 7' = (nf, ..., m}).
The product arrangement is defined as;
A=Ay X Ay = (A, BCH2) U (C1DA,), where;
A, OC’2 = {HI®C’, ..., Hy dC’2} and C1@A, = {C1@HE, ..., C*®HE,}.
We will partition A; x A, by the partition = = (7'@®C*2) U (C1®n?), where;
' @Cz = (i ®C’, .., mj BC’2) and Chr@n? = (C1@n?, ..., Crdn});
ie. m=n'xn? = (1 ®C,..., m; C’, C1Pni, ..., C1@m;)
Assume <; be the ordering defined in the hyperplanes of A;, for i = 1,2, as given in construction (2.1.) or
construction (2.9.), depending on the kind of A;. Then, define an ordering <=<,x<, on the hyperplanes of
Ay X A, as follows:
1. For 1<i,j <ny, put H}@®C* 2 H'@C’2 if, and only if, H} 9, H}".
2. For 1<1i,j <n,, put C*@®H7 < C*@H; if, and only if, H? 9, H7.
3. For 1<i<mn and 1<j <n,, put H'®C"2 2 C*@H}.

3.2. Lemma:

Suppose we have the assumptions of construction (3.1.). Then:
1. For 1<k < #,,if B € NBC,(A,), then B*'@®C’2 € NBC, (A, ®C'?) € NBC, (A; X A,).
2. For 1<k < 4,,if B? € NBCi(A,), then C“»@®B? € NBC,(C“*@®A,) S NBC (A, X A,).
3. For 1<k<+#,+4,, if B'€NBC, (A;) and B? € NBCy,(A,) , for some 1<k, <¥¢ and
1<k, <#¥, suchthat k, + k, = k, then B* x B? = (B*'@®C*2) U (C*@B?) € NBC,(A; X A,).

Furthermore, fOI‘ 0 S k S ‘gl + ‘gz, NBCk(c/ql X cﬂz) = UBleNBCkl(c/ll), 05](15{)1{31 X BZ}

B2€NBCy, (A3), 0skp<t;
ki+ky=k

Proof: Due to construction (3.1.), if B* and B? are independent subarrangement of A, and A, respectively,
then B'@C’z, C2@B? and B! x B? are independent subarrangement of A, X A,. Moreover, our definition
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of the ordering 2=<; X, that respect the ordering <; and =2, on A, and A, respectively, involves if
B and B? contain no broken circuit of A; and A, respectively, then B'@®C’2, C**@®B? and B! x B?
contain no broken circuit subarrangement of A; X A, and our claim is down. =

3.3. Lemma:

Suppose we have the assumptions of construction (3.1.). Then:
1. For 0 <k < ¢4, if C* € Sp(n'), then C'®C’z € S (1 DC2) C S (nt x 7?).
2. For 0 <k < 4,,if C? € S;(?), then C1@®C? € S (Chrdn?) € S (! x 2).
3. For 0<k <&, +4,, if C' €5, (") and C? € S, (w?), for some 0 <k, <#; and 0 <k, < ¥, such
that k; + k, = k, then € x C? = (C'@®C%) U (C11@C?) € S (! x m?).

Furthermore, for 0 < k < ¢, + ¢,, S(n! x ?) = Uctesy, (b, o<k, <0,£C* X C?}.

C2€Sy,(m?), 0sky<t,
ki+ky=k

Proof: According to construction (3.1.), it is clear, if C* and C? is independent subarrangement of m; and ,
respectively, then C1@C’2, C/*@C? and C! x C? are sectionsof T =m; X m,. m
3.4. Lemma:

Let A = A, X A, beareducible (¢, + £,)-arrangementm into a product of #;-arrangement A, and

£,-arrangement A,. If A is a factored arrangement with a factorization = = (my,...,m,), then for each
1< k<4, +4¢, cither m, € ADBC2 or m, S CL1PA,.
Proof: By contrary, assume m, S A,;®C’ and m, S C'*@A,. Thus, there are H!' € A and H? € A,
such that H'@C%, C“1@®H? € m),. Let X = H'@®C* n C“*@®H? € L,(A). Since m is a factorization, hence,
the induced partition my has two blocks. Thus, there is a unique H € m,,, for some 1<m < ¢, + ¢, and
m#k with rk({H'@®C,C*®H%H})=2 . Then, either H=H®C?2eADC2 or
H = Ch®H" € C“*@®A, and both of these two cases contradict the fact that there are no collinear relations
among any three hyperplanes of A;®C and CH1@A,; ie. rk({H'®C, C*@H? H}) =3 for all
H € Ay X Ay \ {H'®C2, 1@ H?}. Therefore, either m, € A,;®C2 or 1, S C1DA,. m

3.5. Proposition:

Let A = A; X A, be a reducible (¢, + ¢,)-arrangement into a product of #;-arrangement A; and
£,-arrangement A,. If A is a factored arrangement with a factorization 7 = (my, ..., m,) and if;

Ty = Nyes, HOC2 € Ly (A; X A,) and;T, = Nyeq, CLOH € Ly, (A; X Ay);

then, Ar, = A,®C2, Ap, = C"®A, and for i = 1,2, the induced partition m, = (nf, ..., my,) satisfied
for 1<k<¢; , m =m,, for somel <m <, +¢,. Moreover, m; #mj , for each 1<k, <¢; and
1<k, <%,
Proof: Firstly, we prove A = A, DC, Arg, = Cl*@eA,. It was known that, if B; S A, and B, S A, is
linearly independent of A; and A, respectively, then, for all H € A, and for all H' € A,, each one of
B,®C’ U {C“®H'} and C*®B, U {H®C'2} is linearly independent of A; XA, . As well as, if
Xy € Ly, (A, BC2), 1<ky <4y, X, €L, (CO®A,), 1<k, <¥,, HEA; and H €A, , then;
X=X N(CU®H) € Ly 11(A; X Ay) and X' =X, N (HOC2) € Ly, 41(A; XA, . Therefore,
Ty N (CL@®H") € Ly, 11 (Ay X A,) and T, N (HOC2) € Ly, 41 (A; X Ap), for each He A, and H' € A,.
Thus, Ar, = A;®C2, A, = CL@A,.
Secondly, by applying lemma (3.4.), the factorization ©= = (m,,...,m,) be split into two disjoint parts. The first
one is the blocks that contain just hyperplanes from A,@C¢2and the second one includes blocks of m that
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contain just hyperplanes from C’*@A,. Straightly, one can deduce that for i = 1,2, the induced partition
nr, = (i, ..., mp) satisfied for 1 <k <#; , mj = m,,, forsome 1 <m <, + £, and for 1 <k, <+#; and
1<k, < ¥, my #mj, m

3.6. Construction:

Let A = A; X A, be a reducible (¢, +¥,)-arrangement into a product of #,-arrangement A, and
¢,-arrangement A,. Assume, A is a factored arrangement with a factorization = = (7, ...,m,). As an
application of proposition (3.5.), we can reorder the blocks of = as, w = (mr,, mr,) = (nf, ..., M}, TF, ..., 77).
Moreover, for i= 1,2, there is a partition m#i= (n;"", ...,n;fi) given as; H € n,‘:ll if, and only if,
H®C ey, 1<k <¢, and H' € ) if, and only if, C*@®H' € nZ, 1 <k < ¢,.

Assume < be the ordering defined on the hyperplanes of A, X A, as given in construction (2.1.) or
construction (2.9.), depending on the kind of A; X A,, i.e. (if A; X A, is completely factored via = , we
will use construction (2.1.)) or (if A; X A, is not completely factored via any ordering can be defined on the
hyperplanes of A, X A,, we will use construction (2.9.)). Then, define an ordering <#1*z on the
hyperplanes of A; X A, that respect the structure of © = (nTl,nTz) as follows:

1. For 1<i,j <ny, put H'@®C? 9442 Hl@C’ if, and only if, H!@Cz 2 H!@C.

2. For 1 <1i,j < n,, put Cr@H7 9142 Ch1i@H? if, and only if, Cl1@H} =2 C1@H}.

3. For 1<i<mn; and 1<) <ny,, put H'®Cz 9/1*42 C1H?.

Indeed, there are orderings; <, on the hyperplanes of A, that respect the structure of the partition w*** and
3, on the hyperplanes of A, that respect the structure of the partition m#2, satisfied <#1*42=<, x=, and
defined as follows:

1. For 1<i,j <ny,put H 9, H} if,and only if, H}@C’z 9%z H!@C’2.

2. For 1<1i,j <n, put H? 9, H? if, and only if, C*@H}? 91>z Cl1@H?.

3.7. Theorem:

Let A = A; X A, be a reducible (¢, + ¥,)-arrangement into a product of #;-arrangement A; and

£,-arrangement A,. Then, A is a completely factored (¢; + ¢,)-arrangement if, and only if, each of A, and
A, isacompletely factored arrangement.
Proof: Firstly, assume A; X A, is a completely factored (#; + £,)-arrangement. We need to prove each of
A, and A, is completely factored arrangement. Motivated by our purpose, recall construction (3.6.). So we
need to prove, for i = 1,2, % is a factorization of A; = {H{',...,H,ili} and A; is quadratic via <;. By
contrary, assume either %1, or m**z is not nice. If = is not factorization of <A,. Then, either #1 is not
independent, or there is X € L(A,) such that the induced partition n;fl has no singleton block. As we know,
if B € S(mr#1), then BOC’2 € S(). Assuming that, section B is dependent implies B®C?2 is dependent
which contradicts our assumption 7 is independent. As well as, if X € L(A,) such that the induced partition
n;fl has no singleton block, then the induced partition myg-s, < 77, has no singleton block and that
contradicts the nice structure of m. Similarly, assuming m#z is not nice partition on A,, leads to a
contradiction. Therefore, =*1 and 7#2 are nice partitions.

In addition to that, by contrary we will prove A; = {H{ H}IL} is a completely factored via <;, for
i =1,2. Suppose A, is not completely factored via <;. By applying theorem (1.5.) and corollary (1.6.), there
is a subarrangement B of <A, that contains no rank 2 broken circuit and it is not an NBC base of A,.
According to lemma (2.3.2), B@®C*z isnotan NBC base of A; X A,. This is a contradiction since A; X A,
is quadratic and contains a subarrangement BE@C*2 that contains no rank 2 broken circuit and it is not an NBC
base of A; X A,. Therefore, A, is completely factored via <. Similarly, deduce A, is completely factored
via =,.
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Conversely, for i = 1,2, assume A; = {H{ H,Lll} be a completely factored #;-arrangement and recall
construction (2.1.) in order to construct a factorization 7' = (n{n}) of A; and an ordering <; that
emphasize the quadratic property of A;, i.e. NBCy (A;) = S, ('), for 1 <k < #;. Moreover, we recall
construction (3.1.) to create the partition 7 = (m*@C*) U (C*»@n?) and the ordering <=2, x<,. So, we
wanted m is a facorization and A; X A, is completely factored via <.

By contrary, assume 7 is not a factorization of A; X A,. Then, either 7 is not independent, or there is
X € L(A; X A,) such that the induced partition my has no singleton block.

If 7= m'@®C’)u (C@n?) is not independent, then there is a dependent section C € S(m). So,
¢ = (C'®c) u (ChrC?), for some C* € S(mt) and C? € S(w?). Thus, either C* or €2 is dependent
and that contradicts our assumption that each of 7! and 72 is independent. Therefore, 7 is independent.

In fact, if X € L(Ay X A,) such that the induced partition my has no singleton block. Then
X = (X'@ch)n (crdx?) , for some X'€L(A;) and X% €L(A,) . From construction (3.1.),
My = (M ®C’) U (C1@m32), where ;s the induced partition of X' via m!, i = 1,2. Consequently, either
My OF T2 has no singleton block and that contradicts the fact each of = and m? is nice. Therefore, 7 isa
factorization of A; X A,.

Now, suppose A; X A, is not completely factored via <. Thus, there is a subarrangement B of
A, X A, that contains no rank 2 broken circuit and it is not an NBC base of A, X A,. According to lemma
(3.2.), B =(B'®C’) u (C*@®B?), where B € A;, B> S A, and either B! contains no rank 2 broken
circuit of A, or B% contains no rank 2 broken circuit of A,, and it is not an NBC base of A,. This is a
contradiction since both of A; and A, are completely factored. Therefore, A; X A, is a completely
factored arrangement via S=<,x<,. =

3.8. Corollary:
Assume we have the conclusions of theorem (3.7.) and for i = 1,2, let n' = (=i, .., m}) be the
factorization on  A; = {Hi,..,H,} with exponent vector d'=(di,...,dj) . Then, for

INBCi(Ay X A = Xi T B m i y+1 iy diy o dy, =[S (]

where, for 1<j<¢,, dj=df and ¢, +1<j <t +4,, d;=d},,
Proof: This is a direct result to theorem (3.7.). =
3.9. Corollary :

Let A = A; X A, be a reducible (¢, + ¥,)-arrangement into a product of #;-arrangement A; and

£,-arrangement A,. Then, A is a factored (¢, + ¥¢,)-arrangement that is not completely factored via any
ordering can be defined on the hyperplanes of A if, and only if, either A, or A, is not completely factored
arrangement via any ordering on its hyperplanes.
Proof: Firstly, assume A; X A, is not completely factored (¢, + ¥¢,)-arrangement via any ordering can be
defined on its hyperplanes. Recall construction (3.6.). So we need to prove, for i = 1,2, =% is a factorization
and either A; or A, is not completely factored via any ordering on its hyperplanes. Similar to our proof in
theorem (3.7.), m exhibits a factorization analogue of m#* and m*2 on A, and A, respectively. By
contrary, if we assume each of A4, and A, is completely factored via ordering <, and =,, respectively, then
due to theorem (3.7.), A; X A, is completely factored via ==, X, which contradicts our assumption.

Conversely, assume either A, or A, is a not completely factored arrangement via any ordering on its
hyperplanes and without loss of generality, suppose that <A, is not completely factored via any ordering. Recall
construction (2.9.) in order to construct a nice partition 7' = (r{, ...,m;) and an ordering <, that emphasize
the not completely factored fashion of A, i.e. NBCy (A;) # S, (m1), for some 1 < k < ¢,. Moreover, we
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recall construction (3.1.) to obtain the partition 7 = (7'@®C*2) U (C2®n?) and the ordering <=9, x3,. So,
we wanted 7 is nice and neither <, nor any other ordering on the hyperplanes of A, X A, can produce a
structure on A; X A, as a completely factored arrangement. From theorem (3.7.), = is nice. Furthermore, if
we assume by contrary that A; X A, is completely factored via <, then due to theorem (3.7.), each of A,
and A, is completely factored via the ordering <, and =, respectively, which contradicts our assumption
that A, is not completely factored via any ordering. Therefore, our claim is hold. m

We mentioned that, the following result was firstly given in [7]
3.10.Corollary:

For i=12, let A;={H] .. H,} be an ¢ -arrangement. Then, A; XA, is a factored
£, + £,-arrangement if, and only if, each of A; and A, is a factored arrangement.
Proof: This is a direct result to construction (3.6.) and theorem (3.7.). =
3.11. Proposition:

Suppose we have the assumptions of the constructions (3.1.) and (3.6.). Then the acyclic broken circuit
complexes (NBC.(A,),d"?“V) and (NBC.(A,),d0"5¢“*2)) can be embedded of the O-S complex

(A.(A; X Ay), A A*A2)y

Proof: Due construction (3.1.), we can follow our claim as:
1. For 1 <k < ¥, the one to one mapping (inclusion);
JAECUD: NBC (A,) » NBCy (A, ®C'2);
that defined as, j°°“*Y(B') = B'@®Cz, for B € NBC,(A;), embedding the broken circuit module
NBC,(A,) of NBC,(A; x A,) by unique K -monomorphism zN5¢“*: NBC,(A;,) —» NBCy(A; X As)
that extends the following assignment:

_NBC(A1)

{ep1|B' € NBC,(A)} ——— NBC,(A;) —]

jNBC(g/ll)\
k
.NBC(A4)

{epigctz| B € NBC(Ay)} 3t 4

_NBC(A,®C2 .
i (A @Ct2) #Iivsc(cﬂl)

.NBC(A,®C’2)
Y

NBC, (A, X A,) <

Therefore, the acyclic broken circuit complex (NBC,(A,),d."“““*) can be embedded of the O-S complex
(A, (A X cﬂz),af(‘ﬂlx‘AZ)) by injective K-chain mapping;
P o g1 (NBEL(A:), 0Y7CY) > (AL(AL X Ay), 91,
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2. For 1 <k < +¥,, the one to one mapping (inclusion), j,’{VBC(‘AZ):NBCk(ﬂZ) - NBCk((Cf’leac/lz), defined as,
jNBCUA2) g2y — cf1@B?, for B? € NBCy(A,), embedding the broken circuit module NBC,(A,) of
NBC, (A; X A,) by unique K-monomorphism j~?““2): NBC,,(A,) = NBC,(A; X A,) that extends

the following assignment:

.ﬁBC(c/lz)
{es2|B? € NBC,(A3)} > NBCy.(A;) —

.NBC(A3)
fe o F

{em@leBZ € NBC,(A3)} 31 f}ICVBC(JIZ)

. NBC(C“1@A,) .NBC(A3)
iy 2 \ A 2

NBC, (CHr®A,)

.NBC(C'104,)
"

NBC(A; X A;) <

Therefore, the acyclic broken circuit complex (NBC,(A,), 65’36(‘”2)) can be embedded of the O-S complex
(A.(A; X Ay), 02 *A2)y pyinjective  K-chain mapping;
I o fIPCD (NBCL(AL), 077D > (AL(AL X Ay), 0/2)). m

3.12. Theorem:

Suppose we have the assumptions of the constructions (3.1.) and (3.6.). Then, the complexes;

(4.(Ay x Ap), 012, (NBC*(Jll x A,), a,ﬁ”“““x“lz)) and

(NBC*(CA1)®NBC*(CA2) ) aiVBC(‘Al)e)NBC(ﬂZ)) are isomorphic, i.e.;

2, 2,
A,(Ay X A,) = NBC,(Ay X A,) = NBC.(A,)DNBC.(A,) = Z Z NBCy (A,)®NBCy, (A,)
ky=0 &=df,=0

0ski+hko=kst,+4,

where NBC,(A,)®NBC.(A,) is the external direct sumof NBC,.(A;) and NBC,(A,).

Proof: Indeed, for 1 < k < ¢, + ¢,, if B' € NBCy, (A,) and B*> € NBCy,(A;), for some 1 <k, < ¢, and
1<k, <?¥, such that k; +k, =k, then, epi pz = epigcr€ctigpz € Ex(Ay X A,) is a homogeneous
monomial of degree k. Furthermore, due to construction (3.1.), for 0 < k < £, + £,;
B' € NBCy,(Ay), 0<ky <4,
NBC (A, X A;) = |epiypz,  B* € NBCy,(A;), 0<k, <4,
ki+k,=k

Accordingly, for 1 < k < ¢; + £,, the external direct sum;

(NBC(cﬂl)@NBC(cAZ))k = Y oskyst; NBCy (A))BNBC, (A,);

0sk,<?,
ki+ky=k

can be embedded of NBC; (A, X A,) as the internal direct sum;
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Y osky<e; NBCy (A, ®C2)®NBC,,(C*®A,) bya K-isomorphism;
0<k,<?t
k1+;2=§€

f;{VBC(c/l1)®NBC(rA2): (NBC(cﬂl)@NBC(qu))k - NBC, (A, X A5);
defined as follows;

j.IICVBC(JlOGBNBC(ﬂz) (esl‘emz) = epigctar for Bl e NBC, (Uql);

g PCAIONBE) (o ens) = eqragpe for B2 € NBC(A,) and;
GRBCAIBNBED (o1 0020) = epigetrCotignz = Epixg?, fOr BY € NBC, (Ay), B> € NBC,,(A,) and

kl + kz = k
Therefore, the complex (NBC,(A,)®NBC.(A,) ,a"ECAVBNECA)) s isomorphic to the O-S complex
(A, (AL X Ay), af(‘ﬂlx‘AZ)) by the K-chain isomorphism mapping;

X o GNBCAAIONBCA2), NBEC (A)BNBC.(A,) > A(A; X Ay). ®

3.13. Proposition:
Suppose we have the assumptions of the constructions (3.1.) and (3.6.). Then the acyclic partition

complexes ((1).,87) and ((72),,8™") can be embedded of the partition complex ((m* x m2),, 8% *™*).

Proof: Suppose we have the assumptions of construction (3.1.). Then:
1. For 1<k<+¥,, the one to one mapping (inclusion) j,f(”l):sk(nl)esk(nlxnz), that defined as,
jSED ey = 1@z, for €t € S ('), embedding the partition module  (71), of (n' x 72), by the
uniaue K- linear monomorphism 77: (z'), - (' x n?). that extends the followina assignments:
L)
{ec1|C! € S (")} ———— (")

.S(mt
71{(17)

1
{eprgees|CY € Sy | a3t 7

4Ll(cnlemc"zx }.}En )

(rtect?) .

\L@({nlech)

(! x 7?2), <—
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2. For 1<k < 4,, the one to one correspondence, jS™: 5,(2) - S, (! x n2) that defined as, ;5™ (c?) =

ct2ec?, for C? € S, (m?), embedding the partition module (72), of (n! x m?), by the unique K- linear
(m?),
e

monomorphism 4 (%), - (n* x n?), that extends the following assignments:

)
{e|C? € S ()} ——  (w?),

jik(ﬂx

C%2esS 2 | '(”2)
{e(cf’zqgcﬂ € Si(m?) | 3! Ix

, (7120}’\& . (172)
" T

(r*@C’2),
4;]((11269((1[2)
(m! x 7'[2),(é

3.14. Theorem:

Suppose we have the assumptions of construction (3.1.). Then;

(! x72), = (1), ®@(?). = Toskse, e, (MO = T2 1 Ti2_y (X)), ®?)y,;

Ch1=0 2kp=0
0<k,+ky=k<tq+0;
i.e. the chain complexes ((1).®(?).,d™ ™)y and ((x! x 2),,d™ *™") are isomorphic.

Proof: We are emphasizing that, for 1 < k < ¢, +4,, if C* € S, (r") and C? € Sy, (?), for some 1 < k; <
¢, and 1 < k, < ¥, suchthat k; + k, = k, then;

1. qciger. and qc1®qg, are homogeneous tensors with degree k; of (! x m?),, and ((7‘[1)®(1T2))k
1
respectively.

2. qghge2 and  qg, ®qc2 are homogeneous tensors with degree k, of (r' x %), and ((711)69(112))k2

respectively.
3. qcixcz and  qo1®q.2 are homogeneous tensors with degree k of (n'xm?), and ((n1)®(n2))k

respectively.

C' €Sy, ("), 0<k; <4,
Furthermore, for 0 < k < £; + €55 (T' X %), = (qeigez,  C2 €S, (), 0<k, <4,
ky +ky =k
Therefore, for 1<k < £, +¢,, the k™ tensor product ((z")®(w?)), is isomorphic to (m* x 72), by a
K-isomorphism, 7 %7 ((x)@ (), - (x x m2); defined as follows;

(1)@ (?
f}E el )(qcl®qwz) = qigerz, for C* € (') ;

58


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper)  ISSN 2225-0522 (Online) J!Ti.l
Vol.6, No.5, 2016 NIS'E

7'[1 7T2
7}E ol )(%el@sz) = qctrgc2 for C* € S (n?) and;

1 2
;’,E” )8 )(qcl®qcz) = qciycz, for Ct € S, ("), C? € Sy, (n?) and ky +k, = k.

He(r

Therefore, the chain complexes ((n!),®(w?),, af” 2)) and ((7! x w2),, 8™ ™) are isomorphic by the

bijective K-chain mapping 7™ ®7: (1), ®(x?). - (7! x 12)..m

3.15. Construction:

Let A =A; XA, be a completely factored (¢, + ¢,) -arrangement of #; -arrangement A; and
£,-arrangement A,. According to theorem (3.7.), each of A; and A,are completely factored. So, for i = 1,2,
let ¢ be the factorization of A; and let <; be an ordering defined on its hyperplanes such that A; is
completely factored, i.e. NBC,(A;) = S, ("), via the ordering <; that given in construction (2.1.10), for all
1 < k < #;. Recall the constructions (2.7.) and (3.1.), so we have the following K-chain isomorphism's between
acyclic chain complexes;

o J1:(n"), » NBC.(A,).

o J?2:(n?), > NBC,(A,).

o 2. (! x m?), » NBC,.(A; X A,).

o 7= GNECCBNBCUT gz o JEIBED), (1) @(n2), - NBC,(A)BNBC.(Ay).
o K, =l o GNBCUIONEC(), NBC (A)BNBC.(A,) > A.(A; X Ay).

o p.= (K oT) T A(A X Ap) > (1), B(1?),

3.16. Construction:

Let A = A, X A, be a factored (¢, + ¢£,)-arrangement of ¢, -arrangement A, and #,-arrangement
A, thatis not completely factored. Without loss of generality assume that each of A; and A,are not completely
factored arrangements via any ordering. So, for i = 1,2, let 7’ be the factorization of A; and let <; be any
ordering defined on the hyperplanes of A;, i.e. NBC,(A; ) # S, (nt), via <; for all 1 < k < ¢;. Recall the
constructions (2.16) and (3.1.), so we have the following K -chain isomorphism's between acyclic chain
complexes;

o gl:(n'), » NBC,(A,) and #1:NBC,.(A,) - (m1),.

e g2:(m?), > NBC.(A,) and #2: NBC,(A,) - (1?),.

o g% (n' xm?), » NBC.(A; X A,) and $*2: NBC,.(Ay X A,) - (n x 2),.
o 7= GNECUBNBCUT sz o JEIBED), (11) @(n2), - NBC,(A)ONBC.(A,).
o K, =pf Mo NBCAIBNBC(L), NBC (A)BNBC,(A,) — A.(Ay X A,).

o p.= (k. oT)THA(AL X Ap) - (11).Q(m?)..

4. llustrations

In this section, we will demonstrate our work by the following examples:

4.1. Corollary:

If A =T, A; is areducible 2£-arrangement such that rk(A;) = 2 for each 1 <i < 2, then A is
completely factored via an ordering defined on its hyperplanes and NBC(ITf-;A; ) = ST~ %) and
A, (A) = A([Ti A;) = X NBC.(A) =®1_, ().
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Proof: For 1<i<?¥, A; ={H, ...,H,ill.} is a 2-arrangement, hence it is a factored arrangement with
factorization m' = ({Hi}, {H, ..., H. }) with exponent vector d’ = (1,n; — 1). Via this ordering given on the
hyperplanes of A;, the arrangement A; will be completely factored arrangement since it is satisfied
NBC (A;) = S(m'). By applying theorem (3.7.) inductively, we will be hold of A = [[{_, A; is a completely
factored arrangement with factorization, m = [/_, ' = (7*@C?**~2, C2®n?®C** ™, ..., C**2@®n?’), where for
1<i<¥;
(ci-2@Hi@c2e-2i), .

(CZi_ZGBHé@(C”_Zi, " (C2i—2®HTili®(C2€—2i}>’
with exponent vector is d = (1,n, —1,1,n, — 1,...,1,n, — 1) and it is satisfied NBC (A) = S(w) and due
construction (3.15) our claimishold. =
4.2. Corollary:

If A =T]J,A,; isareducible arrangement such that rk(A;) = 1 or2 foreach 1 <i <n,then A is
a completely factored arrangement via an ordering defined on its hyperplanes and,;

A (A) = A(Tf=, A;) =@®!-; NBC.(A) =@}, ().

Proof: We claim that if A; is a 1-arrangement for some 1 <i < n, then A; can considered to be completely
factored arrangement. Indeed, Q(A;) = x and its factorization assumed to be m' = ({H!}) with exponent
vector d' = (1), where H;' = ker(x). As well as if A; ={H},..,H;} is a 2-arrangement for some
1<i<n, then it is a completely factored arrangement with factorization n' = ({H}},{H}, ..., H}}) with

CZi—Z@niea((:Zf—Zi — <{

exponent vector d = (1,n; —1) as we explained in proof of corollary (4.1.). By applying theorem (3.7.)
inductively, we will be hold of A = [T{_; A; is a completely factored arrangement. Due construction (3.15.),
the proof is complete. m

4.3. Corollary:

Every reducible 3-arrangement is a completely factored arrangement via an ordering defined on its
hyperplanes.

Proof: It is clear that, if A is reducible 3-arrangement such that A = A; X A, X A5 is a product of three
l-arrangements A,, A, and A, then A is a Boolean 3-arrangement which is a completely factored
arrangement as we claimed. On the other hand, if A = A, X A, is a product of two arrangements A, and
A, of ranks such that rk(A;) = 1 or 2, then as a direct application of corollary (4.2) A is a completely
factored arrangement. This is our claim. m

4.4. Corollary:

If A =T[If., A, is a reducible arrangement such that each of A, is the complexification Coxeter
arrangement, either of type (4,, ,n>3) or (B,; n = 3)foreach 1 <k < ¥, then A isacompletely factored
arrangement via an ordering defined on its hyperplanes and,;

A.(A) = A, ([T1=1 A;) =0, NBC.(A) =Qf_, ().
Proof: Recalling, the defining polynomial of a Coxeter arrangement of type (4,, ,n = 3) or (B,; n = 3) and
its factorization from [2];
< By the complexification of Coxeter arrangement of type A,, we mean the Braid arrangement
A =A@ ={H_jl1<i<j <n+1} of €™, where, Hi_;={(xy, ., xp41)| % =%},
1<i<j <n+1,ie. its defaning polynomial is; Q(A(A,)) = [N1ci<j<n+1(xi — x;). It is known that,

A(A4,) is a non-essential supersolvable arrangement contain hyperplanes and it has a

nn-1)
2

factorization, w#“n) = ({H,_,}, {H,—3, Hy3}, .. {Hi—(n+1)s - Hmy-n+1)})  With exponent  vector

d¥ = (dy,...,dn), = (1,2,...,m). Thus, we have NBC(A(4,)) = S,(A(A,)), via the ordering defined on

the hyperplanes of A(4,,) as given in construction (2.1.), i.e.;
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k — +AAn) — k k k k k .
T =T - <{H1 }I {HZ ) H3 }, e {H(n(nz—l)_n)i ey H(n(n—1))}>;

2

n(n 1)

where, H" is the j** hyperplane of A(4,), 1<j<——

< By the complexification of Coxeter arrangement of type B,,, we mean the arrangement;
A =AB) ={H|1<i <n}u{H_;|1<i<j <n}uf{H,|1<i<j <n} of C* where;

HL- ={(xy, v, Xpp)| X, =0}, 1 <i<m
= {(xl, v Xpa) | X = x]-}, 1<i<j <n
Hij= {(xl, v Xpa )| X = —xj}, 1<i<j<nm
i.e. its defaning polynomial is, Q(A(B,)) = x1%; ... X [T1icj <n(x: — ;) (x; + x;). Its known that,
A(B,) is an essential supersolvable arrangement contained n? hyperplanes and it has a factorization;

T[fﬂ(Bn) _ < {Hl}v {HZvH1—2!H1+2}! {H31H1—31H1+31H2—3'H2+3}:---' )
{Hny Hi—ny Hr+nys Ha—ny» Haw (s -0 Hne1)=nyr Hn-1y+ )} )
with exponent vector d* =(d,, ..,d,),=(1,35,..2n—1) . Thus, we have

NBC(A(B,)) = Sz(A(By)), via the ordered that defined on the hyperplanes of A(B,)as given in
construction (2.1.), i.e. ¢ = 4B = ({Hf}, {HE, HE, HES, .. . {(H)2_,, ), - HY), where, HF is the
jt* hyperplane of A(B,), 1 <j < n?.

Now, without loss of generality assume ¢ = 2,i.e. A = A; X A,. As a direct application of theorem (3.7.), we
have the following:
i. If A, and A, of type A, and A,, respectively, then A =A; XA, is a completely factored

arrangement with factorization;
m=mn!xn?=(n'@C") U (C1dr?)

( {H%ea@z},{H%@C"Z.Hsl@@"z}'""{H(lnunzl_o )@ o Hi ) T }\

k{C"ieBHf}, {C"1®H§.¢"1®H§}.--..{C"leBH(an(@z-n_nz) e 69H<nz<n22 1))} )

and exponent vector d = (1,2, ...,n4,1,2,...,n;) and length ¢(w) = n, + n,.

ii. If A; and A, of type A, and B,, respectively, then A = A; XA, is a completely factored
arrangement with factorization;
T=n'Xxn?=(r'®C") u (C1dr?)

{(H{®C2}, {H}DC™2, HiDC™2}, {H(<> ) B (m(nl n)@C" }

{C"®HT}, {CMOH;, COHS, C®HS), .. {C"®H 12 4, oy, CHOHE, 12}
and exponent vector d = (1,2, ...,n4,1,3,...,2n, — 1) and length #(7) = n, + n,.
iii. If A; and A, of type B, and B,, respectively, then A =A; XA, is a completely factored
arrangement with factorization;
T =n'Xxn?=(m'@®C") VU (Cdn?)

_ ((HI®C™), (HOC", HE®C™, HI®C™), ., {Hy 21 ©C™, o, Hy,, 2 @C™,
{CM@H?}, (C®H;, C®HS, COHS), .. {CMOH, 12 pp oq) ) CHOH, 2}

and exponent vector d* = (1,3, ...,2n; — 1,1,3, ...,2n, — 1) andlength #(m) =n; +n,. m

4.5. Example:

Let A = {H,,...,H;} be a3-arrangemant that has the defining polynomial;
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Q(A) = xy2x5x3(x1 + x5 + x3) (1 + X3 — x3) (% — x5 + x3) (%1 — X2 —X3).

Via the ordering that given on the one degree polynomials of Q(A), put;

H| = Ker(ay) = {(x1, x5, x3) ElaHir(xl,xz,x3) =0}, 1<i<7.

Deduce that the partition @ = (my,m,, w3) = ({H3}, {Hy, He, Hy}, {H3, Hy, Hi}) of A is a factorization that

inherits A a structure as a factored arrangement. In fact, every 3-section of 7 is independent. Then m is

independent and for each X € L(A), there is a singleton block of Ay. Now, we reordered the hyperplanes of

A by using the order given in construction (2.9.). Thus;

m = (my, 7y, m3) = ({Hy}, {H,, H3, Hy}, {Hs, Hg, H7});
such that, H; = ker(x;) , H,=ker(x;) , Hs;=ker(x;—x,+x3) , H,=ker(x;—x,—x3) ,
Hs = ker(x,), Hg = ker(x; + x, + x3) and H, = ker(x; + x, — x3) and via this order we have;
NBC,y(A) = {C*}, NBC,(A) = {{H1},{H,}, {Hs}, {H,}, {Hs}, {He}, {H}};
NBCy(A) = {{Hy, H,}, {H,, H3}, {H,, Hy}, {H,y, Hs}, {H,, He}, {Hy, H7},
{Hy, H3}, {Hy, Hy}, {Hy, Hs}, {Hy, He}.{H,, H7}, {H3, Hs}, {H3, He}, {Ha, Hs}.{H,, H7}};
NBC5(A) = {{HlvHZvHs}x {Hy, Hy, Hy}, {H1:H2:H5}: {Hsz;Hs},
{Hy, Hy, H7},{Hy, H3, Hs}, {Hy, H3, He}, {Hy, Hy, Hs}, {H,, Hy, H7}};
So () = {@3}, S (m) = NBC(A);
S, (m) = {{Hy, H,}, {Hy, Hs}, {Hy, Ha}, {Hy, Hs}, {Hy, He}, {Hy, Hy 3, {H,, Hs},
{H,, Hg},{H, H;},{Hs3, Hs}, {Hs, He}, {Hs, H;}, {H,, Hs}, {Hy, He}, {Ha, H7}};
S3 (m) = {{Hy, Hy, Hs}, {Hy, Hy, He}, {Hy, Hy, Hy}, {H,, H3, Hs}, {Hy, H3, He},
{Hy, H3, H;}{Hy, Hy, Hs}, {Hy, Hy, He}, {H,, Hy, H7}}.

The important points to note here are:

1- Eachof {H, H;} and {H,,H,} are 2— NBC bases of A, butthey are not 2-sections of . As well as,
{H;,H;} and {H,,H¢} are 2-sections of m, but they are not 2— NBC bases of A. By applying
theorem (2.14.), we have; f,({H,, H;}) = {H;,H,} and fo({H,,H,}) = {H,,Hg} . Accordingly,
92({H;, H;}) = {Hp, Hs} and  g,({H4, Hg}) = {H,, Hs}

2- Each of {H;,H,,H;} and {H,H,,H,} are 3 —NBC bases of A, but they are not 3-sections of . As
well as, {H,,H;, H,;}and {H,,H,, Hs} are 3-sections of m, but they are not 3 — NBC bases of A. By
applying theorem (2.14.), we have f;({H,,H,, H3}) = {H,, H;, H,;} and f;({H,, H,, H,}) = {H,, H,, Hg}.
Accordingly, gs({Hy, Hs, H;}) = {Hy, Hp, Hs}and g3 ({Hy, Hy, He}) = {Hy, Hp, Hy}.

It is known that the factorization of A4 need not to be unique. Definitely, for any factorization of A4 and
any ordering defined on its hyperplanes, A is not completely factored arrangement. So, in this example we
illustrate a factored arrangement that is not completely factored arrangement. On the other hand,

NBC,(A) = (ec3), NBC,(A) = (3H1'3H2'3H3'3H4'3H5'3H6:6H7>
€{Hy,HaYr €{H1,Hz) €(Hy,Hylr €{Ha,Hs) €(Hy,HeY

NBC, (A) = <e{H1rH7}’ €{Hy,Hs} €{Hy,Hy} €{Ha,Hs ) €{Ha, He )

€{Hy,Hp,H3} €{Hy,Hp Ha}» €{H ,Hp Hs)
;
€{H,,H,}r €{H3,Hs} €{H3,He} C{HyHs) C(HaH7}

» NBC3(A) = <e{H1:H2'H6}' €{Hy,Hz,Hy}» €{Hy,H3,Hs}
e{H1,H3,H5}‘ e{Hl,H4,H5}' e{H1,H4,H7}

(m)o ={qg3), (M) = (QHl'QHZJQH3JQH4'qH5'qH6'qH7>;

Q{Hy,Hy} A{H,Hz b Q{H1 Hed D{H1 Hs ) U{H He)
(1), = iy, H7Y itz Hsy Uiy Hey iH H7 Y DiHszHs)

Q{H4,Hy,Hs} A{H1 Hp He)r q{H1:H21H7}'>
Q{H3,He} {H3.H7 Y Q{Ha Hs) D{HaHeY V{HaH7}

and (7‘[)3 = <q{H1'H3-H5}’ Q{H,,H3,He}» A{H, ,H3,Hy}
AtHy HoHsy QiH  HyHed A{Hy,Hy H7}

By applying theorem (2.17), we have two K -chain isomorphism's, #,:NBC.(A) — (), and
g.:(m), » NBC,.(A) between acyclic chain complexes that create a connection between two fashions of the
O-S algebra of A, a fashion as free submodule of the exterior algebra, and a fashion as a tensor factorization
module. In view of this; A,(A) = NBC,.(A) = Y 0<k<3 NBCy(A) = (1), = Y pepez(M)k-

62


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper)  ISSN 2225-0522 (Online) J!Ti,l
Vol.6, No.5, 2016 NIS'E
4.6. Example:

Let A = {H,,...,Hc} be a6-arrangemant that has the defining polynomial;
Q(A) = x12x3X3%x4X5%6 (X1 + X3 + x3) (%1 + X — x3) (%1 — X5 + X3)
(1 — 2x=x3) (4 — x5) (04 + x5) (x4 — X6) (x4 + X6) (x5 — X6) (x5 + X6).
It is clear that, A = A, X A, is reducible arrangement such that A, is the 3-arrangement given in example
(4.5.) above and A, is the complexification of Coxeter arrangement of type B; (recall corollary (4.4.)). By
applying corollary (3.9.), the arrangement A is a factored arrangement that not completely factored with
factorization:
T = (1y, Ty, 03, 4, s, ) = ({H1}, {Hy, H3, Ha}, {Hs, He, H,}, {Hg}, {Ho, H1o, H11}, {H12, Hy3, His, Hys, Hig})
where;
H; = ker(x3), H, = ker(x;), H; = ker(x; — x5 + x3);
H, = ker(x;, —x, — x3), Hs = ker(x,), Hg = ker(x; + x, + x3);
H, = ker(x, + x, — x3) , Hg = ker(x,), Hy = ker(xs);
Hyg = ker(x4 — x5), Hyy = ker(x, + x5), Hyp = ker(xe);
Hi; = ker(xy — x¢),Hy4 = ker(x, + x¢), His = ker(xs — x¢) and;
Hyg = ker(xs + x¢)
and via this order we have;
NBCy(A) = {(CG}: NBC,(A) = {{H1}: ---x{H16}} =5, (m);
NBC,(A) = (52 (m) — {{H3:H7}1{H41H6}}) U {{H, H3}, {Hy, H,}};
and for 3 <k <6;
NBCi(A) = (S () — Si(m)) U NBCy (1) U NBCE (m);
where, S, (1) = {S € Sy ()| either {H;, H,} < S or {H,, Hs} € S};
NBCL(m) = {(S — {H,}) U {H,}|S € S, () and {H5, H,} € S} and;
NBCi (1) = {(S — {He}) U {H}IS € Sy(m) and {H,, He} < S}.
The important points to note here are [NBC{(m) U NBCZ ()| = |Si ()| and for 3 < k <6, if S € S;.(m) and
{Hy,H;3 =S , then, f((S—{H,HDU{H})=S and if SeSi(m) and {H,H}CSS , then,
fi((S—{HHU{H,})=S .  Accordingly, if SeSs;(n) and {H;,H,}<S ,  then,
9k(8) = (S —{H; U {H,} and if SeS(m) and {Hy,Hg} S, then, g,(S) =(S—{He})U{H,}. By
applying theorem (3.12.) and theorem (3.14.) we have;
NBC,(A) = (ecs), NBC(A) = (ey,, .., en,,) = NBC,(A;) @ NBC,(A;);
NBC,(A) = <eB| B e (Sz (m) — {{H3:H7} :{H4'H6}}) U {{H,, Hs}, {H2:H4-}})
= NBC,(A,) ® NBC,(A,), for 3<k <6;
NBC,(A) = (qs, B € (5, (m) — S;,(m)) U NBC; () U NBC{(m)) = NBC,.(A;) @ NBC, (Ay);
(Mo ={apy), (M1 =qu, ) = (@)1 ()s;
andfor 2 <k <6, (m), ={(qg, B €S, (m))= (1), (1?),.

By applying theorem (3.17.), we have two K -chain isomorphisms, #.:NBC.(A) - (7), and
g.: (), » NBC,(A) between acyclic chain complexes which produce a connection between two fashions of
the O-S algebra of A, a fashion as free module, and a fashion as a tensor factorization module. So;

A.(A) = NBC.(A) = X<k NBC (A) = (). = Tospse(M-

4.7. Example:
Let A = {H,, ..., H;,} be a6-arrangemant that has the defining polynomial;
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Q(A) = x1XX3%4X5%6 (X1 + X5 + x3) (%1 + X3 — x3) (X1 — X3 + x3)
(o1 — x3—x3) (x4 + X5 + %6) (X4 + X5 — X6) (X4 — X5 + x6) (X4 — X5—X6).
It is clear that, A = A, XA, is a reducible arrangement such that each one of A; and A, is a
3-arrangement given in example (4.4.). By applying corollary (3.9.), the arrangement A is a factored
arrangement that not completely factored with factorization:

T = (1y, Ty, 3, 4, 5, ) = ({H1}, {Hy, Hs, Ha}, {Hs, He, H7}, {Hg}, {Ho, H1o, H11}, {H12, H13, H14});
where, H; =ker(x;) , H,=ker(x;) , Hs=ker(x;—x,+x3) , H,=ker(x;—x,—x3) ,
Hg = ker(x,) , Hg=ker(x; +x,+x3), H; =ker(x;+x, —x3) , Hg=ker(xs) , Hy=ker(x,) ,
Hyo = ker(xy — x5 +x¢) , Hyy =ker(xy —xs —x¢) , Hy, =ker(xs) , Hjz = ker(x, +xs +x,) and
H,, = ker(x, + x5 — x¢) and via this order we have;

NBCy(A) = {C°}, NBC(A) = {{H1}, ---;{H14}} =8 (m);
NBC,(A) = (S, (m) — {{Hs, H;} ,{Hy, He}, {H10, H14} , {Hy11, Hi33}}) U {{Ha, H3}, {Hy, Hy}, {Ho, H1o}, {Ho, H11}};
and for 3 <k <6, NBC,(A) = (S, () — S;.(m)) U NBCE(m) U NBC?()) U NBCE () U NBCi (), where,
Sp(m) ={S € Sy, (m)| either {H;, H,} S S or {H,, Hg} € S} U {S € Sy (m)| either {Hyy, H14} € S or {H;4, H13} € S};
NBCy () = {(S — {H,}) U {H,}IS € Sg(m) and {Hs, H,} < S};
NBC; () = {(S — {He}) U {H,}IS € Si.(m) and {H,, He} < S};
NBCi () = {(S — {H14}) U {Ho}|S € Sy.(m) and {H,o, H;4} € S} and;
NBCi¢(m) = {(S — {H13}) U {Ho}|S € Sg(m) and {Hy,, H,3} € S}.
The important points to note here are |[NBCi(m) U NBC2(m)| = |S; ()| and for 3 <k <6, if S € S, (m) and
if {Hy,H,3}cS , then, fi((S—{H,)H)U{H})=S , if SeSiy(m) and {H,Hg}<S , then,
fi((S—{HHU{H,}) =S, if SES () and {Hy, His} €S, then, fi((S—{Hu}) U{Ho})=Sand if
S € Sip(m) and {Hyy, Hiz} € S, then, £i.((S — {Hy3}) U {Ho}) = S. Accordingly, if S € S;(r) and {H;, H,} S
S, then, g,(S) = (S —{H,}) U{H,}, if S€S,(m) and {H,, Hs} < S, then, gx(S) =
(S —{Hs) U{H,}, if SeSi(m) and {Hyp, His} €S, then, g, (S) = (S — {Hi.}) U{Hy}, if S€S;(m) and
{Hi1,Hi3} € S, then, g,(S) = (S — {H;3}) U {H,}. By applying theorem (3.12.) and theorem (3.14.) we have;
NBCy(A) =(ecs), NBC(A) = (ey,, -, eu, )
B e (Sz () — {{H3:H7} :{H4'H6}' {H10'H14}'{H11:H13}}) U
{{Hy, Hs}, {H;, Hy}, {Ho, Hyo}, {Ho, Hy1}}
B € (S (m) — S;(m)) U NBC} () U
NBC?(m)) U NBCZ () U NBCy (1) >
(m)o ={qgy), (M1 =1{qu,, - qu,,) andfor 3 <k <6, (1), =(qz|B € S (m)).

NBC,(A) = <eB > and for 3 <k <6;

NBC,(A) = ey ;

By applying theorem (2.17), we have two K-chain isomorphisms, #,: NBC,.(A) — (), and g, (m), -
NBC,(A) between acyclic chain complexes that induced a connection between two fashions of the O-S algebra
of A, afashion as free module and a fashion as a tensor factorization module. Accordingly,

A.(A) = NBC,(A) = Yo<k<e NBC,(A) = (). = Yo<kze(T) -

6. Concluding remarks:

In this paper, we studied several fashions of the O-S algebra of Terao class of factored arrangements in
order to examine, how Terao generalization of the class of supersolvable arrangements preserved the tensor
factorization of the O-S algebra. It is found that;

1. We used the properties of the NBC monomial basis of O-S algebra of factored arrangement to establish a

partition on the class of factored arrangements into two subclasses. The first one is the class of supersolvable
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arrangements, which their arrangements have very interesting topological properties produced from the
structure of their factorizations.

For the second subclass, we consider a connection between two fashions of the O-S algebra of A, a fashion
as free submodule of the Exterior algebra and a fashion as a tensor factorization module, in order to ensure
our conjecture that there are a relation between the factorizations properties and the NBC bases properties.
As an application, we proved that: "A reducible arrangement A = A; X A, is completely factored if, and
only if, each of A; and A, is completely factored". Moreover, we showed that, "A reducible arrangement
A = A, X A, is factored arrangement that not completely factored if, and only if, A; and A, are

factored arrangements such that either A, or A, isnot completely factored".

. As an illustration, we proved: "every reducible 3-arrangement is supersolvable”, "every reducible

arrangement into product of rank 2 arrangements is supersolvable”, "every reducible arrangement into
product of rank 2 arrangements and rank 1-arrangements is supersolvable” and "every reducible arrangement
into product of the complexification Coxeter arrangement, either of type A or B is supersolvable".

As a future work, we are looking to study the topological properties of the complement of a factored

arrangement that not supersolvable.
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