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Abstract 

The first main objective of the work was to create a combinatorial answer to an essential question; "How Terao 

generalization of the class of supersolvable arrangements preserved the tensor factorization of the O-S algebra?", 

by finding a relation among several bases of the O-S algebra. This was achieved in two parts. First, the class of 

factored arrangements was classified in two subclasses, the subclass of completely factored arrangements and the 

subclass of factored arrangement that not completely factored. Our classification criteria was, "the existence of 

an ordering ⊴ on the hyperplanes of a factored arrangement 𝒜 such that the set of all monomials that related 

to the sections of a factorization 𝜋 on 𝒜 forms an NBC basis of the O-S algebra as a free module". The second 

part was, a comparison among the structures of the O-S complex, the NBC complex and the partition complex. 

In spite of, our classification criteria was failed of the second subclass of factored arrangement that not 

completely factored, the existence of a one to one correspondence between the set of all NBC bases of 𝒜 and 

the set of all sections of a factorization 𝜋 on 𝒜, provides a tensor factorization fashion to the O-S algebra. 

The second main aim of the work was to prove that our classification is compatible with the product 

construction for arrangements, by constructing the O-S complex, the NBC complex and the partition complex of 

the reducible factored arrangements. Finally, several illustrations and applications were indicated. 

Keywords: Hyperplane arrangement, Supersolvable arrangement, factored (Nice) arrangement, Orlik-Solomon 

algebra, NBC module and Partition tensor module. 

 

Introduction: 

A hyperplane arrangement 𝒜 is defined to be a finite collection of hyperplanes of a finite dimensional 

vector space 𝑉 over a field 𝐹 = ℝ or ℂ. The field of hyperplane arrangements becomes increasingly popular 

during the previous century, from the time when its applications used in numerous areas, including Geometry, 

robotics, graphics, molecular biology, computer vision. The best general reference here is [8]. 

The chomological group of the complement 𝑀(𝒜) = 𝑉\⋃ 𝐻𝐻∈𝐴  of an arrangement 𝒜 in a complex 

space had been studied by E. Fadell, R. Fox and L. Neuwirth (1962, [5,6]), in a connection of the Braid 

arrangement. They gave a presentation of the cohomological ring of the complement  𝑀(𝒜) as generators and 

relations. In (1973, [4]), E. Brieskorn replaced the Braid arrangement by a Coxeter arrangement and the 

complexification of its reflection arrangement in order to generalize the previous work and give a presentation to 

the cohomological ring 𝐻∗(𝑀(𝒜)) of the complement 𝑀(𝒜). Orlik and Solomon in (1980, [9]) generalized 

Brieskorn results to construct a graded algebra 𝐴(𝒜) (that named by their names and for simplicity denoted by 

O-S algebra) associated to any complex arrangement 𝒜 and their description involves the intersection lattice 

𝐿(𝒜) = {𝑋|𝑋 = ⋂ 𝐻𝐻∈𝐵  and 𝐵 ⊆ 𝒜} of 𝒜. They proved that, 𝐴(𝒜) is isomorphic to the cohomological ring 

𝐻∗(𝑀(𝒜)) of the complement 𝑀(𝒜). 

In (1984, [10]), Orlik, Solomon and Terao showed that a supersolvable (Stanely (1972, [13])) 

arrangement 𝒜 admits a partition 𝜋 which gives rise to a tensor factorization of O-S algebra 𝐴(𝒜). Bjӧrner 

and Ziegler in (1991, [3]), gave a sufficient condition for such factorizations of 𝐴(𝒜). In (1992, [14]), Terao 

was able to capture this tensor factorization property of 𝐴(𝒜) purely combinatorially in terms of the underlying 

partition 𝜋 to introduce firstly the class of factored arrangements as a generalization of Stanely class of 

supersolvable arrangements. In section (1), we review some of the standard facts about the Terao class of 
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factored arrangements.   

Terao generalization turn raises several questions and conjectures, one of them is: Why does Terao 

generalization still reserve the tensor factorization of the O-S algebra? In order to create a conjecture to answer 

this question, we study the notion of "quadratic arrangement". In (2001, [11]), K. J. Pearson showed that: an 

arrangement 𝒜 is supersolvable if, and only if, 𝒜 is quadratic via an order ⊴ defined on its hyperplanes. Ali 

in (2014, [1]) gave a sufficient and necessary condition on the structure of O-S algebra 𝐴(𝒜) that induced to a 

central arrangement, a structure as a supersolvable arrangement. Due their work, section (2) includes a 

classification to the class of factored arrangements into two subclasses. Our classification criteria is, the 

existence of an ordering ⊴ on the hyperplanes of a factored arrangement 𝒜 such that the NBC monomial basis 

of the O-S algebra 𝐴(𝒜) as free module, is the same basis that provides a tensor factorization fashion to 𝐴(𝒜). 

First, we introduce the subclass of factored arrangements that included arrangements satisfied our criteria, called 

completely factored arrangements. The second subclass consists factored arrangements fails to satisfied our 

classification criteria. We showed, how the NBC monomial basis of the O-S algebra 𝐴(𝒜), exhibits the tensor 

factorization fashion to 𝐴(𝒜) for a factored arrangement 𝒜 that not completely factored. 

Hoge and Rӧhrle in (2014, [7]), showed that the notion of "factored arrangement" is compatible with the 

product construction for arrangements. Section (3), is motivated to prove that our classification is compatible 

with the product construction. This was realized by a comparing among the O-S complex, the NBC complex and 

the partition complex of the product of factored arrangement by using our classification. Section (4), indicates 

some illustrations to ensure our work. 

 

1.  Basic facts 

This section goal is to introduce Terao class of arrangements (1992, [14]) with some basics of the 

structure of O-S algebra, NBC module and Partition tensor module with their complexes. The following 

assumptions will be needed throughout the Paper; Assume 𝒜 be an arrangement of a finite dimensional vector 

space 𝑉 over a field 𝐹 = ℝ or ℂ and let 𝐿 = 𝐿(𝒜) = {𝑋|𝑋 = ⋂ 𝐻𝐻∈𝐵  and 𝐵 ⊆ 𝒜} be its intersection lattice 

that ordered by reverse the inclusion, (i.e.  𝑋 ≤   𝑌 ⟺  𝑌 ⊆  𝑋, for 𝑋, 𝑌 ∈ 𝐿(𝒜)), and ranked by 𝑟𝑘(𝑋) =

𝑐𝑜𝑑𝑖𝑚(𝑋) = dim(𝑉) − dim(𝑋), for 𝑋 ∈ 𝐿(𝒜). When we want to emphasize 𝑟𝑘(𝒜) = 𝑟𝑘(⋂ 𝐻𝐻∈𝒜 ) = ℓ, we 

will write 𝒜 be an ℓ-arrangement.  

1.1. Definition: [8] 

Let 𝜋 = (𝜋1, … , 𝜋ℓ) be a partition of an ℓ-arrangement 𝒜. 

1. A section 𝑆 of  𝜋 is a subarrangement of 𝒜 satisfied for each 1 ≤ 𝑘 ≤ ℓ, either 𝑆 ∩ 𝜋𝑘 is empty or a 

singleton. By 𝑆(𝜋) we denote the set of all sections of 𝜋 and the set 𝑆𝑘(𝜋) denotes the set of all sections 

𝑆 of  𝜋 with |𝑆| = 𝑘, we call such sections of  𝜋, 𝑘-sections of 𝜋. We will agree that the empty section 

∅ℓ is a 0-sections of 𝜋. 

2. The integer ℓ is called the length of  𝜋 and denoted by ℓ(𝜋). 

3. 𝑟𝑘(𝜋𝑘) = 𝑟𝑘(⋂ 𝐻𝐻∈𝜋1∪…∪𝜋𝑘
).  

4. 𝜋 is called independent if for every choice of hyperplanes 𝐻𝑘 ∈ 𝜋𝑘   for  1 ≤ 𝑘 ≤ ℓ, the resulting ℓ 

hyperplanes are independent, i.e. 𝑟𝑘(𝐻1 ∩ …∩ 𝐻ℓ) = ℓ. 

5. Let 𝑋 ∈ 𝐿. Let 𝜋 = (𝜋1, … , 𝜋ℓ) be a partition of 𝒜. Then the induced partition 𝜋𝑋 is a partition of 𝒜𝑋, 

its blocks are the nonempty subsets 𝜋𝑘 ∩𝒜𝑋, 1 ≤ 𝑘 ≤ ℓ. 

6. 𝜋 is called a factorization of 𝒜 or nice, if 𝜋 is independent and if 𝑋 ∈ 𝐿\{𝑉} then the induced partition 

𝜋𝑋 contains a block, which is a singleton. 
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7. 𝒜 is called factored (or nice) arrangement if, it has a factorization 𝜋 = (𝜋1, … , 𝜋ℓ). The vector of integers 

𝑑 = (𝑑1, . . , 𝑑ℓ) is said to be the exponent vector of 𝒜, if 𝑑𝑘 = |𝜋𝑘|, 1 ≤ 𝑘 ≤ ℓ. 

It is clear that, 𝑆(𝜋) = ⋃ 𝑆𝑘(𝜋)
ℓ
𝑘=0  and in general, 𝑟𝑘(𝜋ℓ) = 𝑟𝑘(𝒜) ≤ ℓ(𝜋).  If 𝜋 is independent, then 

every section  𝑆 of  𝜋 is independent subarrangement of 𝒜, i.e. |𝑆| = 𝑟𝑘(𝑆) = 𝑘 and ℓ(𝜋) = 𝑟𝑘(𝒜). 

1.2. Definition: [1] 

1. A subarrangement 𝐶 of 𝒜 is said to be a circuit, if it is a minimal dependent subarrangement of 𝒜, i.e. 

𝐶\{𝐻} is linearly independent, for any 𝐻 ∈ 𝐶, i.e. 𝑟𝑘(𝐶) = │𝐶│ − 1. 

2. Via a total ordering ⊴  on the hyperplanes of 𝒜, the corresponding broken circuit of a circuit 𝐶 is 

𝐶̅ = 𝐶\{𝐻}, where 𝐻 is the smallest hyperplane in 𝐶. If |𝐶̅| = 𝑘, then 𝐶̅ is said to be 𝒌-broken circuit. 

The set of all 𝑘-broken circuits of 𝒜 will be denoted by 𝐵𝐶𝑘(𝒜) and 𝐵𝐶(𝒜) = ⋃ 𝐵𝐶𝑘(𝒜)
ℓ
𝑘=2 . 

3. We call 𝐵 ⊆ 𝒜, an NBC base of 𝒜, if it contains no broken circuit. Note that, such a set must be 

independent and we will write 𝒌-𝑵𝑩𝑪 base for 𝐵 if │𝐵│ = 𝑘 and we will agree that ∅ℓ is the 0-𝑁𝐵𝐶 

of 𝒜. By  𝑁𝐵𝐶𝑘(𝒜) we denote the set of all 𝑘-𝑁𝐵𝐶 bases of 𝒜 and 𝑁𝐵𝐶(𝒜) = ⋃ 𝑁𝐵𝐶𝑘(𝒜) 
ℓ
𝑘=0 . 

4. If   𝑋 ∈ 𝐿(𝒜). Then the NBC base 𝐵 ⊆ 𝒜𝑋, (i.e. ⋂ 𝐻𝐻∈𝐵 = 𝑋) is said to be an 𝑁𝐵𝐶 base of 𝑋. 

5. If 𝒜 is a factored arrangement with a factorization 𝜋. Due a total ordering ⊴ on the hyperplanes of 𝒜, 

define, 𝑝⊴(𝒜) = 𝑀𝑎𝑥{𝑘| 𝑁𝐵𝐶𝑘(𝒜) =  𝑆𝑘 (𝜋)}. We remarked that,  1 ≤ 𝑝⊴(𝒜) ≤ ℓ.   

1.3. Remark: [8] 

Let 𝒜 be a factored ℓ-arrangement. Then:  

1. If 𝑑 = (𝑑1, . . , 𝑑ℓ) be the exponent vector of 𝜋, it is known that;  

𝑃 (𝒜 , 𝑡) = ∏ (1 + 𝑑𝑘𝑡)
ℓ
𝑘=1  = 1 + (𝑑1+. . + 𝑑ℓ)𝑡 + (∑ ∑ 𝑑𝑖1𝑑𝑖2  

ℓ
𝑖2= 𝑖1+1 

ℓ−1
𝑖1=1

)𝑡2 +⋯+ 𝑑1 …𝑑ℓ  𝑡
ℓ. 

2. Independent of our choice of an ordering ⊴ on the hyperplanes of 𝒜, Rota in ([12], 1964) proved that, the 

𝑘𝑡ℎ  Betti number of the Poincare polynomial  𝑃(𝒜, 𝑡) = 𝑏𝑘(𝒜) = |𝑁𝐵𝐶𝑘(𝒜)|. Accordingly, we have, 

𝑏𝑘(𝒜) = |𝑁𝐵𝐶𝑘(𝒜)| = ∑ ∑ …∑ 𝑑𝑖1𝑑𝑖2 …𝑑𝑖𝑘
ℓ
𝑖𝑘= 𝑖𝑘−1+1

ℓ−𝑘+1
𝑖2= 𝑖1+1

ℓ−𝑘
𝑖1=1

, 1 ≤ 𝑘 ≤ ℓ 

3. For 1 ≤ 𝑘 ≤ ℓ the number of 𝑘- sections of 𝜋; 

|𝑆𝑘(𝜋)| = ∑ ∑ …∑ 𝑑𝑖1𝑑𝑖2 …𝑑𝑖𝑘
ℓ
𝑖𝑘= 𝑖𝑘−1+1

ℓ−𝑘+1
𝑖2= 𝑖1+1

ℓ−𝑘
𝑖1=1

. 

That is, |𝑁𝐵𝐶𝑘(𝒜)| = |𝑆𝑘(𝜋)|. 

 

1.4. Definition: [11] 

Let 𝒜 be an arrangement and ⊴ be an order defined on its hyperplanes. 𝒜 is said to be quadratic via 

⊴ if, and only if, every broken circuit of  𝒜 contains a broken circuit of order 2, i.e. if  𝐵 ∈ 𝐵𝐶𝑘(𝒜), 𝑘 >

2, then there exists 𝐵′ ∈ 𝐵𝐶2(𝒜) such that 𝐵′ ⊆ 𝐵.  

1.5. Theorem: [1] 

Let 𝒜 be a central ℓ-arrangement. 𝒜 is supersolvable if, and only if, there exists an ordering ⊴ on 

the hyperplanes of 𝒜 such that every subarrangement of 𝒜 which contains no 2-broken circuit from an 

𝑁𝐵𝐶-base of 𝒜. 

1.6. Corollary: [11] 

A central ℓ-arrangement 𝒜 is supersolvable if, and only if, it is quadratic via an ordering ⊴.   

1.7. Definition: [8] 

Let 𝐾 be any commutative ring and Let ⊴ be an arbitrary total order that defined on the hyperplanes of an 

ℓ-arrangement 𝒜. The Orlik-Solomon algebra (or for  simplicity O-S algebra)  𝐴∗(𝒜) is defined to be the 

quotient of  the exterior 𝐾-algebra 𝐸∗ = ⋀ (⊕𝐻∈𝒜 𝐾𝑒𝐻)𝑘≥0 , by the homogeneous ideal 𝐼∗(𝒜) is generated by 
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the relations, ∑ (−1)𝑘−1𝑘
𝑗=1 𝑒𝐻𝑖1 …𝑒𝐻𝑖�̂� …𝑒𝐻𝑖𝑘

, for all 1 ≤ 𝑖1 < ⋯ < 𝑖𝑘 ≤ 𝑛 such that {𝐻𝑖1 , …𝐻𝑖𝑘} is dependent 

subarrangement of 𝒜,i.e. (𝑟𝑘(𝐻𝑖1 , …𝐻𝑖𝑘) < 𝑘) and the circumflex   ̂ means 𝑒𝐻𝑖𝑗
 is deleted. Define a 𝐾-linear 

mapping 𝜕∗
𝐸: 𝐸∗ → 𝐸∗  as; 𝜕0

𝐸(𝑒∅ℓ) = 0 , 𝜕1
𝐸(𝑒𝐻) = 1 , for all 𝐻 ∈ 𝒜  and for 2 ≤ 𝑘 ≤ ℓ ,                 

𝜕𝑘
𝐸(𝑒𝐶) = ∑ (−1)𝑘−1𝑘

𝑗=1 𝑒𝐻𝑖1 …𝑒𝐻𝑖�̂� …𝑒𝐻𝑖𝑘
, 𝐶 = {𝐻𝑖1 , …𝐻𝑖𝑘}. 𝜕∗

𝐸 is a differentiation on 𝐸∗ and the chain complex 

(𝐸∗, 𝜕∗
𝐸): ⋯

𝜕𝑘+1
𝐸

→  𝐸𝑘
𝜕𝑘
𝐸

→ 𝐸𝑘−1
𝜕𝑘−1
𝐸

→  ⋯
𝜕2
𝐸

→ 𝐸1
𝜕1
𝐸

→ 𝐸0
𝜕0
𝐸

→ 0, is called the exterior complex; 

1.8. Theorem: [8] 

The complex (𝑨∗(𝒜), 𝜕∗
𝐴)  inherits a structure as acyclic chain complex from the exterior complex 

(𝐸∗, 𝜕∗
𝐸), where 𝜕∗

𝐴 = 𝜓∗ ∘ 𝜕∗
𝐸  and 𝜓∗: 𝐸∗ → 𝑨∗(𝒜) is the canonical chain map. The acyclic chain complex 

(𝑨∗(𝒜), 𝜕∗
𝐴) is called the O-S complex.  

 

 

                                                                                                                                                 

 

 

1.9. Definition: [8] 

Let 𝐾  be any commutative ring. The broken circuit module 𝑵𝑩𝑪∗(𝒜)  of the exterior 𝐾 -algebra  

𝐸∗ = ⋀ (⊕𝐻∈𝒜 𝐾𝑒𝐻)𝑘≥0 , is defined as; 𝑵𝑩𝑪0(𝒜) = 𝐾  and for 1 ≤ 𝑘 ≤ ℓ , 𝑵𝑩𝑪𝑘(𝒜)  be the free                     

𝐾-module of 𝐸𝑘 with NBC (no broken circuit) monomials basis {𝑒𝐶|𝐶 ∈ 𝑁𝐵𝐶𝑘(𝒜)} ⊆ 𝐸𝑘, i.e.; 

𝑵𝑩𝑪𝑘(𝒜) =⊕𝐶∈𝑁𝐵𝐶𝑘(𝒜)
𝐾𝑒𝐶 and 𝑵𝑩𝑪∗(𝒜) =⊕𝑘=0

ℓ 𝑵𝑩𝑪𝑘(𝒜). 

 

 

1.10.  Theorem: [8] 

The broken circuit  subcomplex (𝑵𝑩𝑪∗(𝒜), 𝜕∗
𝑁𝐵𝐶) inherits a structure as acyclic chain complex from the 

exterior complex (𝐸∗, 𝜕∗
𝐸), where 𝜕∗

𝑁𝐵𝐶 = 𝜕∗
𝐸 ∘ 𝑖∗ and 𝑖∗: 𝐸∗ → 𝑵𝑩𝑪∗(𝒜) is the inclusion chain map. 

 

 

 

 

 

 

Moreover, the restriction of the canonical chain map 𝜓∗: 𝐸∗ → 𝑨∗(𝒜) of the broken circuit module 

𝑵𝑩𝑪∗(𝒜) , is a chain isomorphism, defined as; for 1 ≤ 𝑘 ≤ ℓ ,  𝜓𝑘(𝑒𝐶) = 𝑒𝐶 + 𝐼𝑘(𝒜) = 𝑎𝐶 ,                      

𝐶 ∈ 𝑁𝐵𝐶𝑘(𝒜). 

 

 

 

 

 

Thus the O-S algebra has the following structure as a free 𝐾-module: 𝑨∗(𝒜) =⊕𝑘=0
ℓ (⊕𝐶∈𝑁𝐵𝐶𝑘(𝒜)

𝐾𝑎𝐶  ). 

 

0 → 𝑵𝑩𝑪ℓ(𝒜)
𝜕ℓ
𝑁𝐵𝐶

→   𝑵𝑩𝑪ℓ−1(𝒜)
𝜕ℓ−1
𝑁𝐵𝐶

→   ⋯
𝜕2
𝑁𝐵𝐶

→   𝑵𝑩𝑪1(𝒜)
𝜕1
𝑁𝐵𝐶

→   𝑵𝑩𝑪0(𝒜)
𝜕0
𝑁𝐵𝐶

→   0 

𝜓ℓ ↓                   𝜓ℓ−1 ↓                                 𝜓1 ↓                 𝜓0 ↓ 

0 →  𝑨ℓ(𝒜)   
   𝜕ℓ
𝐴   

→     𝑨ℓ−1(𝒜)   
𝜕ℓ−1
𝐴

→  ⋯
  𝜕2
𝐴   
→      𝑨1(𝒜)  

  𝜕1
𝐴   
→    𝑨0(𝒜)  

  𝜕0 
𝐴    
→   0 

 

⋯
𝜕ℓ+1
𝐸

→     𝐸ℓ    
𝜕ℓ
𝐸

→     𝐸ℓ−1   
𝜕ℓ−1
𝐸

→  ⋯
𝜕2
𝐸

→     𝐸1    
𝜕1
𝐸

→     𝐸0     
𝜕0
𝐸

→ 0 

𝜓ℓ ↓        𝜓ℓ−1 ↓                       𝜓1 ↓         𝜓0 ↓ 

0 → 𝑨ℓ(𝒜)
𝜕ℓ
𝐴

→ 𝑨ℓ−1(𝒜)
𝜕ℓ−1
𝐴

→  ⋯
𝜕2
𝐴

→ 𝑨1(𝒜)
𝜕1
𝐴

→ 𝑨0(𝒜)
𝜕0
𝐴

→ 0 

0 → 𝑵𝑩𝑪ℓ(𝒜)
𝜕ℓ
𝑁𝐵𝐶

→   𝑵𝑩𝑪ℓ−1(𝒜)
𝜕ℓ−1
𝑁𝐵𝐶

→   ⋯
𝜕2
𝑁𝐵𝐶

→   𝑵𝑩𝑪1(𝒜)
𝜕1
𝑁𝐵𝐶

→   𝑵𝑩𝑪0(𝒜)
𝜕0
𝑁𝐵𝐶

→   0 

    𝑖ℓ ↓                  𝑖ℓ−1 ↓                                    𝑖1 ↓                         𝑖0 ↓        

   𝜕ℓ+1
𝐸

→         𝐸ℓ    
   𝜕ℓ

𝐸      
→           𝐸ℓ−1      

  𝜕ℓ−1
𝐸

→   ⋯
  𝜕2
𝐸   
→         𝐸1      

    𝜕1
𝐸  

→          𝐸0     
   𝜕0

𝐸   
→   0 
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1.11. Definition: [8] 

Let 𝜋 = (𝜋1 , … , 𝜋ℓ) be a partition on an ℓ-arrangement 𝒜  and let 𝐾  be any commutative ring. A 

partition 𝐾 -module is defined to be (𝜋)∗ = (𝜋1 )∗⨂…⨂(𝜋ℓ)∗ , where for 1 ≤ 𝑘 ≤ ℓ , (𝜋𝑘)∗  is the free        

𝐾-module with basis 1 and the elements of 𝜋𝑘. For each 𝐵 = {𝐻𝑖1 , …𝐻𝑖𝑘} ∈ 𝑆𝑘 (𝜋), i.e. 𝐻𝑖𝑚 ∈ 𝜋𝑖𝑚 , 1 ≤ 𝑖1 <

⋯ < 𝑖𝑘 ≤ ℓ and 1 ≤ 𝑚 ≤ 𝑘, define;𝑞𝐵 = 𝑥1⨂…⨂𝑥ℓ ∈ (𝜋)∗ as; 

𝑥𝑗 = {
𝐻𝑗 𝑖𝑓 𝑗 = 𝑖𝑚  for some 1 ≤ 𝑚 ≤ 𝑘

1 𝑖𝑓 𝑗 ≠ 𝑖𝑚  for all 1 ≤ 𝑚 ≤ 𝑘
 

We agree that each of 𝑞∅ℓ = 1⨂…⨂1  and 𝑞𝐵  is homogeneous of degree 𝑘 . We denoting the                   

𝑘th -homogeneous part of  (𝜋)∗  by (𝜋)𝑘 . Therefore, (𝜋)∗ =⊕𝑘=0
ℓ (𝜋)𝑘 =⊕𝑘=0

ℓ (⊕𝐵∈𝑆𝑘(𝜋)
𝐾𝑞𝐵  )  and 

{𝑞𝐵|𝐵 ∈ 𝑆𝑘(𝜋)} forms a basis to the free 𝐾-module (𝜋)∗. Furthermore, {𝑞{𝐻}|𝐻 ∈ 𝜋𝑘 } forms a basis to the 

free 𝐾-module (𝜋𝑘 )∗, 1 ≤ 𝑘 ≤ ℓ. Define a 𝐾-linear mapping 𝜕∗
𝜋: (𝜋)∗ → (𝜋)∗ as; 𝜕0

𝜋(𝑞{ }) = 0,    𝜕1
𝜋(𝑞𝐻) =

1, for all 𝐻 ∈ 𝒜  and for 2 ≤ 𝑘 ≤ ℓ,  𝜕𝑘
𝜋(𝑞𝐵) = ∑ (−1)𝑘−1𝑘

𝑗=1 𝑞�̂�𝑗 , where                           𝐵 =

{𝐻𝑖1 , …𝐻𝑖𝑘} ∈ 𝑆𝑘(𝜋) , 𝑞𝐵 = 𝑥1⨂…⨂𝑥ℓ  as given in (1.8), and 𝑞�̂�𝑗 = 𝑥1⨂…⨂𝐻𝑖𝑗
̂⨂…⨂𝑥ℓ  by means of 

𝐻𝑖𝑗
̂ = 1. 𝜕∗

𝜋 is a differentiation on (𝜋)∗ and the chain complex ((𝜋)∗, 𝜕∗
𝜋) is called the partition complex; 

0 → (𝜋)ℓ
𝜕ℓ
𝜋

→ (𝜋)ℓ−1
𝜕ℓ−1
𝜋

→  ⋯
𝜕2
𝜋

→ (𝜋)1
𝜕1
𝜋

→ (𝜋)0
𝜕0
𝜋

→ 0. 

1.12.  Definition: [8] 

For 1 ≤ 𝑘 ≤ ℓ, define the a map �̃�𝑘: {𝑞𝐵|𝐵 ∈ 𝑆𝑘(𝜋)} → 𝑨∗(𝒜) , as 𝜑𝑘(𝑞𝐵) = 𝑎𝐵 = 𝑒𝐵 + 𝐼𝑘(𝒜) , 

𝐵 ∈ 𝑆𝑘(𝜋). Let 𝜑𝑘: (𝜋)𝑘 → 𝑨𝑘(𝒜) be the unique 𝐾-linear map that extend this assignment as follows: 

 

 

 

                                                                                                                                                           

 

 

Accordingly, there is a unique 𝐾-chain mapping 𝜑∗: (𝜋)∗ → 𝑨∗(𝒜) between acyclic chain complexes as showed 

in the following diagram; 

 

 

                                                                                                             

 

 

 

1.13.  Theorem: [8] 

The chain map 𝜑∗: (𝜋)∗ → 𝑨∗(𝒜) is a 𝐾-isomorphism between chain complexes if and only if the 

partition 𝜋 is a factorization of 𝒜. 

  

0 →  (𝜋)ℓ   
𝜕ℓ
𝜋

→     (𝜋)ℓ−1   
𝜕ℓ−1
𝜋

→  ⋯
𝜕2
𝜋

→     (𝜋)1   
𝜕1
𝜋

→    (𝜋)0  
𝜕0
𝜋

→ 0 

               𝜑ℓ ↓            𝜑ℓ−1 ↓                             𝜑1 ↓            𝜑0 ↓                    

0 → 𝑨ℓ(𝒜)
𝜕ℓ
𝐴 
→ 𝑨ℓ−1(𝒜)

𝜕ℓ−1
𝐴

→  ⋯
𝜕2
𝐴 
→ 𝑨1(𝒜)

𝜕1
𝐴

→ 𝑨0(𝒜)
𝜕0 
𝐴

→ 0 

 

{𝑞𝐵|𝐵 ∈ 𝑆𝑘(𝜋)}
�̃�𝑘
→ 𝑨𝑘(𝒜) 

𝑖𝑘      ↘        ↓  ∃! 𝜑𝑘 

(𝜋)𝑘 
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1.14.  Remark: 

The theorems (1.8.), (1.10.) and (1.13), afford a 𝐾-isomorphism,  𝜒∗ = 𝜓∗
−1 ∘ 𝜑∗: (𝜋)∗ → 𝑵𝑩𝑪∗(𝒜)  

between the partition complex and broken circuit complex as shown in the following diagram;   

 

 

   

 

2. A Classification Of The Class Of Factored Arrangement:  

This section is devoted to classify Terao class of arrangement ([13], 1992) into two subclasses, in order to 

study the 𝐾-isomorphism, 𝜒∗: (𝜋)∗ → 𝑵𝑩𝑪∗(𝒜) technique (as remarked in (1.14.)), that joining the NBC 

monomial basis and the section monomial basis of the O-S algebra, by a one to one correspondence. We will 

show that, each one of the subclasses has a different technique to produce several fashions to the O-S algebra. So, 

we will start with another way to define the class of supersolvable arrangements:         

2.1. Construction: 

Let 𝒜  be a factored ℓ -arrangement with a factorization 𝜋 =  (𝜋1 , … , 𝜋ℓ)  and exponent vector 

𝑑 = (𝑑1, . . , 𝑑ℓ) . Assume that, there exists an ordering ⊴  defined on the hyperplanes of 𝒜  such that 

𝑁𝐵𝐶𝑘  (𝒜) =  𝑆𝑘 (𝜋), for 0 ≤ 𝑚 < 𝑘 ≤ ℓ, i.e. suppose 𝑝⊴(𝒜) = ℓ. In order to emphasis such property of the 

class of factored arrangements, we will call such arrangement, a completely factored arrangement via ⊴. We 

will reorder the blocks of 𝜋 as follows: 

i. Put 𝜋1 be the block of 𝜋 that contains the minimal hyperplane 𝐻1 of 𝒜. According to our assumption we 

have that, every ℓ-section of 𝜋 contains 𝐻1 is an  ℓ − 𝑁𝐵𝐶 base of 𝒜. As well as, if  𝐻 ∈  𝜋1 be 

another hyperplane of 𝜋1, then every ℓ-section 𝑆 of 𝜋 that contains 𝐻 forms an ℓ − 𝑁𝐵𝐶 base of 𝒜. 

But that contradicts that {𝐻1} ∪ 𝑆 is a circuit of 𝒜, (since 𝐻1 ⊴ 𝐻, 𝑟𝑘({𝐻1} ∪ 𝑆) = ℓ and |{𝐻1} ∪ 𝑆| =

ℓ + 1). Therefore, the block 𝜋1 must be a singleton which contains the minimal hyperplane 𝐻1 of 𝒜 via 

⊴, i.e. 𝜋1 = {𝐻1}. 

ii. Actually, for each 𝐻 ∈  𝜋𝑘, 1 ≤ 𝑘 ≤ ℓ and 𝜋𝑘 ≠ 𝜋1, we have 𝑟𝑘 (𝜋1 ∪ {𝐻}) = 2. Accordingly, we can 

choose 𝜋2 to be the block of 𝜋 that contains the second hyperplane 𝐻2 via ⊴. The important point to note 

here that 𝑟𝑘(𝜋1 ∪ 𝜋2) = 2. To explain that, assume |𝜋2|  > 1. Then for each  𝐻 ∈  𝜋2, we have {𝐻2, 𝐻} ∉

𝑆2 (𝜋). Form our assumption {𝐻2 , 𝐻} is a broken circuit.  Since 𝐻2 is the second hyperplane of 𝒜 via 

⊴, hence {𝐻1 , 𝐻2 , 𝐻} is a circuit of 𝒜 related to {𝐻2 , 𝐻}, i.e. 𝑟𝑘 {𝐻1 , 𝐻2, 𝐻} = 2, for each 𝐻 ∈  𝜋2 ∖

{𝐻2}. Therefore, 𝑟𝑘(𝜋1 ∪ 𝜋2) = 2. Indeed, if |𝜋2| =  𝑑2, then 𝜋2 will contain the second hyperplane, the 

third hyperplane and the (𝑑𝑘 + 1)
𝑡ℎ hyperplane of  𝒜 via ⊴. 

By continuing the above process we will induce a factorization 𝜋 = (𝜋1 , … , 𝜋ℓ) satisfied; If 𝐻 ∈  𝜋𝑚   and 

𝐻′ ∈ 𝜋𝑘 for some 1 ≤ 𝑚 < 𝑘 ≤ ℓ, then 𝐻 ⊴ 𝐻′.  

The following results highlight the properties of 𝜋: 

 

 

 

 

0 →     (𝜋)ℓ     
   𝜕ℓ
𝜋   

→        (𝜋)ℓ−1    
𝜕ℓ−1
𝜋

→   ⋯ 
  𝜕2
𝜋   
→       (𝜋)1    

  𝜕1
𝜋   
→        (𝜋)0    

  𝜕0
𝜋   
→  0 

               𝜒ℓ ↓              𝜒ℓ−1 ↓                                      𝜒1 ↓                  𝜒0 ↓                    

0 → 𝑵𝑩𝑪ℓ(𝒜)
𝜕ℓ
𝑁𝐵𝐶

→   𝑵𝑩𝑪ℓ−1(𝒜)
𝜕ℓ−1
𝑁𝐵𝐶

→   ⋯
𝜕2
𝑁𝐵𝐶

→   𝑵𝑩𝑪1(𝒜)
𝜕1
𝑁𝐵𝐶

→   𝑵𝑩𝑪0(𝒜)
𝜕0
𝑁𝐵𝐶

→   0 
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2.2. Lemma: 

Let 𝒜  be a factored ℓ -arrangement with a factorization 𝜋 = (𝜋1, … , 𝜋ℓ) . For 𝑋 ∈ 𝐿(𝒜) , if          

𝐵 = 𝒜𝑋 = {𝐻 ∈ 𝒜|𝑋 ⊆ 𝐻} ⊆ 𝒜  such that 𝑟𝑘(𝐵) = 2 , then there exists 1 ≤ 𝑚 < 𝑘 ≤ ℓ  such that             

𝐵 ⊆  𝜋𝑚  ∪  𝜋𝑘 and either |𝜋𝑚  ∩ 𝐵| = 1  or |𝜋𝑘  ∩ 𝐵| = 1. 

Proof: We need to prove the following: 

i. There exists 1 ≤ 𝑚 < 𝑘 ≤  ℓ  such that, 𝐵 ⊆  𝜋𝑚  ∪  𝜋𝑘   

ii. Either |𝜋𝑚 ∩ 𝐵| = 1 𝑜𝑟 |𝜋𝑘  ∩ 𝐵| = 1 

For i:  By contrary assume, either (there is 1 ≤ 𝑚 ≤  ℓ with 𝐵 ⊆  𝜋𝑚 ) or (there is 1 ≤ 𝑚 < 𝑘 < 𝑛 ≤

ℓ  such that 𝐵 ⊆  𝜋𝑚  ∪  𝜋𝑘  ∪  𝜋𝑛 ). 

In fact, 𝑟𝑘 𝐵 = 2, so |𝐵|  > 1 and from definition (1.1) item 6, the hyperplanes of 𝐵 must be distributed 

between at most two different blocks of 𝜋 and cannot be contained in just one block. Therefore, our first 

assumption above contradicts this fact. 

Secondly, if there are 1 ≤ m < 𝑘 < 𝑛 < ℓ  such that B ⊆  𝜋𝑚  ∪  𝜋𝑘 ∪ 𝜋𝑛 , then 𝐵 ∩ 𝜋𝑖  ≠  𝜑  for         

 𝑖 = 𝑚, 𝑘, 𝑛 . If 𝐻 ∈  𝜋𝑚 , 𝐻
′ ∈  𝜋𝑘  and 𝐻′′  ∈  𝜋𝑛 , such that 𝐻 , 𝐻′, 𝐻′′ ∈  𝐵 , then             

𝑟𝑘 { 𝐻 , 𝐻′, 𝐻′′} = 𝑟𝑘 (𝐵) = 2. This is a contradiction, since { 𝐻, 𝐻′ , 𝐻′′} is a section of an independent partition 

𝜋, i.e. 𝑟𝑘 {𝐻, 𝐻′, 𝐻′′} = 3. Thus, 𝐵 cannot be distributed among three blocks (or more) of 𝜋. So, 𝐵 must be 

distributed between just two blocks of 𝜋 and our claim is hold.  

For ii:  It is a direct result of definition (1.1) item 6. ∎ 

2.3. Corollary: 

Let 𝒜 be a completely factored ℓ-arrangement and 𝜋 = (𝜋1 , … , 𝜋ℓ) be its induced factorization due 

construction (2.1.). For 𝑋 ∈ 𝐿(𝒜), if 𝐵 = 𝒜𝑋 such that 𝑟𝑘(𝐵) = 2, then there exists 1 ≤ 𝑚 < 𝑘 ≤ ℓ such 

that 𝐵 ⊆  𝜋𝑚  ∪  𝜋𝑘 and |𝐵 ∩ 𝜋𝑚| = 1. 

Proof: By applying Lemma (2.2.), there exists 1 ≤ 𝑚 < 𝑘 ≤ ℓ  such that 𝐵 ⊆  𝜋𝑚 ∪ 𝜋𝑘   and either 

|𝐵 ∩ 𝜋𝑚| = 1 or |𝐵 ∩ 𝜋𝑘| = 1. By contrary assume |𝐵 ∩ 𝜋𝑚| > 1, |𝐵 ∩ 𝜋𝑘| = 1 and 𝐵 ∩ 𝜋𝑘 = {𝐻}. Now, 

let 𝐻′, 𝐻′′ ∈ 𝐵 ∩ 𝜋𝑚   satisfied 𝐻′ ⊴ 𝐻′′. Then 𝑟𝑘 {𝐻′, 𝐻′′ . 𝐻} = 𝑟𝑘 {𝐵} = 2. That is, {𝐻′′, 𝐻}  is a 2-broken 

circuit of 𝒜 .  But 𝐻′′ ∈ 𝜋𝑚  and  𝐻 ∈ 𝜋𝑘 , , so {𝐻′, 𝐻}  is a 2-section of 𝜋  and this contradicts our 

assumption that  𝑁𝐵𝐶2 (𝒜) =  𝑆2 (𝜋). Therefore, |𝜋𝑚  ∩ 𝐵| = 1. ∎ 

We can summarize our goal in construction (2.1.) and corollary (2.3.), by the following results: 

2.4. Theorem: 

Let 𝜋 = (𝜋1 , … , 𝜋ℓ) be a factorization of a factored ℓ −arrangement 𝒜 that has an ordering ⊴ on its 

hyperplanes such that 𝑁𝐵𝐶𝑘(𝒜) =  𝑆𝑘 (𝜋), for all 1 ≤ 𝑘 ≤ ℓ. Then, every subarrangement which contains no 

2-broken circuit forms an 𝑁𝐵𝐶 base of 𝒜 via ⊴. 

Proof: Firstly, reorder the blocks of 𝜋 as given in construction (2.1.) to obtain the induced factorization 

𝜋 = (𝜋1 , … , 𝜋ℓ). Secondly, assume 𝐵 be a subarrangement of 𝒜 which contains no 2-broken circuit of 𝒜 via 

⊴. We need to show that 𝐵 is an 𝑁𝐵𝐶  base of 𝒜 , i.e. we need 𝐵 is a 𝑘-section of 𝜋. By contrary, 

suppose 𝐵 is a 𝑘-section of 𝜋, i.e. there exists 2 ≤ 𝑚 ≤ ℓ, such that |𝜋𝑚  ∩ 𝐵| > 1. Let 𝐻,𝐻′ ∈ 𝜋𝑚 ∩ 𝐵. 

Definitely, {𝐻, 𝐻′} is a 2-broken circuit, since 𝑟𝑘 {𝐻, 𝐻′} = 2 and it is not a 2-section. This is a contradiction 

since our assumption states that 𝐵 contained no 2-broken circuit. Therefore, every subarrangement which 

contains no 2-broken circuit from an 𝑁𝐵𝐶 base of 𝒜. ∎ 

2.5. Corollary: 
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If 𝒜 is a completely factored ℓ −arrangement with a factorization 𝜋 = (𝜋1 , … , 𝜋ℓ) and an ordering ⊴ 

defined on its hyperplanes such that 𝑁𝐵𝐶𝑘(𝒜) =  𝑆𝑘 (𝜋), for all 1 ≤ 𝑘 ≤ ℓ, then 𝒜 is quadratic via ⊴. 

Proof: Let 𝜋 = (𝜋1 , … , 𝜋ℓ)  be the induced factorization that given in construction (2.1.). Suppose          

𝐵 ∈ 𝐵𝐶𝑘(𝒜), 𝑘 > 2. Wanted, 𝐵′ ∈ 𝐵𝐶2(𝒜) such that 𝐵′ ⊆ 𝐵. By contrary, assume there is no 𝐵′ ∈ 𝐵𝐶2(𝒜) 

such that 𝐵′ ⊆ 𝐵; i.e., 𝐵 contains no 2-broken circuit via ⊴. According to the theorem (2.4.), 𝐵 ∈ 𝑁𝐵𝐶𝑘(𝒜) 

and this is a contradiction. Therefore, then 𝒜 is quadratic. ∎ 

The following result is motivated to classify the class of completely factored arrangements into two 

subclasses by the structure of its 𝑁𝐵𝐶 bases: 

2.6. Corollary: 

A factored ℓ −arrangement 𝒜 is completely factored arrangement via an ordering ⊴ if, and only if, 

𝒜 is supersolvable.  

Proof: This is a direct result to construction (2.1.), theorem (1.5.) and corollary (1.6.). ∎  

2.7.  Construction:  

Let 𝒜  be a completely factored ℓ −arrangement via an ordering ⊴ and let 𝜋 = (𝜋1 , … , 𝜋ℓ)  be the 

induced factorization due construction (2.1.). So, the identity map 𝐼𝑘: 𝑆𝑘 (𝜋) → 𝑁𝐵𝐶𝑘(𝒜), define a one to one 

correspondence between the sections basis of the tensor partition module (𝜋)𝑘 and the NBC monomial basis of 

the O-S algebra as free module; 

ℐ𝑘: {𝑞𝐶|𝐶 ∈ 𝑆𝑘 (𝜋)} → {𝑒𝐵|𝐵 ∈ 𝑁𝐵𝐶𝑘(𝒜)}; 

as; ℐ𝑘(𝑞𝐶) = 𝑒𝐶, for 𝐶 ∈ 𝑆𝑘 (𝜋). This induces a unique 𝐾-linear isomorphism ℐ𝑘: (𝜋)𝑘 → 𝑵𝑩𝑪𝑘(𝒜)  between 

the k
th

 partition module and k
th

 broken circuit module that extend this assignment as follows: 

 

 

  

 

    

 

 

2.8. Theorem: 

Assume we have the conclusions of construction (2.7.). Then ℐ∗: (𝜋)∗ → 𝑵𝑩𝑪∗(𝒜) forms a 𝐾-chain 

isomorphism between acyclic chain complexes, achieved by the fact that NBC monomial basis and sections 

monomial basis are equal.         

Proof: For a fixed 1 ≤ 𝑘 ≤ ℓ, we need to show the following diagram is commutative: 

 

 

 

 

 

Let 𝐶 = {𝐻𝑖1 , …𝐻𝑖𝑘} ∈ 𝑆𝑘(𝜋). Then; 

𝜕𝑘
𝑁𝐵𝐶 ∘ ℐ𝑘(𝑞𝐶) = 𝜕𝑘

𝑁𝐵𝐶(ℐ𝑘(𝑞𝐶)) = 𝜕𝑘
𝑁𝐵𝐶(𝑒𝐶) 

       {𝑞𝐶|𝐶 ∈ 𝑆𝑘(𝜋)}
  𝑖𝑘  
→  (𝜋)𝑘    

                  ℐ𝑘                             

     {𝑒𝐵|𝐵 ∈ 𝑁𝐵𝐶𝑘(𝒜)}     ∃! ℐ𝑘 

                   𝑖𝑘
′  

                        𝑵𝑩𝑪𝑘(𝒜) 

 

(𝜋)𝑘     
   𝜕𝑘
𝜋    

→        (𝜋)𝑘−1 

ℐ𝑘                    ℐ𝑘−1              

𝑵𝑩𝑪𝑘(𝒜)
 𝜕𝑘
𝑁𝐵𝐶

→   𝑵𝑩𝑪𝑘−1(𝒜) 
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                       = ∑ (−1)𝑘−1
𝑘

𝑗=1
𝑒𝐻𝑖1

…𝑒𝐻𝑖�̂� …𝑒𝐻𝑖𝑘
=∑ (−1)𝑘−1

𝑘

𝑗=1
ℐ𝑘−1 (𝑞𝐻𝑖1

…𝑞𝐻𝑖𝑗̂ …𝑞𝐻𝑖𝑘
)

= ℐ𝑘−1 (∑ (−1)𝑘−1
𝑘

𝑗=1
𝑞𝐻𝑖1

…𝑞𝐻𝑖𝑗̂ …𝑞𝐻𝑖𝑘
) = ℐ𝑘−1 ∘ 𝜕𝑘

𝜋(𝑞𝐶) 

Thus, 𝜕𝑘
𝑁𝐵𝐶 ∘ ℐ𝑘 = ℐ𝑘−1 ∘ 𝜕𝑘

𝜋 and our claim is hold. ∎ 

The important point to note here is, not every factored arrangement is completely factored (supersolvable, 

quadratic) arrangement. We will consider a construction of a factorization of a factored arrangement that not 

completely factored as follows: 

2.9. Construction: 

Let 𝒜  be a factored ℓ-ararrangement such that there is no factorization 𝜋 = (𝜋1 , … , 𝜋ℓ) and no 

ordering ⊴ can be defined on the hyperplanes of 𝒜 satisfied, 𝑁𝐵𝐶𝑘(𝒜) =  𝑆𝑘 (𝜋), for all 0 ≤ 𝑘 ≤ ℓ. Thus, 

for any factorization 𝜋 = (𝜋1 , … , 𝜋ℓ)  and any ordering ⊴  defined on the hyperplanes of 𝒜  we have, 

𝑁𝐵𝐶(𝒜) ≠  𝑆(𝜋), i.e. 1 < 𝑝⊴(𝒜) + 1 < ℓ. However, for any given factorization 𝜋 = (𝜋1 , … , 𝜋ℓ) on 𝒜 we 

can define an ordering ⊴ on the hyperplanes of 𝒜 that reserve the structure of 𝜋 as follows: 

i. If 𝐻,𝐻′ ∈ 𝒜 such that 𝐻 ∈  𝜋𝑚 and 𝐻′ ∈ 𝜋𝑘 for some 1 ≤ 𝑚 < 𝑘 ≤ ℓ, put 𝐻 ⊴ 𝐻′. 

ii. For 1 ≤ 𝑘 ≤ ℓ, order the hyperplanes of 𝜋𝑘  by arbitrary order. 

Now, compute 𝑁𝐵𝐶(𝒜) via ⊴. Under our assumption 𝑁𝐵𝐶(𝒜) ≠ 𝑆(𝜋), i.e. there is a 𝑘-section of 𝜋 

but it is not a 𝑘-𝑁𝐵𝐶 base of 𝒜 via ⊴ and there is a 𝑘-𝑁𝐵𝐶 base of 𝒜 via ⊴ that it is not a 𝑘-section of 

𝜋 for 𝑝⊴(𝒜) + 1 ≤ 𝑘 ≤ ℓ. We can emphasis the properties of 𝜋 by the following lemmas: 

2.10. Lemma:   

Let 𝒜  be a factored ℓ -ararrangement and 𝜋 = (𝜋1 , … , 𝜋ℓ)  be its factorization. Then, there is 

1 ≤ 𝑘 ≤ ℓ such that 𝜋𝑘 ∩𝒜𝑇 = 𝜋𝑘 ∩𝒜 is a singleton, where 𝑇 = ⋂ 𝐻𝐻∈𝒜 ∈ 𝐿(𝒜). 

Proof: This is a direct result to definition (1.1), item 6. ∎ 

2.11. Lemma: 

Let 𝒜 be a factored ℓ-arrangement and its factorization is 𝜋 = (𝜋1 , … , 𝜋ℓ). If 𝑋 ∈ 𝐿𝑘(𝒜), for some 

1 ≤ 𝑘 ≤ ℓ, then 𝜋 admits the induced partition 𝜋𝑋 a structure as a factorization of 𝒜𝑋 and ℓ(𝜋𝑋) = 𝑘.  

Proof: According to definition (1.1.), 𝜋𝑋 is independent and for each 𝑋′ ∈ 𝐿(𝒜𝑋), there is a block of 𝜋𝑋 

contains just one hyperplanes from 𝒜𝑋′ . Therefore, we need to show only ℓ(𝜋𝑋) = 𝑘 . We will prove 

ℓ(𝜋𝑋) = 𝑘, inductively as follows: 

For 𝑘 = 2: Recall 𝒜𝑋 = {𝐻 ∈ 𝒜|𝑋 ⊆ 𝐻} ⊆ 𝒜 . Since 𝑟𝑘(𝒜𝑋) = 2 , hence |𝒜𝑋| ≥ 2 . According to the 

properties of 𝜋, ℓ(𝜋𝑋) = 2.  

For 𝑘 = 3: By contrary assume that, ℓ(𝜋𝑋) = 2, (i.e. 𝜋𝑋 = (𝜋1
𝑋, 𝜋2

𝑋)), and without loss of generality, assume 

|𝜋1
𝑋| = 1. Thus, for every two hyperplanes 𝐻′, 𝐻′′ ∈ 𝒜𝑋, there is 𝑋′ ∈ 𝐿2(𝒜𝑋) such that 𝐻′, 𝐻′′ ∈ 𝒜𝑋′  and if 

𝐻′, 𝐻′′ ∈ 𝜋2
𝑋, then 𝐻 ∈ 𝒜𝑋′ and this contradicts that 𝑟𝑘(𝒜𝑋) = 3. That is, under our assumption |𝒜𝑋| > 3. 

Suppose 𝑋1, 𝑋2 ∈ 𝐿2(𝒜𝑋). Thus, 𝒜𝑋1
 and 𝒜𝑋2

 have with 𝜋𝑋 the same singleton block 𝜋1
𝑋 = {𝐻}. It is clear, 

𝑟𝑘 (⋂ 𝐻�̃�∈𝒜𝑋1∪𝒜𝑋2
) = 𝑟𝑘(𝒜𝑋), i.e.  ⋂ �̃��̃�∈𝒜𝑋1∪𝒜𝑋2

= 𝑋1 ∩ 𝑋2 = 𝑋. As well as, if each of 𝒜𝑋1
and 𝒜𝑋2

 has 

just two hyperplanes, then 𝑋1 = 𝑋2 . Thus, one of 𝒜𝑋1or 𝒜𝑋2contains more than two hyperplanes say 

𝐻1, 𝐻2 ∈ 𝒜𝑋1  and  let 𝐻3 ∈ 𝒜𝑋2 . Actually,  𝑋1 = 𝐻 ∩ 𝐻1 ∩ 𝐻2,  𝑋2 = 𝐻 ∩ 𝐻3 and; 

𝑋 = 𝐻 ∩ 𝐻1 ∩ 𝐻2 ∩ 𝐻3 = 𝐻1 ∩ 𝐻2 ∩ 𝐻3 = 𝐻 ∩ 𝐻1 ∩ 𝐻3 = 𝐻 ∩ 𝐻2 ∩ 𝐻3. 

Consequently, 𝑋3 = 𝐻 ∩ 𝐻1 ∩ 𝐻3 ∈ 𝐿2(𝒜𝑋) , 𝑋4 = 𝐻 ∩ 𝐻2 ∩ 𝐻3 ∈ 𝐿2(𝒜𝑋)  and this is a contradiction. 
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Therefore, ℓ(𝜋𝑋) = 3. 

Suppose, our claim is hold for 𝑘 = 𝑠 − 1 and we will prove it for 𝑘 = 𝑠 as follows: 

By contrary assume that, ℓ(𝜋𝑋) = 𝑠 − 1, (i.e. 𝜋𝑋 = (𝜋1
𝑋 , … , 𝜋𝑠−1

𝑋 )) and without loss of generality, assume 

|𝜋1
𝑋| = 1. Since |𝒜𝑋| ≥ 𝑠, hence there is a block say 𝜋𝑚

𝑋 , of 𝜋𝑋 with |𝜋𝑚
𝑋 | ≥ 2, 2 ≤ 𝑚 ≤ 𝑠 − 1 and 𝒜𝑋 

contains 𝑠 independent hyperplanes. Accordingly, we can choose them as; {𝐻1, 𝐻2, … , 𝐻𝑚
1 , 𝐻𝑚

2 , … , 𝐻𝑠−1} ⊆ 𝒜𝑋 

is independent,where 𝐻𝑖 ∈ 𝜋𝑖
𝑋 , 1 ≤ 𝑖 ≤ 𝑠 − 1  and 𝐻𝑚

1 , 𝐻𝑚
2 ∈ 𝜋𝑚

𝑋 . Let  𝑋1, 𝑋2 ∈ 𝐿𝑠−1(𝒜𝑋)  such that, 

𝑋1 = 𝐻1 ∩ 𝐻2 ∩ …∩ 𝐻𝑚
1 ∩ 𝐻𝑚

2 ∩ …∩ 𝐻𝑠−2  and  𝑋2 = 𝐻2 ∩ …∩ 𝐻𝑚
1 ∩ 𝐻𝑚

2 ∩ …∩ 𝐻𝑠−1 . It is clear that, 

𝑋1 ∩ 𝑋2 = 𝑋  and 𝐻1 ∉ 𝒜𝑋2 ⊆ 𝒜𝑋 . Thus, the induced partition 𝜋𝑋2  has length ℓ(𝜋𝑋2) = 𝑠 − 2  and this 

contradicts induction hypothesis. Therefore, our claim is true. ∎  

2.12. Lemma: 

Suppose we have the assumptions of construction (2.9.). For 𝑝⊴(𝒜) + 1 ≤ 𝑘 ≤ ℓ, if 𝐵 is a  𝑘-section 

of 𝜋 and it is not 𝑘 − 𝑁𝐵𝐶 base of 𝒜 such that, 𝐵 ⊆ 𝜋𝑖1 ∪ … ∪ 𝜋𝑖𝑘 , 1 ≤ 𝑖1 < ⋯ < 𝑖𝑘 ≤ ℓ. Then there is a 

𝑘 − 𝑁𝐵𝐶  base 𝐶 ⊆ 𝜋𝑖1 ∪ … ∪ 𝜋𝑖𝑘  of 𝒜   which is not a  𝑘 -section of 𝜋  that is satisfied, if                 

𝑋 = ⋂ 𝐻𝐻∈𝐵 ∈ 𝐿𝑘(𝒜), then 𝐶 is a 𝑘 − 𝑁𝐵𝐶 of 𝒜𝑋. 

Proof: We will prove our conjecture inductively as follows:  

For 𝒌 = 𝒑⊴(𝓐) + 𝟏 = 𝟐:  If 𝐵  is a 2-section of 𝜋  which is not a 2 − 𝑁𝐵𝐶  base of 𝒜 , then               

𝐵 = {𝐻1, 𝐻2} ⊆ 𝜋𝑚 ∪ 𝜋𝑝 , for some 1 ≤ 𝑚 < 𝑝 ≤ ℓ and there exists 𝐻 ∈ 𝒜  be the minimal hyperplane of 

𝒜 via ⊴ satisfied 𝐻 ⊴ 𝐻1, 𝐻 ⊴ 𝐻2  and {𝐻} ∪ 𝐵 is a circuit with 𝐵 its broken circuit. Clearly, 𝐻 ∈ 𝜋𝑚 

and 𝐶 = {𝐻,𝐻1} ⊆ 𝜋𝑚  is a 2 − 𝑁𝐵𝐶  of 𝒜  that is not a 2-section of 𝜋 . Moreover, if                            

𝑋 = 𝐻1 ∩ 𝐻2 = 𝐻 ∩ 𝐻1 ∩ 𝐻2 = 𝐻 ∩ 𝐻2, then 𝐶 is a 2 − 𝑁𝐵𝐶 of  𝒜𝑋. 

Suppose, our claim is hold for 𝑘 = 𝑠 − 1 and we will prove it for 𝑘 = 𝑠 as follows: 

If 𝐵 is an s-section of 𝜋 which not an 𝑠 − 𝑁𝐵𝐶 base of 𝒜, then 𝐵 ⊆ 𝜋𝑖1 ∪ … ∪ 𝜋𝑖𝑠, 1 ≤ 𝑖1 < ⋯ < 𝑖𝑠 ≤ ℓ. 

Deduce that, either (𝐵 contain broken circuits of 𝒜 have ranks less than 𝑠) or (𝐵 is an 𝑠-broken circuit of 

𝒜).  

Firstly, if  𝐵1 , … , 𝐵𝑡 ⊆ 𝐵 be is the broken circuits of 𝒜 that have ranks 𝑚1, … ,𝑚𝑡 respectively, with 𝑚𝑗 < 𝑠, 

𝑗 = 1,… , 𝑡. For a given 1 ≤ 𝑗 ≤ 𝑡, 𝐵𝑗  is an 𝑚𝑗-section of 𝜋 and 𝑚𝑗-broken circuit base of 𝒜. Let 𝐻𝑗 ∈ 𝒜  

be the minimal hyperplane of 𝒜 via ⊴ satisfied 𝐻𝑗 ⊴ 𝐻, for all 𝐻 ∈ 𝐵𝑗  and  {𝐻𝑗} ∪ 𝐵𝑗   is a circuit with 

𝐵𝑗  its broken circuit. If 𝑝 = min{𝑙 | 𝜋𝑖𝑙 ∩ 𝐵𝑗 ≠ 𝜑, 1 ≤ 𝑙 ≤ 𝑠}, clearly, 𝐻𝑗 ∈ 𝜋𝑝 and 𝐶𝑗 = {𝐻
𝑗} ∪ (𝐵𝑗 ∖ {𝐻𝑗

′}) 

is an 𝑚𝑗-𝑁𝐵𝐶 base of 𝒜 and it is not an 𝑚𝑗-section of 𝜋, where 𝐻𝑗
′ is the maximal hyperplane of 𝐵𝑗  via ⊴ 

where 𝐻𝑗
′ is the maximal hyperplane of 𝐵𝑗  via ⊴ that contains the singleton block of the induced partition 

𝜋𝑋𝑗, where 𝑋𝑗 = ⋂ 𝐻𝐻∈𝐵𝑗
. Consequently, if 𝐶′ = {𝐻1 , … , 𝐻𝑡} ∪ (𝐵 ∖ {𝐻1

′ , … , 𝐻𝑡
′}) is an 𝑠- 𝑁𝐵C base of 𝒜, 

then put 𝐶 = 𝐶′, otherwise put 𝐵′ = 𝐶′ and repeated the method above for 𝐵′ by computing the broken 

circuits of it and add the minimal hyperplanes of 𝒜  that make them circuits and removing the maximal 

hyperplane of them that contained of the singleton block of the induced partition of them flat of the intersection 

lattice. Continue this procedure unless 𝐶 is an 𝑠- 𝑁𝐵𝐶 base of 𝒜 that is not an 𝑠-section of 𝜋. Furthermore, 

if 𝑋 = ⋂ 𝐻𝐻∈𝐵 = ⋂ 𝐻𝐻∈𝐶 , then 𝐶 is an 𝑠- 𝑁𝐵𝐶 base of 𝒜𝑋. 

Secondly, if 𝐵 is an 𝑠-broken circuit of 𝒜 and 𝐻 be the minimal hyperplane of 𝒜 via ⊴, that satisfied 

{𝐻} ∪ 𝐵 is a circuit with 𝐵 its broken circuit, then  𝐶 = {𝐻} ∪ (𝐵 ∖ {𝐻′}) is an 𝑠- 𝑁𝐵𝐶 base of 𝒜 and it is 

not an 𝑠-section of 𝜋, where 𝐻′ is the maximal hyperplane of 𝐵 via ⊴ that contained of the singleton block 

of the induced partition 𝜋𝑋, where 𝑋 = ⋂ 𝐻𝐻∈𝐵 = ⋂ 𝐻𝐻∈𝐶 . Then, 𝐶 is an 𝑠- 𝑁𝐵𝐶 base of 𝒜𝑋. ∎ 

2.13. Lemma: 

Suppose we have the assumptions of construction (2.9.). For 𝑝⊴(𝒜) + 1 ≤ 𝑘 ≤ ℓ, if 𝐶 is a 𝑘 − 𝑁𝐵𝐶 

base of 𝒜 and it is not a 𝑘-section of 𝜋 such that, 𝐶 ⊆  𝜋𝑖1 ∪ … ∪ 𝜋𝑖𝑚 , 1 ≤ 𝑖1 < ⋯ < 𝑖𝑚 ≤ ℓ and 𝑚 < 𝑘, 
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then there is a 𝑘-section 𝐵 of 𝜋 which is not a 𝑘 − 𝑁𝐵𝐶 base of 𝒜 that satisfied, if  𝑋 = ⋂ 𝐻𝐻∈𝐶 ∈

𝐿𝑘(𝒜), then 𝐵 is a 𝑘-section of 𝜋𝑋. 

Proof: We will use our assumption to show the lemma inductively as follows: 

If 𝒑⊴(𝓐) + 𝟏 = 𝟐 𝒂𝒏𝒅 𝒌 = 𝟐:  If 𝐶  is a 2 − 𝑁𝐵𝐶  base of 𝒜  which is not a 2-section of 𝜋 , then                

𝐶 = {𝐻1, 𝐻2} ⊆ 𝜋𝑚  for some 1 ≤ 𝑚 ≤ ℓ .  Since 𝐶  is a 2 − 𝑁𝐵𝐶  base and we assume ⊴  respect the 

structure of 𝜋 , hence there is no 𝐻′ ∈ 𝜋1 ∪ …∪ 𝜋𝑚 such that {𝐻′, 𝐻1 , 𝐻2}  is a circuit. Indeed, if              

𝑋 = 𝐻1 ∩ 𝐻2 ∈ 𝐿2(𝒜) , then by applying lemma (2.1.8), 𝒜𝑋  ⊆ 𝜋𝑚 ∪ 𝜋𝑡  for some 𝑚 + 1 ≤ 𝑡 ≤ ℓ  and 

𝒜𝑋 ∩ 𝜋𝑡 is a singleton. However, there exists a unique 𝐻 ∈ 𝜋𝑚+1  ∪ …∪ 𝜋ℓ satisfied, (𝐶 ∪ {𝐻}) = 2. Thus, 

𝐵 = {𝐻2, 𝐻} ⊆ 𝜋𝑚 ∪ 𝜋𝑡 is a 2-section of  𝜋𝑋 that is not a 2 − 𝑁𝐵𝐶 base of 𝒜𝑋. Notice that, {𝐻1, 𝐻} is 

2 − 𝑁𝐵𝐶 base of 𝒜𝑋 and a 2-section of 𝜋𝑋. 

If 𝒑⊴(𝓐) + 𝟏 ≤ 𝒌 𝒂𝒏𝒅 𝒌 = 𝟑: Let 𝐶 = {𝐻1, 𝐻2, 𝐻3 } is a 3 − 𝑁𝐵𝐶 base of 𝒜 which is not a 3-section of 

𝜋. Let 𝑋 = 𝐻1 ∩ 𝐻2 ∩ 𝐻3 ∈ 𝐿3(𝒜), then by applying lemma (2.10.), 𝒜𝑋  ⊆ 𝜋𝑚1 ∪ 𝜋𝑚2 ∪ 𝜋𝑚3  for some 

1 ≤ 𝑚1 < 𝑚2 < 𝑚3 ≤ ℓ and without loss of generality assume that, 𝒜𝑋 ∩ 𝜋𝑚3  is a singleton. Since 𝐶 is not 

a 3-section of 𝜋, hence there are three ways to distribute the hyperplanes of 𝜋 as, either  (𝐶 ⊆ 𝜋𝑚1), or 

( 𝐶 ⊆ 𝜋𝑚1 ∪ 𝜋𝑚2 ), or  ( 𝐶 ⊆ 𝜋𝑚1 ∪ 𝜋𝑚3 ). Since 𝐶  is a 3 − 𝑁𝐵𝐶  base via ⊴ , hence there is no               

𝐻′ ∈ 𝜋1 ∪ …∪ 𝜋𝑚1  such that {𝐻′, 𝐻1 , 𝐻2, 𝐻3} is a circuit. Thus, the guess 𝐶 ⊆ 𝜋𝑚2 ∪ 𝜋𝑚3  is not agree the 

structure of 𝐶 as 3 − 𝑁𝐵𝐶 base of 𝒜𝑋. Therefore, we have just three possible cases: 

Firstly, if 𝐶 ⊆ 𝜋𝑚1 , then each of {𝐻1, 𝐻2}, {𝐻1, 𝐻3} and {𝐻2, 𝐻3} is a 2 − 𝑁𝐵𝐶  of 𝒜 and according to 

lemma (2.1.8), there are unique 𝐻1,2, 𝐻1,3, 𝐻2,3 ∈ 𝜋𝑚2 ∪ 𝜋𝑚3  such that {𝐻1, 𝐻2, 𝐻1,2} , {𝐻1, 𝐻3, 𝐻1,3}  and 

{𝐻2, 𝐻3, 𝐻2,3}  are circuits since 𝐻1,2, 𝐻1,3, 𝐻2,3 ∈ 𝒜𝑋 . If {𝐻1,2, 𝐻1,3, 𝐻2,3} ∩ 𝜋𝑚3 ≠ ∅ , put 𝐵 = {𝐻3, 𝐻
′, 𝐻} 

where 𝐻′ be the maximal hyperplane via ⊴ of {𝐻1,2, 𝐻1,3, 𝐻2,3} ∩ 𝜋𝑚2  and  {𝐻} = 𝒜𝑋 ∩ 𝜋𝑚3 . Certainly, 𝐵 

is a 3-section of  𝜋𝑋 that is not a 3 − 𝑁𝐵𝐶 base of 𝒜𝑋. On the other hand, if {𝐻1,2, 𝐻1,3, 𝐻2,3} ⊆ 𝜋𝑚2 , put 

𝐵 = {𝐻3, 𝐻2,3, 𝐻} where {𝐻} = 𝒜𝑋 ∩ 𝜋𝑚3 . Indeed, 𝐵 is a 3-section of 𝜋𝑋, that is not a 3 − 𝑁𝐵𝐶 base of 

𝒜𝑋. 

Secondly, suppose 𝐶 ⊆ 𝜋𝑚1 ∪ 𝜋𝑚2  and without loss of generality, assume |𝐶 ∩ 𝜋𝑚1| = 1  and                 

|𝐶 ∩ 𝜋𝑚2| = 2. Since {𝐻2, 𝐻3} is a 2 − 𝑁𝐵𝐶 of 𝒜, hence {𝐻2, 𝐻3, 𝐻} is a circuit, where {𝐻} = 𝒜𝑋 ∩ 𝜋𝑚3 . 

Put 𝐵 = {𝐻1, 𝐻3, 𝐻}. Indeed, 𝐵 is a 3-section of  𝜋𝑋 that is not a 3 − 𝑁𝐵𝐶 base of 𝒜𝑋. 

Thirdly, suppose 𝐶 ⊆ 𝜋𝑚1 ∪ 𝜋𝑚3 . Then 𝐻1 , 𝐻2 ∈ 𝐶 ∩ 𝜋𝑚1  and 𝐻3 ∈ 𝐶 ∩ 𝜋𝑚3 . Put 𝐵 = {𝐻2, 𝐻1,2, 𝐻3}, where 

𝐻1,2 ∈ 𝜋𝑚2be the unique hyperplane of  𝒜𝑋 such that {𝐻1, 𝐻2, 𝐻1,2}. Indeed, 𝐵 is a 3-section of 𝜋𝑋 that is 

not a 3 − 𝑁𝐵𝐶 base of 𝒜𝑋. 

Suppose, our statement is hold for 𝑘 = 𝑠 − 1 and we will prove it for 𝑘 = 𝑠 as follows: 

Let 𝐶 = {𝐻1, … , 𝐻𝑠 }  is an 𝑠 − 𝑁𝐵𝐶 base of 𝒜 and it is not an 𝑠-section of 𝜋. As the technique 

given in the case 𝑘 = 3  above we can assume that, 𝐶 ⊆ 𝜋𝑚1 ∪ … ∪ 𝜋𝑚𝑠−1 , 1 ≤ 𝑚1 < ⋯ < 𝑚𝑠−1 ≤ ℓ . 

Accordingly, there is 1 ≤ 𝑝 ≤ 𝑠 − 1 , such that |𝐶 ∩ 𝜋𝑚𝑝| = 2 . So, 𝑟𝑘 (𝐶 ∩ 𝜋𝑚𝑝) = 2  and 𝐶 ∩ 𝜋𝑚𝑝  is a 

2 − 𝑁𝐵𝐶  base. Then there is 𝐻 ∈ 𝜋𝑙 , 𝑚𝑝 + 1 ≤ 𝑙 ≤ ℓ , such that (𝐶 ∩ 𝜋𝑚𝑝) ∪ {𝐻}  is a circuit. If               

𝑙 ≠ 𝑚𝑝+1, … ,𝑚𝑠−1, then 𝐵 = (𝐶 ∖ {𝐻′}) ∪ {𝐻} is an 𝑠-section of 𝜋 that is not an 𝑠 − 𝑁𝐵𝐶 base of 𝒜. Else, 

apply lemma (2.2.3) as, let 𝑋 = ⋂ 𝐻𝐻∈𝐶 ∈ 𝐿𝑠(𝒜), then the hyperplanes of  𝒜𝑋 distributed among 𝑠 blocks 

of 𝜋  say, 𝒜𝑋 ⊆ 𝜋𝑚1 ∪ … ∪ 𝜋𝑚𝑠−1 ∪ 𝜋𝑚𝑠 , for some 1 ≤ 𝑚𝑠 ≤ ℓ. Let 𝐶′ = 𝐶 ∖ {𝐻′′′}, where 𝐻′′′ be the 

maximal hyperplane of 𝐶 such that, 𝐻′′′ ∉ 𝐶 ∩ 𝜋𝑚𝑝 , i.e. 𝐻′′′ be the maximal hyperplane of 𝐶 that contained 

in the singleton block of the induced partition 𝜋𝑋. Observe that, 𝐻′′′ is not collinear with the hyperplanes of 

𝐶 ∩ 𝜋𝑚𝑝. It is clear that, 𝐶′ is an (𝑠 − 1) −  𝑁𝐵𝐶 base of 𝒜 and it is not an (𝑠 − 1)-section. Inductively, 

there exists an (𝑠 − 1)-section of 𝜋𝑋 say 𝐵′ which is not an (𝑠 − 1) − 𝑁𝐵𝐶 base of 𝒜. Thus, if  𝐵′ ∪ 𝐻′′′ 
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is an 𝑠-section of  𝜋𝑋 that is not a 𝑠 − 𝑁𝐵𝐶 base of 𝒜𝑋, put 𝐵 = 𝐵′ ∪ 𝐻′′′, otherwise put 𝐶′ = 𝐵′ ∪ 𝐻′′′ 

and repeated the method above for 𝐶′. Continue this procedure unless 𝐵 is an 𝑠-section of 𝜋 that is not 

𝑠- 𝑁𝐵𝐶 base of 𝒜. ∎  

In spite of, a factored ℓ-arrangement 𝒜 that has no factorization 𝜋 = (𝜋1 , … , 𝜋ℓ) and no ordering ⊴ 

such that 𝑁𝐵𝐶𝑘(𝒜) =  𝑆𝑘 (𝜋), for all 1 ≤ 𝑘 ≤ ℓ, is not quadratic under any ordering can be defined on its 

hyperplanes, the equality, |𝑁𝐵𝐶𝑘(𝒜)| = ∑ ∑ …∑ 𝑑𝑖1𝑑𝑖2 …𝑑𝑖𝑘 =
ℓ
𝑖𝑘= 𝑖𝑘−1+1

ℓ−𝑘+1
𝑖2= 𝑖1+1

ℓ−𝑘
𝑖1=1

|𝑆𝑘(𝜋)|, for 1 ≤ 𝑘 ≤ ℓ, 

affords a one to one correspondence between 𝑁𝐵𝐶(𝒜) and 𝑆(𝒜) as shown in the following result:  

2.14. Theorem: 

Suppose we have the assumptions of construction (2.9.). Then, for all 0 ≤ 𝑘 ≤ ℓ, there are one to one 

correspondences 𝑓𝑘: 𝑁𝐵𝐶𝑘(𝒜) → 𝑆𝑘(𝜋) and  𝑔𝑘 = 𝑓𝑘
−1: 𝑆𝑘(𝜋) → 𝑁𝐵𝐶𝑘(𝒜).  

Proof: 

First, for 0 ≤ 𝑘 ≤ 𝑝⊴(𝒜) , define 𝑓𝑘 = 𝑔𝑘  to be the identity mapping and it is one to one 

correspondences as we claimed.    

Secondly, for 𝑝⊴(𝒜) + 1 ≤ 𝑘 ≤ ℓ, we can partition 𝑆𝑘(𝜋) and 𝑁𝐵𝐶𝑘(𝒜) into two parts as; 

𝑆𝑘(𝜋) = 𝑆𝑘
1(𝜋) ∪ 𝑆𝑘

2(𝜋) and 𝑁𝐵𝐶𝑘(𝒜) = 𝑁𝐵𝐶𝑘
1(𝒜) ∪ 𝑁𝐵𝐶𝑘

2(𝒜), where; 

𝑆𝑘
1(𝜋)  is the set of all 𝑘-sections of 𝜋 that are 𝑘 − 𝑁𝐵𝐶 bases of 𝒜; 

𝑆𝑘
2(𝜋) is the set of all 𝑘-section of 𝜋 that are not 𝑘 − 𝑁𝐵𝐶 bases of 𝒜; 

𝑁𝐵𝐶𝑘
1(𝒜) is the set of all 𝑘 − 𝑁𝐵𝐶 bases of 𝒜 that are 𝑘-sections of 𝜋, and; 

𝑁𝐵𝐶𝑘
2(𝒜) is the set of all 𝑘 − 𝑁𝐵𝐶 bases of 𝒜 that are not a 𝑘-sections of 𝜋. 

Clearly, 𝑁𝐵𝐶𝑘
1(𝒜) = 𝑆𝑘

1(𝜋). Moreover, 𝑁𝐵𝐶𝑘
2(𝒜) ≠ 𝑆𝑘

2(𝜋) within |𝑁𝐵𝐶𝑘
2(𝒜)| = |𝑆𝑘

2(𝜋)|. Accordingly, we 

can define 𝑓𝑘: 𝑁𝐵𝐶𝑘(𝒜) → 𝑆𝑘(𝜋) as; 

𝑓𝑘(𝐶) = {
𝐶 if 𝐶 ∈ 𝑁𝐵𝐶𝑘

1(𝒜)

𝐵′ if 𝐶 ∈ 𝑁𝐵𝐶𝑘
2(𝒜) 

; 

where 𝐵′ is the 𝑘-section of 𝜋 that is not a 𝑘 − 𝑁𝐵𝐶 base of 𝒜 given in lemma (2.13.), and we can define 

𝑔𝑘: 𝑆𝑘(𝜋) → 𝑁𝐵𝐶𝑘(𝒜) as; 

𝑔𝑘(𝐵) = {
𝐵 if 𝐵 ∈ 𝑆𝑘

1(𝜋)

𝐶′ if 𝐵 ∈ 𝑆𝑘
2(𝜋) 

; 

where 𝐶′ is the 𝑘 − 𝑁𝐵𝐶 base of 𝒜 which is not a 𝑘-section of 𝜋 given in lemma (2.12.). We emphasize 

that, when we choose each of 𝐵′ and 𝐶′ in the lemma (2.13.) and lemma (2.12.), we used the concepts 

"unique', "minimal hyperplane" and "maximal hyperplane" via a total ordering ⊴, that are unique and that 

admits each of 𝑓𝑘 and 𝑔𝑘, a structure as well-defined maps.  

If 𝐶 ∈ 𝑁𝐵𝐶𝑘
1(𝒜) , it is clear that, 𝑔𝑘 ∘ 𝑓𝑘(𝐶) = 𝐶 = 𝐼𝑁𝐵𝐶𝑘(𝒜)(𝐶)  and since 𝑆𝑘

1(𝜋) = 𝑁𝐵𝐶𝑘
1(𝒜) ,           

𝑓𝑘 ∘ 𝑔𝑘(𝐶) = 𝐶 = 𝐼𝑆𝑘(𝒜)(𝐶) . Therefore, we need only to show 𝑔𝑘 ∘ 𝑓𝑘(𝐶) = 𝐶 = 𝐼𝑁𝐵𝐶𝑘(𝒜)(𝐶) , for         

 𝐶 ∈ 𝑁𝐵𝐶𝑘
2(𝒜)  and 𝑓𝑘 ∘ 𝑔𝑘(𝐵) = 𝐵 = 𝐼𝑆𝑘(𝒜)(𝐵), for 𝐵 ∈ 𝑆𝑘

2(𝜋). However, we will prove that by induction as 

follows: 

For 𝑘 = 2: Let 𝐶 = {𝐻1, 𝐻2} ∈ 𝑁𝐵𝐶2
2(𝒜). By applying lemma (2.13.), let 𝐻 be the hyperplane contained in 

the singleton block of the induced partition 𝜋𝑋, where 𝑋 = 𝐻1 ∩ 𝐻2. Then, 𝑓2(𝐶) = 𝐵
′ = {𝐻2, 𝐻}. Clearly, 𝐻1 

is the minimal hyperplane of 𝒜 satisfied {𝐻1, 𝐻2, 𝐻} is a circuit. As have shown in lemma (2.12.), 𝑔2(𝐵′) =

𝑔2 ∘ 𝑓2(𝐶) = {𝐻1, 𝐻2} = 𝐶 = 𝐼𝑁𝐵𝐶2(𝒜)(𝐶). As well as, 𝐵 = {𝐻1
′ , 𝐻2

′ } ∈ 𝑆2
2(𝜋), we will apply lemma (2.2.4) and 

let 𝐻′ be the minimal hyperplane of 𝒜 satisfied {𝐻′, 𝐻1
′ , 𝐻2

′ } is a circuit and               𝑔2(𝐵) = 𝐶
′ =

{𝐻′ , 𝐻1
′}. Since  𝐻′ and 𝐻1

′  are contained of the same block, hence 𝐻2
′  will be the hyperplane contained in the 

singleton block of the induced partition 𝜋𝑋′ , where 𝑋′ = 𝐻′ ∩ 𝐻1
′ . Thus,                𝑓2(𝐶′) = 𝑓2 ∘

𝑔2(𝐵) = {𝐻1
′ , 𝐻2

′} = 𝐵 = 𝐼𝑆2(𝒜)(𝐵). Therefore, 𝑔2 = 𝑓2
−1. 
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For 𝑘 = 3: Let 𝐶 = {𝐻1, 𝐻2, 𝐻3} ∈ 𝑁𝐵𝐶3
2(𝒜). Let 𝑋 = 𝐻1 ∩ 𝐻2 ∩ 𝐻3 ∈ 𝐿3(𝒜), then by applying lemma 

(2.2.3), 𝒜𝑋  ⊆ 𝜋𝑚1 ∪ 𝜋𝑚2 ∪ 𝜋𝑚3  for some 1 ≤ 𝑚1 < 𝑚2 < 𝑚3 ≤ ℓ and without loss of generality assume 

that, 𝒜𝑋 ∩ 𝜋𝑚3 is a singleton.  Lemma (2.13.) discussed three cases, so we will separate our discussion for 

each one of them as follows: 

Case 1: (𝐶 ⊆ 𝜋𝑚1) 

Recall the unique hyperplanes 𝐻1,2, 𝐻1,3, 𝐻2,3 ∈ 𝜋𝑚2 ∪ 𝜋𝑚3  such that such that {𝐻1, 𝐻2, 𝐻1,2} , 

{𝐻1, 𝐻3, 𝐻1,3} and {𝐻2, 𝐻3, 𝐻2,3} are circuits. 

Case (1.1): 

 If {𝐻1,2, 𝐻1,3, 𝐻2,3} ∩ 𝜋𝑚3 ≠ ∅ , then  𝑓3(𝐶) = 𝐵
′ = {𝐻3, 𝐻

′, 𝐻} ,  where 𝐻′  is the maximal 

hyperplane via ⊴  of {𝐻1,2, 𝐻1,3, 𝐻2,3} ∩ 𝜋𝑚2  and {𝐻} = 𝒜𝑋 ∩ 𝜋𝑚3 . If 𝐻′ = 𝐻1,3  and 𝐻 = 𝐻2,3 , then 

𝐵′contains two broken circuit, {𝐻3, 𝐻1,3} and {𝐻3, 𝐻2,3}. Therefore, 

𝑔3(𝐵′) = 𝑔3 ∘ 𝑓3(𝐶) = (𝐵
′ ∖ {𝐻1,3, 𝐻2,3}) ∪ {𝐻1, 𝐻2} = 𝐶 = 𝐼𝑁𝐵𝐶3(𝒜)(𝐶). 

If 𝐻′ = 𝐻1,2 and 𝐻 = 𝐻2,3. Then 𝐵′contains unique broken circuit {𝐻3, 𝐻2,3} and (𝐵′ ∖ {𝐻2,3}) ∪ {𝐻2} also 

contains unique broken circuit {𝐻2, 𝐻1,2}. So, 

𝑔3(𝐵′) = 𝑔3 ∘ 𝑓3(𝐶) = (((𝐵
′ ∖ {𝐻2,3}) ∪ { 𝐻2}) ∖ {𝐻2,3}) ∪ {𝐻1} = 𝐶 = 𝐼𝑁𝐵𝐶3(𝒜)(𝐶). 

Similarly, for any other ordering of the hyperplanes 𝐻1,2, 𝐻1,3 and 𝐻2,3. 

Case (1.2): 

If {𝐻1,2, 𝐻1,3, 𝐻2,3} ⊆ 𝜋𝑚2 , then  𝑓3(𝐶) = 𝐵
′ = {𝐻3, 𝐻2,3, 𝐻} ,  where {𝐻} = 𝒜𝑋 ∩ 𝜋𝑚3 . Then 

(𝐵′ ∖ {𝐻2,3}) ∪ { 𝐻2}) is a 3-broken circuit since {𝐻1} ∪ (𝐵
′ ∖ {𝐻2,3}) ∪ { 𝐻2}) is a circuit. Therefore;   

𝑔3(𝐵′) = 𝑔3 ∘ 𝑓3(𝐶) = (((𝐵
′ ∖ {𝐻2,3}) ∪ { 𝐻2}) ∖ {𝐻}) ∪ {𝐻1} = 𝐶 = 𝐼𝑁𝐵𝐶3(𝒜)(𝐶). 

Case 2:  (𝐶 ⊆ 𝜋𝑚1 ∪ 𝜋𝑚2) 

Case (2.1): 

If |𝐶 ∩ 𝜋𝑚1| = 1 and |𝐶 ∩ 𝜋𝑚2| = 2. Since {𝐻2, 𝐻3} is a 2 − 𝑁𝐵𝐶  of 𝒜 , hence {𝐻2, 𝐻3, 𝐻} is a 

circuit, where {𝐻} = 𝒜𝑋 ∩ 𝜋𝑚3 . Then, 𝑓3(𝐶) = 𝐵
′ = {𝐻1, 𝐻3, 𝐻}  is a  3-section of  𝜋  contains broken 

circuit {𝐻3, 𝐻}. Therefore, 𝑔3(𝐵′) = 𝑔3 ∘ 𝑓3(𝐶) = (𝐵
′ ∖ {𝐻}) ∪ {𝐻2} = 𝐶 = 𝐼𝑁𝐵𝐶3(𝒜)(𝐶). 

Case (2.1): 

If |𝐶 ∩ 𝜋𝑚1| = 1 and |𝐶 ∩ 𝜋𝑚2| = 2. Since {𝐻2, 𝐻3} is a 2 − 𝑁𝐵𝐶  of 𝒜 , hence {𝐻2, 𝐻3, 𝐻} is a 

circuit, where {𝐻} = 𝒜𝑋 ∩ 𝜋𝑚3 . Then, 𝑓3(𝐶) = 𝐵
′ = {𝐻1, 𝐻3, 𝐻}  is a  3-section of  𝜋  contains broken 

circuit {𝐻3, 𝐻}. Therefore, 𝑔3(𝐵′) = 𝑔3 ∘ 𝑓3(𝐶) = (𝐵
′ ∖ {𝐻}) ∪ {𝐻2} = 𝐶 = 𝐼𝑁𝐵𝐶3(𝒜)(𝐶). 

Case (2.2): 

If |𝐶 ∩ 𝜋𝑚1| = 2 and |𝐶 ∩ 𝜋𝑚2| = 1. Then, 𝑓3(𝐶) = 𝐵
′ = {𝐻2, 𝐻3, 𝐻} is a 3-section of  𝜋 and it is a 

broken circuit of 𝒜, where {𝐻} = 𝒜𝑋 ∩ 𝜋𝑚3 . Therefore,  

𝑔3(𝐵′) = 𝑔3 ∘ 𝑓3(𝐶) = (𝐵
′ ∖ {𝐻}) ∪ {𝐻1} = 𝐶 = 𝐼𝑁𝐵𝐶3(𝒜)(𝐶). 

Case 3:  (𝐶 ⊆ 𝜋𝑚1 ∪ 𝜋𝑚3): 

In this case, 𝑓3(𝐶) = 𝐵
′ = {𝐻2, 𝐻1,2, 𝐻3}, where 𝐻1,2 ∈ 𝜋𝑚2be the unique hyperplane of  𝒜𝑋 such that 

{𝐻1, 𝐻2, 𝐻1,2}. Thus, 𝑔3(𝐵′) = 𝑔3 ∘ 𝑓3(𝐶) = (𝐵
′ ∖ {𝐻1,2}) ∪ {𝐻1} = 𝐶 = 𝐼𝑁𝐵𝐶3(𝒜)(𝐶). 

Let 𝐵 = {𝐻1
′ , 𝐻2

′ , 𝐻3
′ } ∈ 𝑆3

2(𝒜) and 𝐵 is a broken circuit, we will apply lemma (2.12.) and let 𝐻′ be the 

minimal hyperplane of 𝒜 satisfied {𝐻′, 𝐻1
′ , 𝐻2

′ , 𝐻3
′ } is a circuit. So, 𝑔3(𝐵) = 𝐶

′ = (𝐵 ∖ {𝐻′′}) ∪ {𝐻′ }, where 

𝐻′′ will be the maximal hyperplane of 𝐵 that contained in the singleton block of the induced partition 𝜋𝑋′, 

where 𝑋′ = 𝐻1
′ ∩ 𝐻2

′ ∩ 𝐻3
′ . Apply lemma (2.13.) for 𝐶′ ∈ 𝑁𝐵𝐶3(𝒜). Suppose 𝐻′′ = 𝐻3

′ , so 𝐶′ = {𝐻′, 𝐻1
′ , 𝐻2

′ }.  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.5, 2016 

 

49 

Since 𝐻′ and 𝐻1
′  are contained in the same block, similarly as case (2.2) above we choose 𝐻′′ = 𝐻3

′  and 

𝑔3(𝐵′) = 𝑔3 ∘ 𝑓3(𝐶) = (𝐵
′ ∖ {𝐻′}) ∪ {𝐻3

′ } = 𝐶 = 𝐼𝑁𝐵𝐶3(𝒜)(𝐶). Therefore, 𝑔3 = 𝑓3
−1. 

Suppose, the statement is hold for 𝑘 = 𝑠 − 1 and we will prove it for 𝑘 = 𝑠 as follows: 

Let 𝐶 = {𝐻1, … , 𝐻𝑠} ∈ 𝑁𝐵𝐶𝑠
2(𝒜) . Assume that, 𝐶 ⊆  𝜋𝑚1 ∪ … ∪ 𝜋𝑚𝑠−1 , 1 ≤ 𝑚1 < ⋯ < 𝑚𝑠−1 ≤ ℓ . 

Accordingly, there is 1 ≤ 𝑗 ≤ 𝑠 − 1 . Without loss of generality,  assume |𝐶 ∩ 𝜋𝑚1| = 2 . So,            

𝑟𝑘(𝐶 ∩ 𝜋𝑚1) = 2 and 𝐶 ∩ 𝜋𝑚1 = {𝐻1
′ , 𝐻2

′ } is a 2 − 𝑁𝐵𝐶 base. Then there is 𝐻 ∈ 𝜋𝑙, 𝑚1 + 1 ≤ 𝑙 ≤ ℓ, such 

that, {𝐻1
′ , 𝐻2

′ , 𝐻} is a circuit. If ≠ 𝑚2, … ,𝑚𝑠−1  , then  𝑓𝑠(𝐶) = 𝐵
′ = (𝐶 ∖ {𝐻1}) ∪ {𝐻}  and by applying 

lemma (2.12.), since {𝐻2
′ , 𝐻} is the broken circuit of 𝐵′, hence; 

𝑔𝑠(𝐵′) = 𝑔𝑠 ∘ 𝑓𝑠(𝐶) = (𝐵
′ ∖ {𝐻}) ∪ {𝐻1

′} = 𝐶 = 𝐼𝑁𝐵𝐶𝑠(𝒜)(𝐶). 

Else, continue as we have discussed in case 𝑘 = 3.    

Let 𝐵 = {𝐻1
′ , … , 𝐻𝑠

′} ∈ 𝑆𝑠
2(𝜋) and 𝐵 is a broken circuit, we will apply lemma (2.12.) and let 𝐻′ is the 

minimal hyperplane of 𝒜 satisfied {𝐻′, 𝐻1
′ , … , 𝐻𝑠

′} is a circuit. So, 𝑔𝑠(𝐵) = 𝐶
′ = (𝐵 ∖ {𝐻′′}) ∪ {𝐻′ }, where 

𝐻′′ will be the maximal hyperplane of 𝐵 contained in the singleton block of the induced partition 𝜋𝑋′, where 

𝑋′ = 𝐻1
′ ∩ …∩ 𝐻𝑠

′ . Apply lemma (2.13.) for 𝐶′ ∈ 𝑁𝐵𝐶𝑠(𝒜). Suppose 𝐻′′ = 𝐻𝑠
′ , so 𝐶′ = {𝐻′, 𝐻1

′ , … , 𝐻𝑠−1
′ }.  

Since 𝐻′ and 𝐻1
′  are contained in the same block, so; 

𝑔𝑠(𝐵′) = 𝑔𝑠 ∘ 𝑓𝑠(𝐶) = (𝐵
′ ∖ {𝐻′}) ∪ {𝐻𝑠

′} = 𝐶 = 𝐼𝑁𝐵𝐶𝑠(𝒜)(𝐶). 

Therefore, 𝑔𝑠 = 𝑓𝑠
−1.∎ 

2.15. Remark: 

In view of theorem (2.14.), we notice that: 

1. |𝑁𝐵𝐶𝑘
2(𝒜)| = |𝑁𝐵𝐶𝑘(𝒜)| − |𝑆𝑘

1(𝜋)|, for 0 ≤ 𝑘 ≤ ℓ. 

2. 𝑝⊴(𝒜) + 1 = min{𝑘| |𝑁𝐵𝐶𝑘
2(𝒜)| ≠ 0}. 

3.  𝑓𝑘 is identity map, for 0 ≤ 𝑘 ≤ 𝑝(𝒜).     

Moreover, theorem (2.14.) create a connection between two fashions of the O-S algebra of factored 

arrangement that not completely factored, a fashion as free submodule of the exterior algebra, and a fashion as a 

tensor factorization module. We provide this goal as follows:    

2.16.  Construction:  

Let 𝒜  be a factored ℓ − arrangement with a factorization 𝜋 = (𝜋1 , … , 𝜋ℓ)  such that 𝒜  is not 

completely factored via any ordering can be defined on its hyperplanes, i.e. 𝑁𝐵𝐶𝑘(𝒜) ≠  𝑆𝑘 (𝜋), for 𝑝⊴(𝒜) +

1 ≤ 𝑘 ≤ ℓ . Recall the one to one correspondences 𝑓𝑘: 𝑁𝐵𝐶𝑘(𝒜) → 𝑆𝑘(𝜋)  and            𝑔𝑘: 𝑆𝑘(𝜋) →

𝑁𝐵𝐶𝑘(𝒜) , that given in theorem (2.14.). Accordingly there are one to one correspondences, 𝒻𝑘: {𝑒𝐵|𝐵 ∈

𝑁𝐵𝐶𝑘(𝒜)} → {𝑞𝐶|𝐶 ∈ 𝑆𝑘 (𝜋)} and ℊ𝑘: {𝑞𝐶|𝐶 ∈ 𝑆𝑘 (𝜋)} → {𝑒𝐵|𝐵 ∈ 𝑁𝐵𝐶𝑘(𝒜)}, defined as; 

𝒻𝑘(𝑒𝐵) = {
𝑞𝐵 if 𝐵 ∈ 𝑁𝐵𝐶𝑘

1(𝒜)

𝑞𝐶′ if 𝐵 ∈ 𝑁𝐵𝐶𝑘
2(𝒜) 

; 

where 𝐶′ is the 𝑘-section of 𝜋 that is not a 𝑘 − 𝑁𝐵𝐶 base of 𝒜 given in lemma (2.13.), and; 

ℊ𝑘(𝑞𝐶) = {
𝑒𝐶 if 𝐵 ∈ 𝑆𝑘

1(𝜋)

𝑒𝐵′ if 𝐵 ∈ 𝑆𝑘
2(𝜋) 

; 

where 𝐵′ is the 𝑘 − 𝑁𝐵𝐶 base of 𝒜 which is not a 𝑘-section of 𝜋 given in lemma (2.12.). That induces unique 

𝐾- linear isomorphisms, 𝒻𝑘: 𝑵𝑩𝑪𝑘(𝒜) → (𝜋)𝑘and ℊ𝑘: (𝜋)𝑘 → 𝑵𝑩𝑪𝑘(𝒜) between the k
th

 partition module and 

k
th

 broken circuit module that extend this assignments as follows: 

 

 

          {𝑞𝐶|𝐵 ∈ 𝑆𝑘(𝜋)}
  𝑖𝑘
𝑆  
→  (𝜋)𝑘    

                     ℊ𝑘                          

           {𝑒𝐵|𝐵 ∈ 𝑁𝐵𝐶𝑘(𝒜)}      ∃!ℊ𝑘 

                      𝑖𝑘
𝑁𝐵𝐶  

                                 𝑵𝑩𝑪𝑘(𝒜) 

     {𝑒𝐵|𝐵 ∈ 𝑁𝐵𝐶𝑘(𝒜)}
 𝑖𝑘
𝑁𝐵𝐶  
→    𝑵𝑩𝑪𝑘(𝒜) 

                          𝒻𝑘                     

                  {𝑞𝐶|𝐶 ∈ 𝑆𝑘(𝜋)       ∃! 𝒻𝑘 

                                𝑖𝑘
𝑆 

                                      (𝜋)𝑘 
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2.17. Theorem: 

Construction (3.16.) produces 𝐾 -chain isomorphisms, 𝒻∗: 𝑵𝑩𝑪∗(𝒜) → (𝜋)∗  and                  

ℊ∗: (𝜋)∗ → 𝑵𝑩𝑪∗(𝒜) between acyclic chain complexes and this creates a joining between two fashions of the 

O-S algebra as shown in the following commutative diagram; 

 

 

 

 

 

…(3.2.4.1) 

 

 

 

 

 

 

Proof: For a fixed 1 ≤ 𝑘 ≤ ℓ, we need to show that the following two diagrams are commutative: 

 

 

 

 

 

 

(i)                             (ii) 

For i: Let 𝐶 ∈ 𝑆𝑘(𝜋). Then; 

𝜕𝑘
𝑁𝐵𝐶 ∘ ℊ𝑘(𝑞𝐶) = 𝜕𝑘

𝑁𝐵𝐶(ℊ𝑘(𝑞𝐶)) 

                            = 𝜕𝑘
𝑁𝐵𝐶 {

𝑒𝐶 if 𝐶 ∈ 𝑆𝑘
1(𝜋)

𝑒𝐵′ if 𝐶 ∈ 𝑆𝑘
2(𝜋) 

 

                            = {
𝜕𝑘
𝑁𝐵𝐶(𝑒𝐶) if 𝐶 ∈ 𝑆𝑘

1(𝜋)

𝜕𝑘
𝑁𝐵𝐶(𝑒𝐵′) if 𝐶 ∈ 𝑆𝑘

2(𝜋) 
=

{
 
 

 
 ∑ (−1)𝑘−1

𝑘

𝑗=1
𝑒𝐶𝑗 if 𝐶 ∈ 𝑆𝑘

1(𝜋)

∑ (−1)𝑘−1
𝑘

𝑗=1
𝑒𝐵𝑗

′ if 𝐶 ∈ 𝑆𝑘
2(𝜋) 

 

=∑ (−1)𝑘−1
𝑘

𝑗=1
ℊ𝑘−1 (𝑞𝐶𝑗) = ℊ𝑘−1 (∑ (−1)𝑘−1

𝑘

𝑗=1
𝑞𝐶𝑗) = ℊ𝑘−1 ∘ 𝜕𝑘

𝜋(𝑞𝐶) 

Thus, 𝜕𝑘
𝑁𝐵𝐶 ∘ ℊ𝑘 = ℊ𝑘−1 ∘ 𝜕𝑘

𝜋. 

For ii: Let 𝐵 ∈ 𝑁𝐵𝐶𝑘(𝒜). Then; 

𝜕𝑘
𝜋 ∘ 𝒻𝑘(𝑒𝐵) = 𝜕𝑘

𝜋(𝒻𝑘(𝑒𝐵)) 

𝑵𝑩𝑪𝑘(𝒜)
 𝜕𝑘
𝑁𝐵𝐶

→   𝑵𝑩𝑪𝑘−1(𝒜) 

𝒻𝑘                       𝒻𝑘−1              

(𝜋)𝑘     
   𝜕𝑘
𝜋    

→        (𝜋)𝑘−1 

 

 

(𝜋)𝑘     
   𝜕𝑘
𝜋    

→        (𝜋)𝑘−1 

ℊ𝑘                     ℊ𝑘−1              

𝑵𝑩𝑪𝑘(𝒜)
 𝜕𝑘
𝑁𝐵𝐶

→   𝑵𝑩𝑪𝑘−1(𝒜) 

 

 

0 →  𝑨ℓ(𝒜)   
   𝜕ℓ
𝐴   

→     𝑨ℓ−1(𝒜)   
𝜕ℓ−1
𝐴

→  ⋯
  𝜕2
𝐴   
→      𝑨1(𝒜)  

  𝜕1
𝐴   
→    𝑨0(𝒜)  

  𝜕0 
𝐴    
→   0 

𝜓ℓ
−1 ↓                   𝜓ℓ−1

−1 ↓                                 𝜓1
−1 ↓                 𝜓0

−1 ↓ 

0 → 𝑵𝑩𝑪ℓ(𝒜)
𝜕ℓ
𝑁𝐵𝐶

→   𝑵𝑩𝑪ℓ−1(𝒜)
𝜕ℓ−1
𝑁𝐵𝐶

→   ⋯
𝜕2
𝑁𝐵𝐶

→   𝑵𝑩𝑪1(𝒜)
𝜕1
𝑁𝐵𝐶

→   𝑵𝑩𝑪0(𝒜)
𝜕0
𝑁𝐵𝐶

→   0 

     𝒻ℓ ↓                   𝒻ℓ−1 ↓                               𝒻1 ↓                 𝒻0 ↓      

0 →     (𝜋)ℓ     
   𝜕ℓ
𝜋   

→        (𝜋)ℓ−1    
𝜕ℓ−1
𝜋

→   ⋯ 
  𝜕2
𝜋   
→       (𝜋)1    

  𝜕1
𝜋   
→        (𝜋)0    

  𝜕0
𝜋   
→  0 

     𝜑ℓ ↓                   𝜑ℓ−1 ↓                               𝜑1 ↓                 𝜑0 ↓      

0 →  𝑨ℓ(𝒜)   
   𝜕ℓ
𝐴   

→     𝑨ℓ−1(𝒜)   
𝜕ℓ−1
𝐴

→  ⋯
  𝜕2
𝐴   
→      𝑨1(𝒜)  

  𝜕1
𝐴   
→    𝑨0(𝒜)  

  𝜕0 
𝐴    
→   0 
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                        = 𝜕𝑘
𝜋 {
𝑞𝐵 if 𝐵 ∈ 𝑁𝐵𝐶𝑘

1(𝒜)

𝑞𝐶′ if 𝐵 ∈ 𝑁𝐵𝐶𝑘
2(𝒜) 

 

                       = {
𝜕𝑘
𝜋(𝑞𝐵) if 𝐵 ∈ 𝑁𝐵𝐶𝑘

1(𝒜)

𝜕𝑘
𝜋(𝑞𝐶′) if 𝐵 ∈ 𝑁𝐵𝐶𝑘

2(𝒜) 
=

{
 
 

 
 ∑ (−1)𝑘−1

𝑘

𝑗=1
𝑞𝐵𝑗 if 𝐵 ∈ 𝑁𝐵𝐶𝑘

1(𝒜)

∑ (−1)𝑘−1
𝑘

𝑗=1
𝑞𝐶𝑗

′ if 𝐵 ∈ 𝑁𝐵𝐶𝑘
2(𝒜) 

 

                       = ∑ (−1)𝑘−1
𝑘

𝑗=1
𝒻𝑘−1 (𝑒𝐵𝑗) = 𝒻𝑘−1 (∑ (−1)𝑘−1

𝑘

𝑗=1
𝑒𝐵𝑗) = 𝒻𝑘−1 ∘ 𝜕𝑘

𝑁𝐵𝐶(𝑒𝐵) 

Thus, 𝜕𝑘
𝜋 ∘ 𝒻𝑘 = 𝒻𝑘−1 ∘ 𝜕𝑘

𝑁𝐵𝐶 . Therefore, each of 𝒻∗: 𝑵𝑩𝑪𝑘(𝒜) → (𝜋)∗  and  ℊ∗: (𝜋)∗ → 𝑵𝑩𝑪∗(𝒜)  are  

𝐾-chain isomorphisms between acyclic chain complexes. It is clear that, 𝜑∗
−1 = 𝒻∗ ∘ 𝜓∗

−1, 𝜑∗ = 𝜓∗ ∘ ℊ∗ and the 

𝐾 -chain isomorphisms 𝓀 = 𝜑∗ ∘ 𝒻∗ ∘ 𝜓∗
−1  and 𝒽−1 = 𝜓∗ ∘ ℊ∗ ∘ 𝜑∗

−1  produce a connection between two 

fashions of the O-S algebra and this is precisely the assertion of the theorem. ∎ 

 

3. On the Product of factored arrangement 

This section is motivated to prove that section two classification of the class of factored arrangement is 

compatible with the product construction. 

3.1. Construction: 

For 𝑖 = 1,2, let 𝒜𝑖 = {𝐻1
𝑖 , … , 𝐻𝑛𝑖

𝑖 } be factored ℓ𝑖-arrangement with a factorization 𝜋𝑖 = (𝜋1
𝑖 , … , 𝜋ℓ

𝑖). 

The product arrangement is defined as; 

𝒜 = 𝒜1 ×𝒜2 = (𝒜1⨁ℂ
ℓ2) ∪ (ℂℓ1⨁𝒜2), where; 

𝒜1⨁ℂ
ℓ2 = {𝐻1

1⨁ℂℓ2 , … , 𝐻𝑛1
1 ⨁ℂℓ2} and ℂℓ1⨁𝒜2 = {ℂ

ℓ1⨁𝐻1
2, … , ℂℓ1⨁𝐻𝑛2

2 }. 

We will partition 𝒜1 ×𝒜2 by the partition 𝜋 = (𝜋1⨁ℂℓ2) ∪ (ℂℓ1⨁𝜋2), where; 

𝜋1⨁ℂℓ2 = (𝜋1
1⨁ℂℓ2 , … , 𝜋ℓ1

1 ⨁ℂℓ2) and ℂℓ1⨁𝜋2 = (ℂℓ1⨁𝜋1
2, … , ℂℓ1⨁𝜋ℓ2

2 ); 

i.e. 𝜋 = 𝜋1 × 𝜋2 = (𝜋1
1⨁ℂℓ2 , … , 𝜋ℓ1

1 ⨁ℂℓ2 , ℂℓ1⨁𝜋1
2, … , ℂℓ1⨁𝜋ℓ2

2 ) 

Assume ⊴𝑖 be the ordering defined in the hyperplanes of 𝒜𝑖, for 𝑖 = 1,2, as given in construction (2.1.) or 

construction (2.9.), depending on the kind of 𝒜𝑖. Then, define an ordering ⊴=⊴1×⊴2 on the hyperplanes of 

𝒜1 ×𝒜2 as follows: 

1. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛1, put 𝐻𝑖
1⨁ℂℓ2 ⊴ 𝐻𝑗

1⨁ℂℓ2  if, and only if, 𝐻𝑖
1 ⊴1 𝐻𝑗

1. 

2. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛2, put ℂℓ1⨁𝐻𝑖
2 ⊴ ℂℓ1⨁𝐻𝑗

2 if, and only if, 𝐻𝑖
2 ⊴2 𝐻𝑗

2. 

3. For 1 ≤ 𝑖 ≤ 𝑛1 and 1 ≤ 𝑗 ≤ 𝑛2, put 𝐻𝑖
1⨁ℂℓ2 ⊴ ℂℓ1⨁𝐻𝑗

2. 

 

 

3.2. Lemma: 

Suppose we have the assumptions of construction (3.1.). Then: 

1. For 1 ≤ 𝑘 ≤ ℓ1, if 𝐵1 ∈ 𝑁𝐵𝐶𝑘(𝒜1), then 𝐵1⨁ℂℓ2 ∈ 𝑁𝐵𝐶𝑘(𝒜1⨁ℂ
ℓ2) ⊆ 𝑁𝐵𝐶𝑘(𝒜1 ×𝒜2). 

2. For 1 ≤ 𝑘 ≤ ℓ2, if 𝐵
2 ∈ 𝑁𝐵𝐶𝑘(𝒜2), then ℂℓ1⨁𝐵2 ∈ 𝑁𝐵𝐶𝑘(ℂ

ℓ1⨁𝒜2) ⊆ 𝑁𝐵𝐶𝑘(𝒜1 ×𝒜2). 

3. For 1 ≤ 𝑘 ≤ ℓ1 + ℓ2 , if 𝐵1 ∈ 𝑁𝐵𝐶𝑘1(𝒜1)  and 𝐵2 ∈ 𝑁𝐵𝐶𝑘2(𝒜2) , for some 1 ≤ 𝑘1 ≤ ℓ1  and          

1 ≤ 𝑘2 ≤ ℓ2 such that 𝑘1 + 𝑘2 = 𝑘, then 𝐵1 × 𝐵2 = (𝐵1⨁ℂℓ2) ∪ (ℂℓ1⨁𝐵2) ∈ 𝑁𝐵𝐶𝑘(𝒜1 ×𝒜2). 

Furthermore, for 0 ≤ 𝑘 ≤ ℓ1 + ℓ2, 𝑁𝐵𝐶𝑘(𝒜1 ×𝒜2) = ⋃ {𝐵1 × 𝐵2}𝐵1∈𝑁𝐵𝐶𝑘1(𝒜1),   0≤𝑘1≤ℓ1

𝐵2∈𝑁𝐵𝐶𝑘2(𝒜2),   0≤𝑘2≤ℓ2
𝑘1+𝑘2=𝑘

. 

Proof: Due to construction (3.1.), if 𝐵1 and 𝐵2 are independent subarrangement of 𝒜1 and 𝒜2 respectively, 

then 𝐵1⨁ℂℓ2 , ℂℓ1⨁𝐵2 and 𝐵1 × 𝐵2 are independent subarrangement of 𝒜1 ×𝒜2. Moreover, our definition 
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of the ordering ⊴=⊴1×⊴2 that respect the ordering ⊴1 and ⊴2 on 𝒜1 and 𝒜2 respectively, involves if  

𝐵1  and 𝐵2  contain no broken circuit of 𝒜1  and 𝒜2  respectively, then 𝐵1⨁ℂℓ2 , ℂℓ1⨁𝐵2  and 𝐵1 × 𝐵2 

contain no broken circuit subarrangement of 𝒜1 ×𝒜2 and our claim is down. ∎ 

3.3. Lemma: 

Suppose we have the assumptions of construction (3.1.). Then: 

1. For 0 ≤ 𝑘 ≤ ℓ1, if 𝐶1 ∈ 𝑆𝑘(𝜋
1), then 𝐶1⨁ℂℓ2 ∈ 𝑆𝑘(𝜋

1⨁ℂℓ2) ⊆ 𝑆𝑘(𝜋
1 × 𝜋2). 

2. For 0 ≤ 𝑘 ≤ ℓ2, if 𝐶
2 ∈ 𝑆𝑘(𝜋

2), then ℂℓ1⨁𝐶2 ∈ 𝑆𝑘(ℂ
ℓ1⨁𝜋2) ⊆ 𝑆𝑘(𝜋

1 × 𝜋2). 

3. For 0 ≤ 𝑘 ≤ ℓ1 + ℓ2, if 𝐶1 ∈ 𝑆𝑘1(𝜋
1) and 𝐶2 ∈ 𝑆𝑘2(𝜋

2), for some 0 ≤ 𝑘1 ≤ ℓ1 and 0 ≤ 𝑘2 ≤ ℓ2 such 

that 𝑘1 + 𝑘2 = 𝑘, then 𝐶1 × 𝐶2 = (𝐶1⨁ℂℓ2) ∪ (ℂℓ1⨁𝐶2) ∈ 𝑆𝑘(𝜋
1 × 𝜋2). 

Furthermore, for 0 ≤ 𝑘 ≤ ℓ1 + ℓ2, 𝑆𝑘(𝜋
1 × 𝜋2) = ⋃ {𝐶1 × 𝐶2}𝐶1∈𝑆𝑘1(𝜋

1),   0≤𝑘1≤ℓ1

𝐶2∈𝑆𝑘2(𝜋
2),   0≤𝑘2≤ℓ2

𝑘1+𝑘2=𝑘

. 

Proof: According to construction (3.1.), it is clear, if 𝐶1 and 𝐶2 is independent subarrangement of 𝜋1 and 𝜋2 

respectively, then 𝐶1⨁ℂℓ2 , ℂℓ1⨁𝐶2 and 𝐶1 × 𝐶2 are sections of 𝜋 = 𝜋1 × 𝜋2. ∎ 

3.4. Lemma: 

 Let 𝒜 = 𝒜1 ×𝒜2 be a reducible (ℓ1 + ℓ2)-arrangementm into a product of ℓ1-arrangement 𝒜1 and 

ℓ2-arrangement 𝒜2 . If 𝒜 is a factored arrangement with a factorization 𝜋 = (𝜋1 , … , 𝜋ℓ), then for each 

1 ≤ 𝑘 ≤ ℓ1 + ℓ2, either 𝜋𝑘 ⊆ 𝒜1⨁ℂ
ℓ2  or  𝜋𝑘 ⊆ ℂ

ℓ1⨁𝒜2. 

Proof: By contrary, assume 𝜋𝑘 ⊆ 𝒜1⨁ℂ
ℓ2  and  𝜋𝑘 ⊆ ℂ

ℓ1⨁𝒜2 . Thus, there are  𝐻1 ∈ 𝒜1and 𝐻2 ∈ 𝒜2 

such that 𝐻1⨁ℂℓ2 , ℂℓ1⨁𝐻2 ∈ 𝜋𝑘 . Let  𝑋 = 𝐻1⨁ℂℓ2 ∩ ℂℓ1⨁𝐻2 ∈ 𝐿2(𝒜). Since 𝜋 is a factorization, hence, 

the induced partition 𝜋𝑋 has two blocks. Thus, there is a unique 𝐻 ∈ 𝜋𝑚 , for some 1 ≤ 𝑚 ≤ ℓ1 + ℓ2 and 

𝑚 ≠ 𝑘  with 𝑟𝑘({𝐻1⨁ℂℓ2 , ℂℓ1⨁𝐻2, 𝐻}) = 2 . Then, either 𝐻 = 𝐻′⨁ℂℓ2 ∈ 𝒜1⨁ℂ
ℓ2  or                    

𝐻 = ℂℓ1⨁𝐻′′ ∈ ℂℓ1⨁𝒜2 and both of these two cases contradict the fact that there are no collinear relations 

among any three hyperplanes of 𝒜1⨁ℂ
ℓ2  and ℂℓ1⨁𝒜2 ; i.e. 𝑟𝑘({𝐻1⨁ℂℓ2 , ℂℓ1⨁𝐻2, 𝐻}) = 3  for all 

𝐻 ∈ 𝒜1 ×𝒜2 ∖ {𝐻
1⨁ℂℓ2 , ℂℓ1⨁𝐻2}. Therefore, either 𝜋𝑘 ⊆ 𝒜1⨁ℂ

ℓ2  or 𝜋𝑘 ⊆ ℂ
ℓ1⨁𝒜2. ∎ 

 

 

3.5. Proposition: 

Let 𝒜 = 𝒜1 ×𝒜2 be a reducible (ℓ1 + ℓ2)-arrangement into a product of ℓ1-arrangement 𝒜1 and 

ℓ2-arrangement 𝒜2. If 𝒜 is a factored arrangement with a factorization 𝜋 = (𝜋1 , … , 𝜋ℓ) and if; 

𝑇1 = ⋂ 𝐻⨁ℂℓ2𝐻∈𝒜1 ∈ 𝐿ℓ1(𝒜1 ×𝒜2) and;𝑇2 = ⋂ ℂℓ1⨁𝐻𝐻∈𝒜2 ∈ 𝐿ℓ2(𝒜1 ×𝒜2); 

then, 𝒜𝑇1 = 𝒜1⨁ℂ
ℓ2 , 𝒜𝑇2 = ℂ

ℓ1⨁𝒜2 and for 𝑖 = 1,2, the induced partition  𝜋𝑇𝑖 = (𝜋1
𝑖 , … , 𝜋ℓ𝑖

𝑖 ) satisfied 

for 1 ≤ 𝑘 ≤ ℓ𝑖  , 𝜋𝑘
𝑖 = 𝜋𝑚 , for some1 ≤ 𝑚 ≤ ℓ1 + ℓ2 . Moreover, 𝜋𝑘1

1 ≠ 𝜋𝑘2
2 , for each  1 ≤ 𝑘1 ≤ ℓ1  and  

1 ≤ 𝑘2 ≤ ℓ2. 

Proof: Firstly, we prove 𝒜𝑇1 = 𝒜1⨁ℂ
ℓ2 , 𝒜𝑇2 = ℂ

ℓ1⨁𝒜2. It was known that, if  𝐵1 ⊆ 𝒜1 and 𝐵2 ⊆ 𝒜2 is 

linearly independent of 𝒜1 and 𝒜2 respectively, then, for all 𝐻 ∈ 𝒜1 and for all 𝐻′ ∈ 𝒜2, each one of  

𝐵1⨁ℂ
ℓ2 ∪ {ℂℓ1⨁𝐻′}  and ℂℓ1⨁𝐵2 ∪ {𝐻⨁ℂ

ℓ2}  is linearly independent of 𝒜1 ×𝒜2 . As well as, if           

𝑋1 ∈ 𝐿𝑘1(𝒜1⨁ℂ
ℓ2) , 1 ≤ 𝑘1 ≤ ℓ1 , 𝑋2 ∈ 𝐿𝑘2(ℂ

ℓ1⨁𝒜2) , 1 ≤ 𝑘2 ≤ ℓ2 , 𝐻 ∈ 𝒜1  and 𝐻′ ∈ 𝒜2 , then; 

𝑋 = 𝑋1 ∩ (ℂ
ℓ1⨁𝐻′) ∈ 𝐿𝑘1+1(𝒜1 ×𝒜2)  and 𝑋′ = 𝑋2 ∩ (𝐻⨁ℂ

ℓ2) ∈ 𝐿𝑘2+1(𝒜1 ×𝒜2 . Therefore,         

𝑇1 ∩ (ℂ
ℓ1⨁𝐻′) ∈ 𝐿ℓ1+1(𝒜1 ×𝒜2) and 𝑇2 ∩ (𝐻⨁ℂ

ℓ2) ∈ 𝐿ℓ2+1(𝒜1 ×𝒜2), for each 𝐻 ∈ 𝒜1  and 𝐻′ ∈ 𝒜2 . 

Thus, 𝒜𝑇1
= 𝒜1⨁ℂ

ℓ2 , 𝒜𝑇2
= ℂℓ1⨁𝒜2. 

Secondly, by applying lemma (3.4.), the factorization 𝜋 = (𝜋1 , … , 𝜋ℓ)  be split into two disjoint parts. The first 

one is the blocks that contain just hyperplanes from 𝒜1⨁ℂ
ℓ2and the second one includes blocks of 𝜋 that 
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contain just hyperplanes from ℂℓ1⨁𝒜2. Straightly, one can deduce that for 𝑖 = 1,2, the induced partition  

𝜋𝑇𝑖 = (𝜋1
𝑖 , … , 𝜋ℓ𝑖

𝑖 ) satisfied for 1 ≤ 𝑘 ≤ ℓ𝑖 , 𝜋𝑘
𝑖 = 𝜋𝑚, for some 1 ≤ 𝑚 ≤ ℓ1 + ℓ2 and for 1 ≤ 𝑘1 ≤ ℓ1 and 

1 ≤ 𝑘2 ≤ ℓ2, 𝜋𝑘1
1 ≠ 𝜋𝑘2

2 . ∎ 

3.6. Construction: 

Let 𝒜 = 𝒜1 ×𝒜2 be a reducible (ℓ1 + ℓ2)-arrangement into a product of ℓ1-arrangement 𝒜1 and 

ℓ2 -arrangement 𝒜2 . Assume, 𝒜 is a factored arrangement with a factorization 𝜋 = (𝜋1 , … , 𝜋ℓ) . As an 

application of proposition (3.5.), we can reorder the blocks of 𝜋 as, 𝜋 = (𝜋𝑇1 , 𝜋𝑇2) = (𝜋1
1, … , 𝜋ℓ1

1 , 𝜋1
2, … , 𝜋ℓ2

2 ). 

Moreover, for 𝑖 = 1,2 , there is a partition 𝜋𝒜𝑖 = (𝜋1
𝒜𝑖 , … , 𝜋ℓ𝑖

𝒜𝑖)  given as; 𝐻 ∈ 𝜋𝑘
𝒜1  if, and only if,       

𝐻⨁ℂℓ2 ∈ 𝜋𝑘
1, 1 ≤ 𝑘 ≤ ℓ1 and 𝐻′ ∈ 𝜋𝑘

𝒜2  if, and only if, ℂℓ1⨁𝐻′ ∈ 𝜋𝑘
2, 1 ≤ 𝑘 ≤ ℓ1. 

Assume ⊴  be the ordering defined on the hyperplanes of 𝒜1 ×𝒜2  as given in construction (2.1.) or 

construction (2.9.), depending on the kind of 𝒜1 ×𝒜2, i.e. (if 𝒜1 ×𝒜2 is completely factored via  ⊴ , we 

will use construction (2.1.)) or (if 𝒜1 ×𝒜2 is not completely factored via any ordering can be defined on the 

hyperplanes of 𝒜1 ×𝒜2 , we will use construction (2.9.)). Then, define an ordering ⊴𝒜1×𝒜2  on the 

hyperplanes of 𝒜1 ×𝒜2 that respect the structure of 𝜋 = (𝜋𝑇1 , 𝜋𝑇2) as follows: 

1. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛1, put 𝐻𝑖
1⨁ℂℓ2 ⊴𝒜1×𝒜2  𝐻𝑗

1⨁ℂℓ2  if, and only if, 𝐻𝑖
1⨁ℂℓ2 ⊴  𝐻𝑗

1⨁ℂℓ2 . 

2. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛2, put ℂℓ1⨁𝐻𝑖
2 ⊴𝒜1×𝒜2  ℂℓ1⨁𝐻𝑗

2 if, and only if, ℂℓ1⨁𝐻𝑖
2 ⊴ ℂℓ1⨁𝐻𝑗

2. 

3. For 1 ≤ 𝑖 ≤ 𝑛1 and 1 ≤ 𝑗 ≤ 𝑛2, put 𝐻𝑖
1⨁ℂℓ2 ⊴𝒜1×𝒜2 ℂℓ1⨁𝐻𝑗

2.  

Indeed, there are orderings; ⊴1 on the hyperplanes of 𝒜1 that respect the structure of the partition 𝜋𝒜1 and 

⊴2 on the hyperplanes of 𝒜2 that respect the structure of the partition 𝜋𝒜2, satisfied ⊴𝒜1×𝒜2=⊴1×⊴2 and 

defined as follows: 

1. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛1, put 𝐻𝑖
1 ⊴1 𝐻𝑗

1 if, and only if, 𝐻𝑖
1⨁ℂℓ2 ⊴𝒜1×𝒜2 𝐻𝑗

1⨁ℂℓ2 . 

2. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛2, put 𝐻𝑖
2 ⊴2 𝐻𝑗

2 if, and only if, ℂℓ1⨁𝐻𝑖
2 ⊴𝒜1×𝒜2 ℂℓ1⨁𝐻𝑗

2. 

 

3.7. Theorem: 

Let 𝒜 = 𝒜1 ×𝒜2 be a reducible (ℓ1 + ℓ2)-arrangement into a product of ℓ1-arrangement 𝒜1 and 

ℓ2-arrangement 𝒜2. Then, 𝒜 is a completely factored (ℓ1 + ℓ2)-arrangement if, and only if, each of 𝒜1 and 

𝒜2 is a completely factored arrangement. 

Proof: Firstly, assume 𝒜1 ×𝒜2 is a completely factored (ℓ1 + ℓ2)-arrangement. We need to prove each of 

𝒜1 and 𝒜2 is completely factored arrangement. Motivated by our purpose, recall construction (3.6.). So we 

need to prove, for 𝑖 = 1,2, 𝜋𝒜𝑖  is a factorization of 𝒜𝑖 = {𝐻1
𝑖 , … ,𝐻𝑛𝑖

𝑖 } and 𝒜𝑖  is quadratic via ⊴𝑖 . By 

contrary, assume either 𝜋𝒜1, or 𝜋𝒜2 is not nice. If 𝜋𝒜1 is not factorization of 𝒜1. Then, either 𝜋𝒜1 is not 

independent, or there is 𝑋 ∈ 𝐿(𝒜1) such that the induced partition 𝜋𝑋
𝒜1 has no singleton block. As we know, 

if 𝐵 ∈ 𝑆(𝜋𝒜1), then 𝐵⨁ℂℓ2 ∈ 𝑆(𝜋). Assuming that, section 𝐵 is dependent implies 𝐵⨁ℂℓ2  is dependent 

which contradicts our assumption 𝜋 is independent. As well as, if 𝑋 ∈ 𝐿(𝒜1) such that the induced partition 

𝜋𝑋
𝒜1  has no singleton block, then the induced partition 𝜋𝑋⨁ℂℓ2 ⊆ 𝜋𝑇1 , has no singleton block and that 

contradicts the nice structure of 𝜋 . Similarly, assuming 𝜋𝒜2  is not nice partition on 𝒜2 , leads to a 

contradiction. Therefore, 𝜋𝒜1 and 𝜋𝒜2 are nice partitions.  

In addition to that, by contrary we will prove  𝒜𝑖 = {𝐻1
𝑖 , … , 𝐻𝑛𝑖

𝑖 } is a completely factored via ⊴𝑖, for 

𝑖 = 1,2. Suppose 𝒜1 is not completely factored via ⊴1. By applying theorem (1.5.) and corollary (1.6.), there 

is a subarrangement 𝐵 of 𝒜1 that contains no rank 2 broken circuit and it is not an 𝑁𝐵𝐶 base of  𝒜1. 

According to lemma (2.3.2), 𝐵⨁ℂℓ2  is not an 𝑁𝐵𝐶 base of 𝒜1 ×𝒜2. This is a contradiction since 𝒜1 ×𝒜2 

is quadratic and contains a subarrangement 𝐵⨁ℂℓ2  that contains no rank 2 broken circuit and it is not an 𝑁𝐵𝐶 

base of 𝒜1 ×𝒜2. Therefore, 𝒜1 is completely factored via ⊴1. Similarly, deduce 𝒜2 is completely factored 

via ⊴2. 
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Conversely, for 𝑖 = 1,2, assume 𝒜𝑖 = {𝐻1
𝑖 , … , 𝐻𝑛𝑖

𝑖 } be a completely factored ℓ𝑖-arrangement and recall 

construction (2.1.) in order to construct a factorization 𝜋𝑖 = (𝜋1
𝑖 , … , 𝜋ℓ

𝑖) of 𝒜𝑖  and an ordering ⊴𝑖  that 

emphasize the quadratic property of 𝒜𝑖, i.e. 𝑁𝐵𝐶𝑘  (𝒜𝑖) =  𝑆𝑘 (𝜋
𝑖), for 1 ≤ 𝑘 ≤ ℓ𝑖 . Moreover, we recall 

construction (3.1.) to create the partition 𝜋 = (𝜋1⨁ℂℓ2) ∪ (ℂℓ1⨁𝜋2) and the ordering ⊴=⊴1×⊴2. So, we 

wanted 𝜋 is a facorization and 𝒜1 ×𝒜2 is completely factored via ⊴. 

By contrary, assume 𝜋 is not a factorization of 𝒜1 ×𝒜2. Then, either 𝜋 is not independent, or there is 

𝑋 ∈ 𝐿(𝒜1 ×𝒜2) such that the induced partition 𝜋𝑋 has no singleton block.  

If  𝜋 = (𝜋1⨁ℂℓ2) ∪ (ℂℓ1⨁𝜋2) is not independent, then there is a dependent section 𝐶 ∈ 𝑆(𝜋). So, 

𝐶 = (𝐶1⨁ℂℓ2) ∪ (ℂℓ1⨁𝐶2), for some 𝐶1 ∈ 𝑆(𝜋1) and 𝐶2 ∈ 𝑆(𝜋2). Thus, either 𝐶1 or  𝐶2 is dependent 

and that contradicts our assumption that each of 𝜋1 and 𝜋2 is independent. Therefore, 𝜋 is independent. 

In fact, if 𝑋 ∈ 𝐿(𝒜1 ×𝒜2)  such that the induced partition 𝜋𝑋  has no singleton block. Then         

𝑋 = (𝑋1⨁ℂℓ2) ∩ (ℂℓ1⨁𝑋2) , for some 𝑋1 ∈ 𝐿(𝒜1)  and 𝑋2 ∈ 𝐿(𝒜2) . From construction (3.1.),          

𝜋𝑋 = (𝜋𝑋1
1 ⨁ℂℓ2) ∪ (ℂℓ1⨁𝜋𝑋2

2 ), where 𝜋
𝑋𝑖
𝑖 is the induced partition of 𝑋𝑖 via 𝜋𝑖, 𝑖 = 1,2. Consequently, either 

𝜋𝑋1
1  or  𝜋𝑋2

2  has no singleton block and that contradicts the fact each of 𝜋1 and 𝜋2 is nice. Therefore, 𝜋 is a 

factorization of 𝒜1 ×𝒜2. 

Now, suppose 𝒜1 ×𝒜2  is not completely factored via ⊴. Thus, there is a subarrangement 𝐵  of 

𝒜1 ×𝒜2 that contains no rank 2 broken circuit and it is not an 𝑁𝐵𝐶 base of  𝒜1 ×𝒜2. According to lemma 

(3.2.), 𝐵 = (𝐵1⨁ℂℓ2) ∪ (ℂℓ1⨁𝐵2), where 𝐵1 ⊆ 𝒜1 , 𝐵2 ⊆ 𝒜2  and either 𝐵1  contains no rank 2 broken 

circuit of 𝒜1, or 𝐵2 contains no rank 2 broken circuit of 𝒜2, and it is not an 𝑁𝐵𝐶 base of 𝒜2. This is a 

contradiction since both of 𝒜1  and 𝒜2  are completely factored. Therefore, 𝒜1 ×𝒜2  is a completely 

factored arrangement via ⊴=⊴1×⊴2. ∎  

3.8. Corollary: 

Assume we have the conclusions of theorem (3.7.) and for 𝑖 = 1,2, let 𝜋𝑖 = (𝜋1
𝑖 , … , 𝜋ℓ

𝑖)  be the 

factorization on 𝒜𝑖 = {𝐻1
𝑖 , … , 𝐻𝑛𝑖

𝑖 }  with exponent vector 𝑑𝑖 = (𝑑1
𝑖 , . . . , 𝑑ℓ𝑖

𝑖 ) .  Then, for                            

1 ≤ 𝑘 ≤ ℓ =  ℓ1 + ℓ2 , 𝑁𝐵𝐶𝑘(𝒜1 ×𝒜2) = 𝑆𝑘(𝜋) and; 

|𝑁𝐵𝐶𝑘(𝒜1 ×𝒜2)| = ∑ ∑ …∑ 𝑑𝑖1𝑑𝑖2 …𝑑𝑖𝑘 =
ℓ
𝑖𝑘= 𝑖𝑘−1+1

ℓ−𝑘+1
𝑖2= 𝑖1+1

ℓ−𝑘
𝑖1=1

|𝑆𝑘(𝜋)|; 

where, for 1 ≤ 𝑗 ≤ ℓ1, 𝑑𝑗 = 𝑑𝑗
1 and ℓ1 + 1 ≤ 𝑗 ≤ ℓ1 + ℓ2, 𝑑𝑗 = 𝑑𝑗−ℓ2

2 . 

Proof: This is a direct result to theorem (3.7.). ∎ 

3.9. Corollary : 

Let 𝒜 = 𝒜1 ×𝒜2 be a reducible (ℓ1 + ℓ2)-arrangement into a product of ℓ1-arrangement 𝒜1 and                   

ℓ2-arrangement 𝒜2. Then, 𝒜 is a factored (ℓ1 + ℓ2)-arrangement that is not completely factored via any 

ordering can be defined on the hyperplanes of 𝒜 if, and only if, either 𝒜1 or 𝒜2 is not completely factored 

arrangement via any ordering on its hyperplanes.  

Proof: Firstly, assume 𝒜1 ×𝒜2 is not completely factored  (ℓ1 + ℓ2)-arrangement via any ordering can be 

defined on its hyperplanes. Recall construction (3.6.). So we need to prove, for 𝑖 = 1,2, 𝜋𝒜𝑖 is a factorization 

and either 𝒜1 or 𝒜2 is not completely factored via any ordering on its hyperplanes. Similar to our proof in 

theorem (3.7.), 𝜋  exhibits a factorization analogue of 𝜋𝒜1  and 𝜋𝒜2  on 𝒜1  and 𝒜2  respectively. By 

contrary, if we assume each of 𝒜1 and 𝒜2 is completely factored via ordering ⊴1 and ⊴2, respectively, then 

due to theorem (3.7.),  𝒜1 ×𝒜2 is completely factored via ⊴=⊴1×⊴2 which contradicts our assumption.     

Conversely, assume either 𝒜1 or 𝒜2 is a not completely factored arrangement via any ordering on its 

hyperplanes and without loss of generality, suppose that 𝒜1 is not completely factored via any ordering. Recall 

construction (2.9.) in order to construct a nice partition 𝜋1 = (𝜋1
1, … , 𝜋ℓ

1) and an ordering ⊴1 that emphasize 

the not completely factored fashion of 𝒜1, i.e. 𝑁𝐵𝐶𝑘  (𝒜1) ≠  𝑆𝑘 (𝜋
1), for some 1 ≤ 𝑘 ≤ ℓ1. Moreover, we 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.5, 2016 

 

55 

recall construction (3.1.) to obtain the partition 𝜋 = (𝜋1⨁ℂℓ2) ∪ (ℂℓ1⨁𝜋2) and the ordering ⊴=⊴1×⊴2. So, 

we wanted 𝜋 is nice and neither ⊴, nor any other ordering on the hyperplanes of 𝒜1 ×𝒜2 can produce a 

structure on 𝒜1 ×𝒜2 as a completely factored arrangement. From theorem (3.7.), 𝜋 is nice.  Furthermore, if 

we assume by contrary that 𝒜1 ×𝒜2 is completely factored via ⊴, then due to theorem (3.7.), each of 𝒜1 

and 𝒜2 is completely factored via the ordering ⊴1 and ⊴2 respectively, which contradicts our assumption 

that 𝒜1 is not completely factored via any ordering. Therefore, our claim is hold. ∎  

We mentioned that, the following result was firstly given in [7]  

3.10. Corollary: 

For 𝑖 = 1,2 , let 𝒜𝑖 = {𝐻1
𝑖 , … , 𝐻𝑛𝑖

𝑖 }  be an ℓ𝑖 -arrangement. Then, 𝒜1 ×𝒜2  is a factored                

ℓ1 + ℓ2-arrangement if, and only if, each of 𝒜1 and 𝒜2 is a factored arrangement.  

Proof: This is a direct result to construction (3.6.) and theorem (3.7.). ∎ 

3.11.  Proposition:  

Suppose we have the assumptions of the constructions (3.1.) and (3.6.). Then the acyclic broken circuit 

complexes (𝑵𝑩𝑪∗(𝒜1), 𝜕∗
𝑁𝐵𝐶(𝒜1))  and (𝑵𝑩𝑪∗(𝒜2), 𝜕∗

𝑁𝐵𝐶(𝒜2))  can be embedded of the O-S complex  

(𝑨∗(𝒜1 ×𝒜2), 𝜕∗
𝐴(𝒜1×𝒜2)). 

Proof: Due construction (3.1.), we can follow our claim as: 

1. For 1 ≤ 𝑘 ≤ ℓ1, the one to one mapping (inclusion); 

𝑗𝑘
𝑁𝐵𝐶(𝒜1): 𝑁𝐵𝐶𝑘(𝒜1) → 𝑁𝐵𝐶𝑘(𝒜1⨁ℂ

ℓ2); 

that defined as, 𝑗𝑘
𝑁𝐵𝐶(𝒜1)(𝐵1) = 𝐵1⨁ℂℓ2 , for 𝐵1 ∈ 𝑁𝐵𝐶𝑘(𝒜1) , embedding the broken circuit module 

𝑵𝑩𝑪𝑘(𝒜1)  of 𝑵𝑩𝑪𝑘(𝒜1 ×𝒜2)  by unique 𝐾 -monomorphism 𝒿𝑘
𝑵𝑩𝑪(𝒜1): 𝑵𝑩𝑪𝑘(𝒜1)  → 𝑵𝑩𝑪𝑘(𝒜1 ×𝒜2) 

that extends the following  assignment: 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the acyclic broken circuit complex (𝑵𝑩𝑪∗(𝒜1), 𝜕∗
𝑁𝐵𝐶(𝒜1)) can be embedded of the O-S complex  

(𝑨∗(𝒜1 ×𝒜2), 𝜕∗
𝐴(𝒜1×𝒜2)) by injective  𝐾-chain mapping; 

𝜓∗
𝒜1×𝒜2 ∘  𝒿∗

𝑵𝑩𝑪(𝒜1): (𝑵𝑩𝑪∗(𝒜1), 𝜕∗
𝑁𝐵𝐶(𝒜1)) → (𝑨∗(𝒜1 ×𝒜2), 𝜕∗

𝐴(𝒜1×𝒜2)). 

  

{𝑒𝐵1|𝐵
1 ∈ 𝑁𝐵𝐶𝑘(𝒜1)}

 𝒾𝑘
𝑁𝐵𝐶(𝒜1)  
→         𝑵𝑩𝑪𝑘(𝒜1) 

                           𝒿𝑘
𝑁𝐵𝐶(𝒜1)  

                            {𝑒𝐵1⨁ℂℓ2|𝐵
1 ∈ 𝑁𝐵𝐶𝑘(𝒜1)}       ∃!  𝒿𝑘

𝑵𝑩𝑪(𝒜1) 

                                𝒾𝑘
𝑁𝐵𝐶(𝒜1⨁ℂ

ℓ2)
                         𝒿𝑘

𝑵𝑩𝑪(𝒜1) 

                                 𝑵𝑩𝑪𝑘(𝒜1⨁ℂ
ℓ2) 

                                                        𝒾𝑘
𝑵𝑩𝑪(𝒜1⨁ℂ

ℓ2)
 

                                                𝑵𝑩𝑪𝑘(𝒜1 ×𝒜2) 
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2. For 1 ≤ 𝑘 ≤ ℓ2, the one to one mapping (inclusion), 𝑗𝑘
𝑁𝐵𝐶(𝒜2): 𝑁𝐵𝐶𝑘(𝒜2) → 𝑁𝐵𝐶𝑘(ℂ

ℓ1⨁𝒜2), defined as, 

𝑗𝑘
𝑁𝐵𝐶(𝒜2)(𝐵2) = ℂℓ1⨁𝐵2 , for 𝐵2 ∈ 𝑁𝐵𝐶𝑘(𝒜2) , embedding the broken circuit module 𝑵𝑩𝑪𝑘(𝒜2)  of 

𝑵𝑩𝑪𝑘(𝒜1 ×𝒜2)  by unique 𝐾 -monomorphism 𝒿𝑘
𝑵𝑩𝑪(𝒜2): 𝑵𝑩𝑪𝑘(𝒜2)  → 𝑵𝑩𝑪𝑘(𝒜1 ×𝒜2)  that extends 

the following  assignment: 

 

 

 

 

 

 

 

 

 

 

Therefore, the acyclic broken circuit complex (𝑵𝑩𝑪∗(𝒜2), 𝜕∗
𝑁𝐵𝐶(𝒜2)) can be embedded of the O-S complex  

(𝑨∗(𝒜1 ×𝒜2), 𝜕∗
𝐴(𝒜1×𝒜2)) by injective  𝐾-chain mapping; 

𝜓∗
𝒜1×𝒜2 ∘  𝒿∗

𝑵𝑩𝑪(𝒜2): (𝑵𝑩𝑪∗(𝒜2), 𝜕∗
𝑁𝐵𝐶(𝒜2)) → (𝑨∗(𝒜1 ×𝒜2), 𝜕∗

𝐴(𝒜1×𝒜2)). ∎ 

 

 

3.12. Theorem:  

Suppose we have the assumptions of the constructions (3.1.) and (3.6.). Then, the complexes; 

(𝑨∗(𝒜1 ×𝒜2), 𝜕∗
𝐴(𝒜1×𝒜2)), (𝑵𝑩𝑪∗(𝒜1 ×𝒜2), 𝜕∗

𝑁𝐵𝐶(𝒜1×𝒜2)) and 

(𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2) , 𝜕∗
𝑁𝐵𝐶(𝒜1)⨁𝑁𝐵𝐶(𝒜2))  are isomorphic, i.e.; 

𝑨∗(𝒜1 ×𝒜2) ≅ 𝑵𝑩𝑪∗(𝒜1 ×𝒜2) ≅ 𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2) =  ∑ ∑  
ℓ2

𝑘2=0

ℓ1

𝑘1=0⏟          
0≤𝑘1+𝑘2=𝑘≤ℓ1+ℓ2

𝑵𝑩𝑪𝑘1(𝒜1)⨁𝑵𝑩𝑪𝑘2(𝒜2)  

where 𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2) is the external direct sum of  𝑵𝑩𝑪∗(𝒜1) and 𝑵𝑩𝑪∗(𝒜2). 

Proof: Indeed, for 1 ≤ 𝑘 ≤ ℓ1 + ℓ2, if 𝐵1 ∈ 𝑁𝐵𝐶𝑘1(𝒜1) and 𝐵2 ∈ 𝑁𝐵𝐶𝑘2(𝒜2), for some 1 ≤ 𝑘1 ≤ ℓ1  and 

1 ≤ 𝑘2 ≤ ℓ2  such that 𝑘1 + 𝑘2 = 𝑘 , then, 𝑒𝐵1×𝐵2 = 𝑒𝐵1⨁ℂℓ2𝑒ℂℓ1⨁𝐵2 ∈ 𝐸𝑘(𝒜1 ×𝒜2)  is a homogeneous 

monomial of degree 𝑘. Furthermore, due to construction (3.1.), for 0 < 𝑘 ≤ ℓ1 + ℓ2;  

𝑵𝑩𝑪𝑘(𝒜1 ×𝒜2) = ⟨𝑒𝐵1×𝐵2 ,        

𝐵1 ∈ 𝑁𝐵𝐶𝑘1(𝒜1),   0 ≤ 𝑘1 ≤ ℓ1

𝐵2 ∈ 𝑁𝐵𝐶𝑘2(𝒜2),   0 ≤ 𝑘2 ≤ ℓ2
𝑘1 + 𝑘2 = 𝑘

⟩. 

Accordingly, for 1 ≤ 𝑘 ≤ ℓ1 + ℓ2, the external direct sum; 

(𝑵𝑩𝑪(𝒜1)⨁𝑵𝑩𝑪(𝒜2))𝒌 =
∑ 𝑵𝑩𝑪𝑘1(𝒜1)⨁𝑵𝑩𝑪𝑘2(𝒜2)0≤𝑘1≤ℓ1
0≤𝑘2≤ℓ2
𝑘1+𝑘2=𝑘

; 

 can be embedded of 𝑵𝑩𝑪𝑘(𝒜1 ×𝒜2) as the internal direct sum; 

{𝑒𝐵2|𝐵
2 ∈ 𝑁𝐵𝐶𝑘(𝒜2)}

 𝒾𝑘
𝑁𝐵𝐶(𝒜2)  
→       𝑵𝑩𝑪𝑘(𝒜2) 

                            𝒿𝑘
𝑁𝐵𝐶(𝒜2)                                        

                                     {𝑒ℂℓ1⨁𝐵2|𝐵
2 ∈ 𝑁𝐵𝐶𝑘(𝒜2)}      ∃!  𝒿𝑘

𝑵𝑩𝑪(𝒜2) 

                                 𝒾𝑘
𝑁𝐵𝐶(ℂℓ1⨁𝒜2)

                             𝒿𝑘
𝑵𝑩𝑪(𝒜2) 

                                                    𝑵𝑩𝑪𝑘(ℂ
ℓ1⨁𝒜2) 

                                                           𝒾𝑘
𝑵𝑩𝑪(ℂℓ1⨁𝒜2)

 

                                                    𝑵𝑩𝑪𝑘(𝒜1 ×𝒜2) 
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∑ 𝑵𝑩𝑪𝑘1(𝒜1⨁ℂ
ℓ2)⨁𝑵𝑩𝑪𝑘2(ℂ

ℓ1⨁𝒜2)0≤𝑘1≤ℓ1
0≤𝑘2≤ℓ2
𝑘1+𝑘2=𝑘

 by a 𝐾-isomorphism; 

𝒿𝑘
𝑵𝑩𝑪(𝒜1)⨁𝑵𝑩𝑪(𝒜2): (𝑵𝑩𝑪(𝒜1)⨁𝑵𝑩𝑪(𝒜2))𝒌  → 𝑵𝑩𝑪𝑘

(𝒜1 ×𝒜2); 

defined as follows; 

𝒿𝑘
𝑵𝑩𝑪(𝒜1)⨁𝑵𝑩𝑪(𝒜2) (𝑒𝐵1 , 𝑒∅ℓ2) = 𝑒𝐵1⨁ℂℓ2 , for 𝐵1 ∈ 𝑁𝐵𝐶𝑘(𝒜1); 

𝒿𝑘
𝑵𝑩𝑪(𝒜1)⨁𝑵𝑩𝑪(𝒜2) (𝑒∅ℓ1 , 𝑒𝐵

2) = 𝑒ℂℓ1⨁𝐵2, for 𝐵2 ∈ 𝑁𝐵𝐶𝑘(𝒜2) and; 

𝒿𝑘
𝑵𝑩𝑪(𝒜1)⨁𝑵𝑩𝑪(𝒜2)(𝑒𝐵1 , 𝑒𝐵2) = 𝑒𝐵1⨁ℂℓ2𝑒ℂℓ1⨁𝐵2 = 𝑒𝐵1×𝐵2 , for 𝐵1 ∈ 𝑁𝐵𝐶𝑘1(𝒜1), 𝐵

2 ∈ 𝑁𝐵𝐶𝑘2(𝒜2) and 

𝑘1 + 𝑘2 = 𝑘. 

Therefore, the complex (𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2) , 𝜕∗
𝑁𝐵𝐶(𝒜1)⨁𝑁𝐵𝐶(𝒜2))  is isomorphic to the O-S complex  

(𝑨∗(𝒜1 ×𝒜2), 𝜕∗
𝐴(𝒜1×𝒜2)) by the 𝐾-chain isomorphism mapping; 

𝜓∗
𝒜1×𝒜2 ∘  𝒿∗

𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2): 𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2) → 𝑨∗(𝒜1 ×𝒜2). ∎ 

 

 

3.13. Proposition:  

Suppose we have the assumptions of the constructions (3.1.) and (3.6.). Then the acyclic partition 

complexes ((𝜋1)∗, 𝜕∗
𝜋1) and ((𝜋2)∗, 𝜕∗

𝜋2) can be embedded of the partition complex ((𝜋1 × 𝜋2)∗, 𝜕∗
𝜋1×𝜋2). 

Proof: Suppose we have the assumptions of construction (3.1.). Then: 

1. For 1 ≤ 𝑘 ≤ ℓ1 , the one to one mapping (inclusion) 𝑗𝑘
𝑆(𝜋1)

: 𝑆𝑘(𝜋
1) → 𝑆𝑘(𝜋

1 × 𝜋2) , that defined as, 

𝑗𝑘
𝑆(𝜋1)(𝐶1) = 𝐶1⨁ℂℓ2, for 𝐶1 ∈ 𝑆𝑘(𝜋

1), embedding the partition module     (𝜋1)𝑘     of     (𝜋1 × 𝜋2)𝑘   by the 

unique 𝐾- linear monomorphism 𝒿𝑘
(𝜋1)
:     (𝜋1)𝑘  →     (𝜋

1 × 𝜋2)𝑘 that extends the following  assignments: 

 

 

 

 

 

 

 

 

 

 

   

  

                   {𝑒𝐶1|𝐶1 ∈ 𝑆𝑘(𝜋1)}
          𝒾𝑘

(𝜋1)
       

→         (𝜋1)𝑘 

                              𝒿𝑘
𝑆(𝜋1)

                                        

                                     {𝑒𝐶1⨁ℂℓ2|𝐶
1 ∈ 𝑆𝑘(𝜋

1)}    ∃!  𝒿𝑘
(𝜋1)

 

                                       𝒾𝑘
(𝜋1⨁ℂℓ2)

                       𝒿𝑘
(𝜋1)

 

                                                   (𝜋1⨁ℂℓ2)
𝑘
 

                                                         𝒾𝑘
(𝜋1⨁ℂℓ2)

 

                                                  (𝜋1 × 𝜋2)𝑘 
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2. For 1 ≤ 𝑘 ≤ ℓ2, the one to one correspondence, 𝑗𝑘
𝑆(𝜋2)

: 𝑆𝑘(𝜋
2) → 𝑆𝑘(𝜋

1 × 𝜋2) that defined as, 𝑗𝑘
𝑆(𝜋2)(𝐶2) =

ℂℓ2⨁𝐶2, for 𝐶2 ∈ 𝑆𝑘(𝜋
2), embedding the partition module  (𝜋2)𝑘 of  (𝜋1 × 𝜋2)𝑘  by the unique 𝐾- linear 

monomorphism 𝒿𝑘
(𝜋2)
:     (𝜋2)𝑘  → (𝜋

1 × 𝜋2)𝑘 that extends the following assignments: 

 

 

 

 

 

 

 

 

 

 

     

∎ 

3.14. Theorem:  

Suppose we have the assumptions of construction (3.1.). Then; 

(𝜋1 × 𝜋2)∗ ≅ (𝜋
1)∗⨂(𝜋

2)∗ = ∑ ((𝜋1)⨂(𝜋2))
𝑘0≤𝑘≤ℓ1+ℓ2 = ∑ ∑  

ℓ2
𝑘2=0

ℓ1
𝑘1=0⏟        

0≤𝑘1+𝑘2=𝑘≤ℓ1+ℓ2

(𝜋1)𝑘1⨂(𝜋
2)𝑘2; 

i.e. the chain complexes ((𝜋1)∗⨂(𝜋
2)∗, 𝜕∗

(𝜋1)⨂(𝜋2)
) and ((𝜋1 × 𝜋2)∗, 𝜕∗

𝜋1×𝜋2) are isomorphic. 

Proof: We are emphasizing that, for 1 ≤ 𝑘 ≤ ℓ1 + ℓ2, if 𝐶1 ∈ 𝑆𝑘1(𝜋
1) and 𝐶2 ∈ 𝑆𝑘2(𝜋

2), for some 1 ≤ 𝑘1 ≤

ℓ1 and 1 ≤ 𝑘2 ≤ ℓ2 such that 𝑘1 + 𝑘2 = 𝑘, then; 

1. 𝑞𝐶1⨁ℂℓ2  and 𝑞𝐶1⨂𝑞∅ℓ2  are homogeneous tensors with degree 𝑘1  of (𝜋1 × 𝜋2)𝑘1  and ((𝜋1)⨂(𝜋2))
𝑘1

 

respectively. 

2. 𝑞ℂℓ1⨁𝐶2  and  𝑞∅ℓ1⨂𝑞𝐶
2  are homogeneous tensors with degree 𝑘2  of (𝜋1 × 𝜋2) 𝑘2  and ((𝜋1)⨂(𝜋2))

𝑘2
 

respectively. 

3. 𝑞𝐶1×𝐶2  and  𝑞𝐶1⨂𝑞𝐶2  are homogeneous tensors with degree 𝑘  of (𝜋1 × 𝜋2)𝑘  and ((𝜋1)⨂(𝜋2))
𝑘
 

respectively. 

Furthermore, for 0 ≤ 𝑘 ≤ ℓ1 + ℓ2; (𝜋
1 × 𝜋2)𝑘 = ⟨𝑞𝐶1×𝐶2 ,        

𝐶1 ∈ 𝑆𝑘1(𝜋
1),   0 ≤ 𝑘1 ≤ ℓ1

𝐶2 ∈ 𝑆𝑘2(𝜋
2),   0 ≤ 𝑘2 ≤ ℓ2

𝑘1 + 𝑘2 = 𝑘

⟩. 

Therefore, for 1 ≤ 𝑘 ≤ ℓ1 + ℓ2, the 𝑘𝑡ℎ tensor product  ((𝜋1)⨂(𝜋2))
𝑘

 is isomorphic to (𝜋1 × 𝜋2)𝑘 by a 

𝐾-isomorphism, 𝒿𝑘
(𝜋1)⨂(𝜋2)

: ((𝜋1)⨂(𝜋2))
𝑘
 → (𝜋1 × 𝜋2)𝑘 defined as follows; 

𝒿𝑘
(𝜋1)⨂(𝜋2)

( 𝑞𝐶1⨂𝑞∅ℓ2) = 𝑞𝐶1⨁ℂℓ2 , for 𝐶1 ∈ 𝑆𝑘(𝜋
1) ; 

     {𝑒2|𝐶
2 ∈ 𝑆𝑘(𝜋

2)}
 𝒾𝑘
(𝜋2)

  
→        (𝜋2)𝑘 

                                           𝒿𝑘
𝑆𝑘(𝜋

2)
                                        

                                            {𝑒ℂℓ2⨁𝐶2|𝐶
2 ∈ 𝑆𝑘(𝜋

2)   ∃!  𝒿𝑘
(𝜋2)

 

                                                 𝒾𝑘
(𝜋2⨁ℂℓ2)

                   𝒿𝑘
(𝜋2)

 

                                                              (𝜋2⨁ℂℓ2)
𝑘
 

                                               𝒾𝑘
(𝜋2⨁ℂℓ2)

 

                                                           (𝜋1 × 𝜋2)𝑘  
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𝒿𝑘
(𝜋1)⨂(𝜋2)

(𝑞∅ℓ1⨂𝑞𝐶
2) = 𝑞ℂℓ1⨁𝐶2, for 𝐶2 ∈ 𝑆𝑘(𝜋

2) and; 

𝒿𝑘
(𝜋1)⨂(𝜋2)

(𝑞𝐶1⨂𝑞𝐶2) = 𝑞𝐶1×𝐶2, for 𝐶1 ∈ 𝑆𝑘1(𝜋
1),   𝐶2 ∈ 𝑆𝑘2(𝜋

2) and  𝑘1 + 𝑘2 = 𝑘. 

Therefore, the chain complexes ((𝜋1)∗⨂(𝜋
2)∗, 𝜕∗

(𝜋1)⨂(𝜋2)
) and ((𝜋1 × 𝜋2)∗, 𝜕∗

𝜋1×𝜋2) are isomorphic by the 

bijective 𝐾-chain mapping 𝒿∗
(𝜋1)⨂(𝜋2)

: (𝜋1)∗⨂(𝜋
2)∗ → (𝜋

1 × 𝜋2)∗.∎ 

3.15.  Construction:  

Let 𝒜 = 𝒜1 ×𝒜2  be a completely factored (ℓ1 + ℓ2) -arrangement of ℓ1 -arrangement 𝒜1  and 

ℓ2-arrangement 𝒜2. According to theorem (3.7.), each of 𝒜1 and 𝒜2are completely factored. So, for 𝑖 = 1,2, 

let 𝜋𝑖  be the factorization of  𝒜𝑖  and let ⊴𝑖  be an ordering defined on its hyperplanes such that 𝒜𝑖  is 

completely factored, i.e. 𝑁𝐵𝐶𝑘(𝒜𝑖  ) =  𝑆𝑘 (𝜋
𝑖), via the ordering ⊴𝑖  that given in construction (2.1.10), for all 

1 ≤ 𝑘 ≤ ℓ𝑖. Recall the constructions (2.7.) and (3.1.), so we have the following 𝐾-chain isomorphism's between 

acyclic chain complexes; 

 ℐ∗
1: (𝜋1)∗ → 𝑵𝑩𝑪∗(𝒜1). 

 ℐ∗
2: (𝜋2)∗ → 𝑵𝑩𝑪∗(𝒜2). 

 ℐ∗
1×2: (𝜋1 × 𝜋2)∗ → 𝑵𝑩𝑪∗(𝒜1 ×𝒜2). 

 𝜏∗ =  𝒿∗
𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2)

−1
∘ ℐ∗
1×2 ∘ 𝒿∗

(𝜋1)⨂(𝜋2)
: (𝜋1)∗⨂(𝜋

2)∗ → 𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2). 

 𝜅∗ = 𝜓∗
𝒜1×𝒜2 ∘  𝒿∗

𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2): 𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2) → 𝑨∗(𝒜1 ×𝒜2). 

 𝜌∗ = (𝜅∗ ∘ 𝜏∗)
−1: 𝑨∗(𝒜1 ×𝒜2) → (𝜋

1)∗⨂(𝜋
2)∗ 

3.16.  Construction:  

Let 𝒜 = 𝒜1 ×𝒜2  be a factored (ℓ1 + ℓ2)-arrangement of ℓ1 -arrangement 𝒜1  and ℓ2 -arrangement 

𝒜2 that is not completely factored. Without loss of generality assume that each of 𝒜1 and 𝒜2are not completely 

factored arrangements via any ordering. So, for 𝑖 = 1,2, let 𝜋𝑖 be the factorization of  𝒜𝑖 and let ⊴𝑖 be any 

ordering defined on the hyperplanes of 𝒜𝑖, i.e. 𝑁𝐵𝐶𝑘(𝒜𝑖  ) ≠  𝑆𝑘 (𝜋
𝑖), via ⊴𝑖 for all 1 ≤ 𝑘 ≤ ℓ𝑖.  Recall the 

constructions (2.16) and (3.1.), so we have the following 𝐾 -chain isomorphism's between acyclic chain 

complexes; 

 ℊ∗
1: (𝜋1)∗ → 𝑵𝑩𝑪∗(𝒜1) and 𝒻∗

1: 𝑵𝑩𝑪∗(𝒜1) → (𝜋
1)∗. 

 ℊ∗
2: (𝜋2)∗ → 𝑵𝑩𝑪∗(𝒜2) and 𝒻∗

2: 𝑵𝑩𝑪∗(𝒜2) → (𝜋
2)∗. 

 ℊ∗
1×2: (𝜋1 × 𝜋2)∗ → 𝑵𝑩𝑪∗(𝒜1 ×𝒜2) and 𝒻∗

1×2: 𝑵𝑩𝑪∗(𝒜1 ×𝒜2) → (𝜋
1 × 𝜋2)∗. 

 𝜏∗ =  𝒿∗
𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2)

−1
∘ ℊ∗

1×2 ∘ 𝒿∗
(𝜋1)⨂(𝜋2)

: (𝜋1)∗⨂(𝜋
2)∗ → 𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2). 

 𝜅∗ = 𝜓∗
𝒜1×𝒜2 ∘  𝒿∗

𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2): 𝑵𝑩𝑪∗(𝒜1)⨁𝑵𝑩𝑪∗(𝒜2) → 𝑨∗(𝒜1 ×𝒜2). 

 𝜌∗ = (𝜅∗ ∘ 𝜏∗)
−1: 𝑨∗(𝒜1 ×𝒜2) → (𝜋

1)∗⨂(𝜋
2)∗. 

4. Illustrations  

In this section, we will demonstrate our work by the following examples: 

4.1. Corollary:  

If 𝒜 = ∏ 𝒜𝑖
ℓ
𝑖=1  is a reducible 2ℓ-arrangement such that 𝑟𝑘(𝒜𝑖) = 2 for each 1 ≤ 𝑖 ≤ ℓ, then 𝒜 is 

completely factored via an ordering defined on its hyperplanes and  𝑁𝐵𝐶(∏ 𝒜𝑖
ℓ
𝑖=1  ) =  𝑆(∏ 𝜋𝑖ℓ

𝑖=1 )  and 

𝑨∗(𝒜) = 𝑨∗(∏ 𝒜𝑖
ℓ
𝑖=1 ) ≅ ∑ 𝑵𝑩𝑪∗(𝒜𝑖)

ℓ
𝑖=0 ≅⊗𝑖=1

ℓ (𝜋𝑖)∗. 
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Proof: For 1 ≤ 𝑖 ≤ ℓ , 𝒜𝑖 = {𝐻1
𝑖 , … , 𝐻𝑛𝑖

𝑖 }  is a 2-arrangement, hence it is a factored arrangement with 

factorization 𝜋𝑖 = ({𝐻1
𝑖}, {𝐻2

𝑖 , … , 𝐻𝑛𝑖
𝑖 }) with exponent vector 𝑑𝑖 = (1, 𝑛𝑖 − 1). Via this ordering given on the 

hyperplanes of 𝒜𝑖 , the arrangement 𝒜𝑖  will be completely factored arrangement since it is satisfied 

𝑁𝐵𝐶 (𝒜𝑖) =  𝑆(𝜋
𝑖). By applying theorem (3.7.) inductively, we will be hold of 𝒜 = ∏ 𝒜𝑖

ℓ
𝑖=1  is a completely 

factored arrangement with factorization, 𝜋 = ∏ 𝜋𝑖ℓ
𝑖=1 = (𝜋1⨁ℂ2ℓ−2, ℂ2⨁𝜋2⨁ℂ2ℓ−4, … , ℂ2ℓ−2⨁𝜋ℓ), where for 

1 ≤ 𝑖 ≤ ℓ; 

ℂ2𝑖−2⨁𝜋𝑖⨁ℂ2ℓ−2𝑖 = (
{ℂ2𝑖−2⨁𝐻1

𝑖⨁ℂ2ℓ−2𝑖},

{ℂ2𝑖−2⨁𝐻2
𝑖⨁ℂ2ℓ−2𝑖 , … , ℂ2𝑖−2⨁𝐻𝑛𝑖

𝑖 ⨁ℂ2ℓ−2𝑖}
); 

with exponent vector is 𝑑 = (1, 𝑛1 − 1,1, 𝑛2 − 1,… ,1, 𝑛ℓ − 1) and it is satisfied 𝑁𝐵𝐶 (𝒜) =  𝑆(𝜋) and due 

construction (3.15) our claim is hold.  ∎ 

4.2. Corollary:  

If 𝒜 = ∏ 𝒜𝑖
𝑛
𝑖=1  is a reducible arrangement such that 𝑟𝑘(𝒜𝑖) = 1 or 2 for each 1 ≤ 𝑖 ≤ 𝑛, then 𝒜 is 

a completely factored arrangement via an ordering defined on its hyperplanes and; 

𝑨∗(𝒜) = 𝑨∗(∏ 𝒜𝑖
ℓ
𝑖=1 ) ≅⊕𝑖=1

ℓ  𝑵𝑩𝑪∗(𝒜𝑖) ≅⊗𝑖=1
ℓ (𝜋𝑖)∗. 

Proof: We claim that if 𝒜𝑖 is a 1-arrangement for some 1 ≤ 𝑖 ≤ 𝑛, then 𝒜𝑖 can considered to be completely 

factored arrangement.  Indeed, 𝑄(𝒜𝑖) = 𝑥 and its factorization assumed to be 𝜋𝑖 = ({𝐻1
𝑖}) with exponent 

vector 𝑑𝑖 = (1) , where 𝐻1
+𝑖 = 𝑘𝑒𝑟(𝑥) . As well as if 𝒜𝑖 = {𝐻1

𝑖 , … , 𝐻𝑛𝑖
𝑖 }  is a 2-arrangement for some 

1 ≤ 𝑖 ≤ 𝑛, then it is a completely factored arrangement with factorization 𝜋𝑖 = ({𝐻1
𝑖}, {𝐻2

𝑖 , … , 𝐻𝑛𝑖
𝑖 }) with 

exponent vector 𝑑𝑖 = (1, 𝑛𝑖 − 1) as we explained in proof of corollary (4.1.). By applying theorem (3.7.) 

inductively, we will be hold of 𝒜 = ∏ 𝒜𝑖
ℓ
𝑖=1  is a completely factored arrangement. Due construction (3.15.), 

the proof is complete. ∎ 

4.3. Corollary:  

Every reducible 3-arrangement is a completely factored arrangement via an ordering defined on its 

hyperplanes. 

Proof: It is clear that, if 𝒜 is reducible 3-arrangement such that  𝒜 = 𝒜1 ×𝒜2 ×𝒜3 is a product of three 

1-arrangements 𝒜1 , 𝒜2  and 𝒜3 , then 𝒜  is a Boolean 3-arrangement which is a completely factored 

arrangement as we claimed. On the other hand, if 𝒜 = 𝒜1 ×𝒜2  is a product of two arrangements 𝒜1 and 

𝒜2 of ranks such that 𝑟𝑘(𝒜𝑖) = 1 or 2, then as a direct application of corollary (4.2)  𝒜 is a completely 

factored arrangement. This is our claim. ∎ 

4.4. Corollary:  

If 𝒜 = ∏ 𝒜𝑘
ℓ
𝑖=1  is a reducible arrangement such that each of 𝒜𝑘 is the complexification Coxeter 

arrangement, either of type (𝐴𝑛 , 𝑛 ≥ 3) or (𝐵𝑛 ;   𝑛 ≥ 3) for each 1 ≤ 𝑘 ≤ ℓ, then 𝒜 is a completely factored 

arrangement via an ordering defined on its hyperplanes and; 

𝑨∗(𝒜) = 𝑨∗(∏ 𝒜𝑖
ℓ
𝑖=1 ) ≅⊕𝑖=1

ℓ  𝑵𝑩𝑪∗(𝒜𝑖) ≅⊗𝑖=1
ℓ (𝜋𝑖)∗. 

Proof: Recalling, the defining polynomial of a Coxeter arrangement of type (𝐴𝑛 , 𝑛 ≥ 3) or (𝐵𝑛 ;   𝑛 ≥ 3) and 

its factorization from [2];      

 By the complexification of Coxeter arrangement of type 𝐴𝑛 , we mean the Braid arrangement         

𝒜𝑘 = 𝒜(𝐴𝑛) = {𝐻𝑖−𝑗|1 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1}   of ℂ𝑛+1 , where, 𝐻𝑖−𝑗 = {(𝑥1, … , 𝑥𝑛+1)| 𝑥𝑖 = 𝑥𝑗} , 

1 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1, i.e. its defaning polynomial is; 𝑄(𝒜(𝐴𝑛)) = ∏ (𝑥𝑖 − 𝑥𝑗)1≤𝑖<𝑗 ≤𝑛+1 . It is known that, 

𝒜(𝐴𝑛)  is a non-essential supersolvable arrangement contain 
𝑛(𝑛−1)

2
 hyperplanes and it has a 

factorization, 𝜋𝒜(𝐴𝑛) = ({𝐻1−2}, {𝐻1−3, 𝐻2−3}, … , {𝐻1−(𝑛+1), … , 𝐻(𝑛)−(𝑛+1)})  with exponent vector 

𝑑𝑘 = (𝑑1, … , 𝑑𝑛), = (1,2, … , 𝑛). Thus, we have 𝑁𝐵𝐶(𝒜(𝐴𝑛)) ≡ 𝑆𝜋(𝒜(𝐴𝑛)), via the ordering defined on 

the hyperplanes of 𝒜(𝐴𝑛) as given in construction (2.1.), i.e.; 
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𝜋𝑘 = 𝜋𝒜(𝐴𝑛) = ({𝐻1
𝑘}, {𝐻2

𝑘 , 𝐻3
𝑘}, … . {𝐻

(𝑛
(𝑛−1)
2 −𝑛)

𝑘 , … , 𝐻
(
𝑛(𝑛−1)

2
)

𝑘 }); 

where, 𝐻𝑗
𝑘  is the 𝑗𝑡ℎ hyperplane of 𝒜(𝐴𝑛), 1 ≤ 𝑗 ≤

𝑛(𝑛−1)

2
. 

 By the complexification of Coxeter arrangement of type 𝐵𝑛, we mean the arrangement; 

𝒜𝑘 = 𝒜(𝐵𝑛) = {𝐻𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝐻𝑖−𝑗|1 ≤ 𝑖 < 𝑗 ≤ 𝑛} ∪ {𝐻𝑖+𝑗|1 ≤ 𝑖 < 𝑗 ≤ 𝑛}  of ℂ𝑛, where; 

𝐻𝑖 = {(𝑥1, … , 𝑥𝑛+1)| 𝑥𝑖 = 0}, 1 ≤ 𝑖 ≤ 𝑛;  

𝐻𝑖−𝑗 = {(𝑥1, … , 𝑥𝑛+1)| 𝑥𝑖 = 𝑥𝑗}, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛;  

𝐻𝑖+𝑗 = {(𝑥1, … , 𝑥𝑛+1)| 𝑥𝑖 = −𝑥𝑗}, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛;  

i.e. its defaning polynomial is,  𝑄(𝒜(𝐵𝑛)) = 𝑥1𝑥2…𝑥𝑛∏ (𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 + 𝑥𝑗)1≤𝑖<𝑗 ≤𝑛 . Its known that, 

𝒜(𝐵𝑛) is an essential supersolvable arrangement contained 𝑛2 hyperplanes  and it has a factorization; 

π𝒜(𝐵𝑛) = (
{𝐻1}, {𝐻2, 𝐻1−2, 𝐻1+2}, {𝐻3, 𝐻1−3, 𝐻1+3, 𝐻2−3, 𝐻2+3}, … ,

{𝐻(𝑛), 𝐻1−(𝑛), 𝐻1+(𝑛), 𝐻2−(𝑛), 𝐻2+(𝑛), … , 𝐻(𝑛−1)−(𝑛), 𝐻(𝑛−1)+(𝑛)}
); 

with exponent vector 𝑑𝑘 = (𝑑1, … , 𝑑𝑛), = (1,3,5, … ,2𝑛 − 1) . Thus, we have              

𝑁𝐵𝐶(𝒜(𝐵𝑛)) ≡ 𝑆𝜋(𝒜(𝐵𝑛)), via the ordered that defined on the hyperplanes of  𝒜(𝐵𝑛)as given in 

construction (2.1.), i.e. π𝑘 = π𝒜(𝐵𝑛) = ({𝐻1
𝑘}, {𝐻2

𝑘 , 𝐻3
𝑘 , 𝐻4

𝑘}, … , {𝐻𝑛2−2𝑛+1
𝑘 , … , 𝐻𝑛2

𝑘 }), where, 𝐻𝑗
𝑘  is the 

𝑗𝑡ℎ hyperplane of 𝒜(𝐵𝑛), 1 ≤ 𝑗 ≤ 𝑛
2. 

Now, without loss of generality assume ℓ = 2, i.e. 𝒜 = 𝒜1 ×𝒜2. As a direct application of theorem (3.7.), we 

have the following:  

i. If 𝒜1  and 𝒜2  of type 𝐴𝑛1  and 𝐴𝑛2  respectively, then 𝒜 = 𝒜1 ×𝒜2  is a completely factored 

arrangement with factorization; 

𝜋 = 𝜋1 × 𝜋2 = (𝜋1⨁ℂ𝑛2) ∪ (ℂ𝑛1⨁𝜋2)

=

(

 
 
{𝐻1

1⨁ℂ𝑛2}, {𝐻2
1⨁ℂ𝑛2 , 𝐻3

1⨁ℂ𝑛2}, … , {𝐻
(
𝑛1(𝑛1−1)

2 −𝑛1)

1 ⨁ℂ𝑛2 , … , 𝐻
(
𝑛1(𝑛1−1)

2
)

1 ⨁ℂ𝑛2} ,

{ℂ𝑛1⨁𝐻1
2}, {ℂ𝑛1⨁𝐻2

2, ℂ𝑛1⨁𝐻3
2}, … , {ℂ𝑛1⨁𝐻

(
𝑛2(𝑛2−1)

2 −𝑛2)

2 , … , ℂ𝑛1⨁𝐻
(
𝑛2(𝑛2−1)

2
)

2 }
)

 
 

 

and exponent vector 𝑑 = (1,2, … , 𝑛1, 1,2, … , 𝑛2) and length ℓ(𝜋) = 𝑛1 + 𝑛2. 

ii. If 𝒜1  and 𝒜2  of type 𝐴𝑛1  and 𝐵𝑛2  respectively, then 𝒜 = 𝒜1 ×𝒜2  is a completely factored 

arrangement with factorization; 

𝜋 = 𝜋1 × 𝜋2 = (𝜋1⨁ℂ𝑛2) ∪ (ℂ𝑛1⨁𝜋2)

= (
{𝐻1

1⨁ℂ𝑛2}, {𝐻2
1⨁ℂ𝑛2 , 𝐻3

1⨁ℂ𝑛2}, … , {𝐻
(
𝑛1(𝑛1−1)

2
−𝑛1)

1 ⨁ℂ𝑛2 , … , 𝐻
(
𝑛1(𝑛1−1)

2
)

1 ⨁ℂ𝑛2} ,

{ℂ𝑛1⨁𝐻1
2}, {ℂ𝑛1⨁𝐻2

2, ℂ𝑛1⨁𝐻3
2, ℂ𝑛1⨁𝐻4

2}, … , {ℂ𝑛1⨁𝐻(𝑛2)2−2𝑛2+1
2 , … , ℂ𝑛1⨁𝐻(𝑛2)2

2 }

) 

and exponent vector 𝑑 = (1,2, … , 𝑛1, 1,3, … , 2𝑛2 − 1) and length ℓ(𝜋) = 𝑛1 + 𝑛2. 

iii. If 𝒜1  and 𝒜2  of type 𝐵𝑛1  and 𝐵𝑛2  respectively, then 𝒜 = 𝒜1 ×𝒜2  is a completely factored 

arrangement with factorization; 

𝜋 = 𝜋1 × 𝜋2 = (𝜋1⨁ℂ𝑛2) ∪ (ℂ𝑛1⨁𝜋2)

= (
{𝐻1

1⨁ℂ𝑛2}, {𝐻2
1⨁ℂ𝑛2 , 𝐻3

1⨁ℂ𝑛2 , 𝐻4
1⨁ℂ𝑛2}, … , {𝐻(𝑛1)2−2𝑛1+1

1 ⨁ℂ𝑛2 , … , 𝐻(𝑛1)2
1 ⨁ℂ𝑛2} ,

{ℂ𝑛1⨁𝐻1
2}, {ℂ𝑛1⨁𝐻2

2, ℂ𝑛1⨁𝐻3
2, ℂ𝑛1⨁𝐻4

2}, … , {ℂ𝑛1⨁𝐻(𝑛2)2−2𝑛2+1
2 , … , ℂ𝑛1⨁𝐻(𝑛2)2

2 }
) 

and exponent vector 𝑑𝑘 = (1,3, … ,2𝑛1 − 1,1,3, … , 2𝑛2 − 1) and length ℓ(𝜋) = 𝑛1 + 𝑛2. ∎ 

 

4.5. Example:  

Let 𝒜 = {𝐻1 , … , 𝐻7} be a 3-arrangemant that has the defining polynomial; 
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𝑄(𝒜) =  𝑥1𝑥2𝑥3(𝑥1 + 𝑥2 + 𝑥3)(𝑥1 + 𝑥2 − 𝑥3)(𝑥1 − 𝑥2 + 𝑥3)(𝑥1 − 𝑥2−𝑥3). 

Via the ordering that given on the one degree polynomials of 𝑄(𝒜), put; 

𝐻𝑖
′ = 𝐾𝑒𝑟(𝛼𝐻𝑖) = {(𝑥1, 𝑥2, 𝑥3) ∈|𝛼𝐻𝑖

′(𝑥1, 𝑥2, 𝑥3) = 0}  ,   1 ≤ 𝑖 ≤ 7. 

Deduce that the partition 𝜋 = (𝜋1, 𝜋2, 𝜋3) = ({𝐻3
′ }, {𝐻1

′ , 𝐻6
′ , 𝐻7

′ }, {𝐻2
′ , 𝐻4

′ , 𝐻5
′ })  of 𝒜  is a factorization that 

inherits 𝒜 a structure as a factored arrangement. In fact, every 3-section of 𝜋 is independent. Then 𝜋 is 

independent and for each 𝑋 ∈ 𝐿(𝒜), there is a singleton block of 𝒜𝑋.  Now, we reordered the hyperplanes of 

𝒜 by using the order given in construction (2.9.). Thus; 

𝜋 = (𝜋1, 𝜋2, 𝜋3) = ({𝐻1}, {𝐻2, 𝐻3, 𝐻4}, {𝐻5, 𝐻6, 𝐻7}); 

such that, 𝐻1 = 𝑘𝑒𝑟(𝑥3) , 𝐻2 = 𝑘𝑒𝑟(𝑥1) , 𝐻3 = 𝑘𝑒𝑟(𝑥1 − 𝑥2 + 𝑥3) , 𝐻4 = 𝑘𝑒𝑟(𝑥1 − 𝑥2 − 𝑥3) ,             

𝐻5 = 𝑘𝑒𝑟(𝑥2), 𝐻6 = 𝑘𝑒𝑟(𝑥1 + 𝑥2 + 𝑥3) and 𝐻7 = 𝑘𝑒𝑟(𝑥1 + 𝑥2 − 𝑥3) and via this order we have; 

𝑁𝐵𝐶0(𝒜) = {ℂ
3}, 𝑁𝐵𝐶1(𝒜) = {{𝐻1}, {𝐻2}, {𝐻3}, {𝐻4}, {𝐻5}, {𝐻6}, {𝐻7}}; 

𝑁𝐵𝐶2(𝒜) = {{𝐻1, 𝐻2}, {𝐻1 , 𝐻3}, {𝐻1, 𝐻4}, {𝐻1, 𝐻5}, {𝐻1, 𝐻6}, {𝐻1, 𝐻7}, 

{𝐻2, 𝐻3}, {𝐻2, 𝐻4}, {𝐻2, 𝐻5}, {𝐻2, 𝐻6},{𝐻2, 𝐻7}, {𝐻3, 𝐻5}, {𝐻3, 𝐻6}, {𝐻4, 𝐻5},{𝐻4, 𝐻7}}; 

𝑁𝐵𝐶3(𝒜) = {{𝐻1 , 𝐻2, 𝐻3}, {𝐻1, 𝐻2, 𝐻4}, {𝐻1, 𝐻2, 𝐻5}, {𝐻1, 𝐻2, 𝐻6}, 

{𝐻1, 𝐻2, 𝐻7}, {𝐻1, 𝐻3, 𝐻5}, {𝐻1 , 𝐻3, 𝐻6}, {𝐻1, 𝐻4, 𝐻5}, {𝐻1, 𝐻4, 𝐻7}}; 

𝑆0 (𝜋) = {∅3}, 𝑆1 (𝜋) = 𝑁𝐵𝐶1(𝒜); 

𝑆2 (𝜋) = {{𝐻1, 𝐻2}, {𝐻1, 𝐻3}, {𝐻1, 𝐻4}, {𝐻1, 𝐻5}, {𝐻1 , 𝐻6}, {𝐻1, 𝐻7}, {𝐻2, 𝐻5}, 

{𝐻2, 𝐻6}, {𝐻2, 𝐻7}, {𝐻3, 𝐻5}, {𝐻3, 𝐻6}, {𝐻3, 𝐻7}, {𝐻4, 𝐻5}, {𝐻4, 𝐻6}, {𝐻4, 𝐻7}}; 

𝑆3 (𝜋) = {{𝐻1, 𝐻2, 𝐻5}, {𝐻1, 𝐻2, 𝐻6}, {𝐻1, 𝐻2, 𝐻7}, {𝐻1, 𝐻3, 𝐻5}, {𝐻1 , 𝐻3, 𝐻6}, 

{𝐻1, 𝐻3, 𝐻7},{𝐻1, 𝐻4, 𝐻5}, {𝐻1, 𝐻4, 𝐻6}, {𝐻1, 𝐻4, 𝐻7}}. 

The important points to note here are: 

1- Each of {𝐻2, 𝐻3} and {𝐻2, 𝐻4} are 2 − 𝑁𝐵𝐶  bases of 𝒜, but they are not 2-sections of 𝜋. As well as, 

{𝐻3, 𝐻7} and {𝐻4, 𝐻6} are 2-sections of 𝜋, but they are not  2 − 𝑁𝐵𝐶   bases of 𝒜 . By applying 

theorem (2.14.), we have; 𝑓2({𝐻2, 𝐻3} ) = {𝐻3, 𝐻7} and  𝑓2({𝐻2, 𝐻4}) = {𝐻4, 𝐻6} . Accordingly, 

𝑔2({𝐻3, 𝐻7}) = {𝐻2, 𝐻3} and  𝑔2({𝐻4, 𝐻6}) = {𝐻2, 𝐻4} 

2- Each of {𝐻1, 𝐻2, 𝐻3} and {𝐻1, 𝐻2, 𝐻4} are 3 − 𝑁𝐵𝐶  bases of 𝒜, but they are not 3-sections of 𝜋. As 

well as, {𝐻1, 𝐻3, 𝐻7} and {𝐻1, 𝐻4, 𝐻6} are 3-sections of 𝜋, but they are not 3 − 𝑁𝐵𝐶  bases of 𝒜. By 

applying theorem (2.14.), we have 𝑓3({𝐻1 , 𝐻2, 𝐻3} ) = {𝐻1, 𝐻3, 𝐻7} and 𝑓3({𝐻1, 𝐻2, 𝐻4}) = {𝐻1, 𝐻4, 𝐻6}. 

Accordingly, 𝑔3({𝐻1, 𝐻3, 𝐻7}) = {𝐻1, 𝐻2, 𝐻3} and  𝑔3({𝐻1, 𝐻4, 𝐻6}) = {𝐻1, 𝐻2, 𝐻4}.   

It is known that the factorization of 𝒜 need not to be unique. Definitely, for any factorization of 𝒜 and 

any ordering defined on its hyperplanes, 𝒜 is not completely factored arrangement. So, in this example we 

illustrate a factored arrangement that is not completely factored arrangement. On the other hand, 

𝑵𝑩𝑪0(𝒜) = 〈𝑒ℂ3〉, 𝑵𝑩𝑪1(𝒜) = 〈𝑒𝐻1 , 𝑒𝐻2 , 𝑒𝐻3 , 𝑒𝐻4 , 𝑒𝐻5 , 𝑒𝐻6 , 𝑒𝐻7〉 

𝑵𝑩𝑪2(𝒜) = ⟨

𝑒{𝐻1,𝐻2}, 𝑒{𝐻1,𝐻3}, 𝑒{𝐻1,𝐻4}, 𝑒{𝐻1,𝐻5}, 𝑒{𝐻1,𝐻6},
𝑒{𝐻1,𝐻7}, 𝑒{𝐻2,𝐻3}, 𝑒{𝐻2,𝐻4}, 𝑒{𝐻2,𝐻5}, 𝑒{𝐻2,𝐻6},
𝑒{𝐻2,𝐻7}, 𝑒{𝐻3,𝐻5}, 𝑒{𝐻3,𝐻6}, 𝑒{𝐻4,𝐻5}, 𝑒{𝐻4,𝐻7}

⟩, 𝑵𝑩𝑪3(𝒜) = ⟨

𝑒{𝐻1,𝐻2,𝐻3}, 𝑒{𝐻1,𝐻2,𝐻4}, 𝑒{𝐻1,𝐻2,𝐻5},
𝑒{𝐻1,𝐻2,𝐻6}, 𝑒{𝐻1,𝐻2,𝐻7}, 𝑒{𝐻1,𝐻3,𝐻5},
𝑒{𝐻1,𝐻3,𝐻6}, 𝑒{𝐻1,𝐻4,𝐻5}, 𝑒{𝐻1,𝐻4,𝐻7}

⟩; 

(𝜋)0 = 〈𝑞{ }〉, (𝜋)1 = 〈𝑞𝐻1 , 𝑞𝐻2 , 𝑞𝐻3 , 𝑞𝐻4 , 𝑞𝐻5 , 𝑞𝐻6 , 𝑞𝐻7〉; 

(𝜋)2 = ⟨

𝑞{𝐻1,𝐻2}, 𝑞{𝐻1,𝐻3}, 𝑞{𝐻1,𝐻4}, 𝑞{𝐻1,𝐻5}, 𝑞{𝐻1,𝐻6},
𝑞{𝐻1,𝐻7}, 𝑞{𝐻2,𝐻5}, 𝑞{𝐻2,𝐻6}, 𝑞{𝐻2,𝐻7}, 𝑞{𝐻3,𝐻5},
𝑞{𝐻3,𝐻6}, 𝑞{𝐻3,𝐻7}, 𝑞{𝐻4,𝐻5}, 𝑞{𝐻4,𝐻6}, 𝑞{𝐻4,𝐻7}

⟩ and (𝜋)3 = ⟨

𝑞{𝐻1,𝐻2,𝐻5}, 𝑞{𝐻1,𝐻2,𝐻6}, 𝑞{𝐻1,𝐻2,𝐻7},
𝑞{𝐻1,𝐻3,𝐻5}, 𝑞{𝐻1,𝐻3,𝐻6}, 𝑞{𝐻1,𝐻3,𝐻7},
𝑞{𝐻1,𝐻4,𝐻5}, 𝑞{𝐻1,𝐻4,𝐻6}, 𝑞{𝐻1,𝐻4,𝐻7}

⟩. 

By applying theorem (2.17), we have two 𝐾 -chain isomorphism's, 𝒻∗: 𝑵𝑩𝑪∗(𝒜) → (𝜋)∗  and        

ℊ∗: (𝜋)∗ → 𝑵𝑩𝑪∗(𝒜) between acyclic chain complexes that create a connection between two fashions of the 

O-S algebra of 𝒜, a fashion as free submodule of the exterior algebra, and a fashion as a tensor factorization 

module. In view of this; 𝑨∗(𝒜) ≅ 𝑵𝑩𝑪∗(𝒜) ≅ ∑ 𝑵𝑩𝑪𝑘(𝒜)0≤𝑘≤3 ≅ (𝜋)∗ ≅ ∑ (𝜋)𝑘0≤𝑘≤3 . 
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4.6. Example:  

Let 𝒜 = {𝐻1 , … , 𝐻16} be a 6-arrangemant that has the defining polynomial; 

𝑄(𝒜) = 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6(𝑥1 + 𝑥2 + 𝑥3)(𝑥1 + 𝑥2 − 𝑥3)(𝑥1 − 𝑥2 + 𝑥3) 

(𝑥1 − 𝑥2−𝑥3)(𝑥4 − 𝑥5)(𝑥4 + 𝑥5)(𝑥4 − 𝑥6)(𝑥4 + 𝑥6)(𝑥5 − 𝑥6)(𝑥5 + 𝑥6). 

It is clear that, 𝒜 = 𝒜1 ×𝒜2  is reducible arrangement such that 𝒜1 is the 3-arrangement given in example 

(4.5.) above and 𝒜2 is the complexification of Coxeter arrangement of type 𝐵3 (recall corollary (4.4.)). By 

applying corollary (3.9.), the arrangement 𝒜 is a factored arrangement that not completely factored with 

factorization: 

𝜋 = (𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5, 𝜋6) = ({𝐻1}, {𝐻2, 𝐻3, 𝐻4}, {𝐻5, 𝐻6, 𝐻7}, {𝐻8}, {𝐻9, 𝐻10, 𝐻11}, {𝐻12, 𝐻13, 𝐻14, 𝐻15, 𝐻16}) 

where; 

𝐻1 = 𝑘𝑒𝑟(𝑥3), 𝐻2 = 𝑘𝑒𝑟(𝑥1), 𝐻3 = 𝑘𝑒𝑟(𝑥1 − 𝑥2 + 𝑥3); 

𝐻4 = 𝑘𝑒𝑟(𝑥1 − 𝑥2 − 𝑥3), 𝐻5 = 𝑘𝑒𝑟(𝑥2), 𝐻6 = 𝑘𝑒𝑟(𝑥1 + 𝑥2 + 𝑥3); 

𝐻7 = 𝑘𝑒𝑟(𝑥1 + 𝑥2 − 𝑥3) , 𝐻8 = 𝑘𝑒𝑟(𝑥4), 𝐻9 = 𝑘𝑒𝑟(𝑥5); 

𝐻10 = 𝑘𝑒𝑟(𝑥4 − 𝑥5), 𝐻11 = 𝑘𝑒𝑟(𝑥4 + 𝑥5), 𝐻12 = 𝑘𝑒𝑟(𝑥6); 

𝐻13 = 𝑘𝑒𝑟(𝑥4 − 𝑥6),𝐻14 = 𝑘𝑒𝑟(𝑥4 + 𝑥6), 𝐻15 = 𝑘𝑒𝑟(𝑥5 − 𝑥6) and; 

𝐻16 = 𝑘𝑒𝑟(𝑥5 + 𝑥6) 

and via this order we have; 

𝑁𝐵𝐶0(𝒜) = {ℂ
6}, 𝑁𝐵𝐶1(𝒜) = {{𝐻1}, … , {𝐻16}} = 𝑆1 (𝜋); 

𝑁𝐵𝐶2(𝒜) = (𝑆2 (𝜋) − {{𝐻3, 𝐻7} , {𝐻4, 𝐻6}}) ∪ {{𝐻2, 𝐻3}, {𝐻2, 𝐻4}};  

and for 3 ≤ 𝑘 ≤ 6; 

𝑁𝐵𝐶𝑘(𝒜) = (𝑆𝑘 (𝜋) − 𝑆𝑘
′ (𝜋)) ∪ 𝑁𝐵𝐶𝑘

1(𝜋) ∪ 𝑁𝐵𝐶𝑘
2(𝜋); 

where, 𝑆𝑘
′ (𝜋) = {𝑆 ∈ 𝑆𝑘 (𝜋)| either {𝐻3, 𝐻7} ⊆ 𝑆 or {𝐻4, 𝐻6} ⊆ 𝑆}; 

𝑁𝐵𝐶𝑘
1(𝜋) = {(𝑆 − {𝐻7}) ∪ {𝐻2}|𝑆 ∈ 𝑆𝑘

′ (𝜋) and {𝐻3, 𝐻7} ⊆ 𝑆} and; 

𝑁𝐵𝐶𝑘
2(𝜋) = {(𝑆 − {𝐻6}) ∪ {𝐻2}|𝑆 ∈ 𝑆𝑘

′ (𝜋) and {𝐻4, 𝐻6} ⊆ 𝑆}. 

The important points to note here are |𝑁𝐵𝐶𝑘
1(𝜋) ∪ 𝑁𝐵𝐶𝑘

2(𝜋)| = |𝑆𝑘
′ (𝜋)| and for 3 ≤ 𝑘 ≤ 6, if 𝑆 ∈ 𝑆𝑘

′ (𝜋) and 

{𝐻3, 𝐻7} ⊆ 𝑆 , then, 𝑓𝑘((𝑆 − {𝐻7}) ∪ {𝐻2}) = 𝑆  and if 𝑆 ∈ 𝑆𝑘
′ (𝜋)  and {𝐻4, 𝐻6} ⊆ 𝑆 , then,               

𝑓𝑘((𝑆 − {𝐻6}) ∪ {𝐻2}) = 𝑆 . Accordingly, if 𝑆 ∈ 𝑆𝑘
′ (𝜋)  and {𝐻3, 𝐻7} ⊆ 𝑆 , then,                       

𝑔𝑘(𝑆) = (𝑆 − {𝐻7}) ∪ {𝐻2}  and if 𝑆 ∈ 𝑆𝑘
′ (𝜋)  and {𝐻4, 𝐻6} ⊆ 𝑆 , then, 𝑔𝑘(𝑆) = (𝑆 − {𝐻6}) ∪ {𝐻2} . By 

applying theorem (3.12.) and theorem (3.14.) we have; 

𝑵𝑩𝑪0(𝒜) = 〈𝑒ℂ6〉, 𝑵𝑩𝑪1(𝒜) = 〈𝑒𝐻1 , … , 𝑒𝐻16〉 = 𝑵𝑩𝑪1(𝒜1) ⊕ 𝑵𝑩𝑪1(𝒜2); 

𝑵𝑩𝑪2(𝒜) = ⟨𝑒𝐵|  𝐵 ∈ (𝑆2 (𝜋) − {{𝐻3, 𝐻7} , {𝐻4, 𝐻6}}) ∪ {{𝐻2, 𝐻3}, {𝐻2, 𝐻4}}⟩ 

                          = 𝑵𝑩𝑪2(𝒜1) ⊕ 𝑵𝑩𝑪2(𝒜2), for 3 ≤ 𝑘 ≤ 6; 

𝑵𝑩𝑪𝑘(𝒜) = ⟨𝑞𝐵, 𝐵 ∈ (𝑆𝑘 (𝜋) − 𝑆𝑘
′ (𝜋)) ∪ 𝑁𝐵𝐶𝑘

1(𝜋) ∪ 𝑁𝐵𝐶𝑘
2(𝜋)⟩ = 𝑵𝑩𝑪𝑘(𝒜1) ⊕ 𝑵𝑩𝑪𝑘(𝒜2); 

(𝜋)0 = 〈𝑞{ }〉, (𝜋)1 = 〈𝑞𝐻1 , … , 𝑞𝐻16〉 = (𝜋
1)1⨂(𝜋

2)1; 

and for 2 ≤ 𝑘 ≤ 6, (𝜋)𝑘 = ⟨𝑞𝐵 , 𝐵 ∈ 𝑆𝑘 (𝜋)⟩ = (𝜋
1)𝑘⨂(𝜋

2)𝑘. 

By applying theorem (3.17.), we have two 𝐾 -chain isomorphisms, 𝒻∗: 𝑵𝑩𝑪∗(𝒜) → (𝜋)∗  and          

ℊ∗: (𝜋)∗ → 𝑵𝑩𝑪∗(𝒜) between acyclic chain complexes which produce a connection between two fashions of 

the O-S algebra of 𝒜, a fashion as free module, and a fashion as a tensor factorization module. So; 

𝑨∗(𝒜) ≅ 𝑵𝑩𝑪∗(𝒜) ≅ ∑ 𝑵𝑩𝑪𝑘(𝒜)0≤𝑘≤6 ≅ (𝜋)∗ ≅ ∑ (𝜋)𝑘0≤𝑘≤6 . 

 

4.7. Example:  

Let 𝒜 = {𝐻1 , … , 𝐻14} be a 6-arrangemant that has the defining polynomial; 
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𝑄(𝒜) = 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6(𝑥1 + 𝑥2 + 𝑥3)(𝑥1 + 𝑥2 − 𝑥3)(𝑥1 − 𝑥2 + 𝑥3) 

(𝑥1 − 𝑥2−𝑥3)(𝑥4 + 𝑥5 + 𝑥6)(𝑥4 + 𝑥5 − 𝑥6)(𝑥4 − 𝑥5 + 𝑥6)(𝑥4 − 𝑥5−𝑥6). 

It is clear that, 𝒜 = 𝒜1 ×𝒜2   is a reducible arrangement such that each one of 𝒜1  and 𝒜2  is a 

3-arrangement given in example (4.4.). By applying corollary (3.9.), the arrangement 𝒜  is a factored 

arrangement that not completely factored with factorization: 

𝜋 = (𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5, 𝜋6) = ({𝐻1}, {𝐻2, 𝐻3, 𝐻4}, {𝐻5, 𝐻6, 𝐻7}, {𝐻8}, {𝐻9, 𝐻10, 𝐻11}, {𝐻12, 𝐻13, 𝐻14}); 

where, 𝐻1 = 𝑘𝑒𝑟(𝑥3) , 𝐻2 = 𝑘𝑒𝑟(𝑥1) , 𝐻3 = 𝑘𝑒𝑟(𝑥1 − 𝑥2 + 𝑥3) , 𝐻4 = 𝑘𝑒𝑟(𝑥1 − 𝑥2 − 𝑥3) ,               

𝐻5 = 𝑘𝑒𝑟(𝑥2) , 𝐻6 = 𝑘𝑒𝑟(𝑥1 + 𝑥2 + 𝑥3) , 𝐻7 = 𝑘𝑒𝑟(𝑥1 + 𝑥2 − 𝑥3)  , 𝐻8 = 𝑘𝑒𝑟(𝑥6) , 𝐻9 = 𝑘𝑒𝑟(𝑥4) , 

𝐻10 = 𝑘𝑒𝑟(𝑥4 − 𝑥5 + 𝑥6) , 𝐻11 = 𝑘𝑒𝑟(𝑥4 − 𝑥5 − 𝑥6) , 𝐻12 = 𝑘𝑒𝑟(𝑥5) , 𝐻13 = 𝑘𝑒𝑟(𝑥4 + 𝑥5 + 𝑥6)  and 

𝐻14 = 𝑘𝑒𝑟(𝑥4 + 𝑥5 − 𝑥6) and via this order we have; 

𝑁𝐵𝐶0(𝒜) = {ℂ
6}, 𝑁𝐵𝐶1(𝒜) = {{𝐻1}, … , {𝐻14}} = 𝑆1 (𝜋); 

𝑁𝐵𝐶2(𝒜) = (𝑆2 (𝜋) − {{𝐻3, 𝐻7} , {𝐻4, 𝐻6}, {𝐻10, 𝐻14} , {𝐻11, 𝐻13}}) ∪ {{𝐻2, 𝐻3}, {𝐻2, 𝐻4}, {𝐻9, 𝐻10}, {𝐻9, 𝐻11}};  

and for 3 ≤ 𝑘 ≤ 6, 𝑁𝐵𝐶𝑘(𝒜) = (𝑆𝑘 (𝜋) − 𝑆𝑘
′ (𝜋)) ∪ 𝑁𝐵𝐶𝑘

1(𝜋) ∪ 𝑁𝐵𝐶𝑘
2(𝜋)) ∪ 𝑁𝐵𝐶𝑘

3(𝜋) ∪ 𝑁𝐵𝐶𝑘
4(𝜋), where, 

 𝑆𝑘
′ (𝜋) = {𝑆 ∈ 𝑆𝑘 (𝜋)| either {𝐻3, 𝐻7} ⊆ 𝑆 or {𝐻4, 𝐻6} ⊆ 𝑆} ∪ {𝑆 ∈ 𝑆𝑘 (𝜋)| either {𝐻10, 𝐻14} ⊆ 𝑆 or {𝐻11, 𝐻13} ⊆ 𝑆}; 

𝑁𝐵𝐶𝑘
1(𝜋) = {(𝑆 − {𝐻7}) ∪ {𝐻2}|𝑆 ∈ 𝑆𝑘

′ (𝜋) and {𝐻3, 𝐻7} ⊆ 𝑆}; 

𝑁𝐵𝐶𝑘
2(𝜋) = {(𝑆 − {𝐻6}) ∪ {𝐻2}|𝑆 ∈ 𝑆𝑘

′ (𝜋) and {𝐻4, 𝐻6} ⊆ 𝑆}; 

𝑁𝐵𝐶𝑘
3(𝜋) = {(𝑆 − {𝐻14}) ∪ {𝐻9}|𝑆 ∈ 𝑆𝑘

′ (𝜋) and {𝐻10, 𝐻14} ⊆ 𝑆} and; 

𝑁𝐵𝐶𝑘
4(𝜋) = {(𝑆 − {𝐻13}) ∪ {𝐻9}|𝑆 ∈ 𝑆𝑘

′ (𝜋) and {𝐻11, 𝐻13} ⊆ 𝑆}. 

The important points to note here are |𝑁𝐵𝐶𝑘
1(𝜋) ∪ 𝑁𝐵𝐶𝑘

2(𝜋)| = |𝑆𝑘
′ (𝜋)| and for 3 ≤ 𝑘 ≤ 6, if 𝑆 ∈ 𝑆𝑘

′ (𝜋) and 

if {𝐻3, 𝐻7} ⊆ 𝑆 , then, 𝑓𝑘((𝑆 − {𝐻7}) ∪ {𝐻2}) = 𝑆 , if 𝑆 ∈ 𝑆𝑘
′ (𝜋)  and {𝐻4, 𝐻6} ⊆ 𝑆 , then,                

𝑓𝑘((𝑆 − {𝐻6}) ∪ {𝐻2}) = 𝑆 , if 𝑆 ∈ 𝑆𝑘
′ (𝜋)  and {𝐻10, 𝐻14} ⊆ 𝑆 , then, 𝑓𝑘((𝑆 − {𝐻14}) ∪ {𝐻9}) = 𝑆 and if 

𝑆 ∈ 𝑆𝑘
′ (𝜋) and {𝐻11, 𝐻13} ⊆ 𝑆, then, 𝑓𝑘((𝑆 − {𝐻13}) ∪ {𝐻9}) = 𝑆. Accordingly, if 𝑆 ∈ 𝑆𝑘

′ (𝜋) and {𝐻3, 𝐻7} ⊆

𝑆, then, 𝑔𝑘(𝑆) = (𝑆 − {𝐻7}) ∪ {𝐻2}, if 𝑆 ∈ 𝑆𝑘
′ (𝜋) and {𝐻4, 𝐻6} ⊆ 𝑆, then,                    𝑔𝑘(𝑆) =

(𝑆 − {𝐻6}) ∪ {𝐻2}, if 𝑆 ∈ 𝑆𝑘
′ (𝜋) and {𝐻10, 𝐻14} ⊆ 𝑆 , then, 𝑔𝑘(𝑆) = (𝑆 − {𝐻14}) ∪ {𝐻9}, if 𝑆 ∈ 𝑆𝑘

′ (𝜋) and 

{𝐻11, 𝐻13} ⊆ 𝑆, then, 𝑔𝑘(𝑆) = (𝑆 − {𝐻13}) ∪ {𝐻9}. By applying theorem (3.12.) and theorem (3.14.) we have; 

𝑵𝑩𝑪0(𝒜) = 〈𝑒ℂ6〉, 𝑵𝑩𝑪1(𝒜) = 〈𝑒𝐻1 , … , 𝑒𝐻14〉; 

𝑵𝑩𝑪2(𝒜) = ⟨𝑒𝐵|
𝐵 ∈ (𝑆2 (𝜋) − {{𝐻3, 𝐻7} , {𝐻4, 𝐻6}, {𝐻10, 𝐻14} , {𝐻11, 𝐻13}}) ∪

{{𝐻2, 𝐻3}, {𝐻2, 𝐻4}, {𝐻9, 𝐻10}, {𝐻9, 𝐻11}}
⟩ and for 3 ≤ 𝑘 ≤ 6; 

𝑵𝑩𝑪𝑘(𝒜) = ⟨𝑒𝐵|
𝐵 ∈ (𝑆𝑘 (𝜋) − 𝑆𝑘

′ (𝜋)) ∪ 𝑁𝐵𝐶𝑘
1(𝜋) ∪

𝑁𝐵𝐶𝑘
2(𝜋)) ∪ 𝑁𝐵𝐶𝑘

3(𝜋) ∪ 𝑁𝐵𝐶𝑘
4(𝜋)

⟩; 

(𝜋)0 = 〈𝑞{ }〉, (𝜋)1 = 〈𝑞𝐻1 , … , 𝑞𝐻14〉 and for 3 ≤ 𝑘 ≤ 6, (𝜋)𝑘 = ⟨𝑞𝐵|𝐵 ∈ 𝑆𝑘 (𝜋)⟩. 

By applying theorem (2.17), we have two 𝐾-chain isomorphisms, 𝒻∗: 𝑵𝑩𝑪∗(𝒜) → (𝜋)∗ and       ℊ∗: (𝜋)∗ →

𝑵𝑩𝑪∗(𝒜) between acyclic chain complexes that induced a connection between two fashions of the O-S algebra 

of 𝒜, a fashion as free module and a fashion as a tensor factorization module. Accordingly, 

𝑨∗(𝒜) ≅ 𝑵𝑩𝑪∗(𝒜) ≅ ∑ 𝑵𝑩𝑪𝑘(𝒜)0≤𝑘≤6 ≅ (𝜋)∗ ≅ ∑ (𝜋)𝑘0≤𝑘≤6 . 

 

 

6. Concluding remarks: 

In this paper, we studied several fashions of the O-S algebra of Terao class of factored arrangements in 

order to examine, how Terao generalization of the class of supersolvable arrangements preserved the tensor 

factorization of the O-S algebra. It is found that; 

1. We used the properties of the NBC monomial basis of O-S algebra of factored arrangement to establish a 

partition on the class of factored arrangements into two subclasses. The first one is the class of supersolvable 
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arrangements, which their arrangements have very interesting topological properties produced from the 

structure of their factorizations.  

2. For the second subclass, we consider a connection between two fashions of the O-S algebra of 𝒜, a fashion 

as free submodule of the Exterior algebra and a fashion as a tensor factorization module, in order to ensure 

our conjecture that there are a relation between the factorizations properties and the NBC bases properties. 

3. As an application, we proved that: "A reducible arrangement 𝒜 = 𝒜1 ×𝒜2 is completely factored if, and 

only if, each of 𝒜1 and 𝒜2 is completely factored". Moreover, we showed that, "A reducible arrangement 

𝒜 = 𝒜1 ×𝒜2  is factored arrangement that not completely factored if, and only if, 𝒜1  and 𝒜2  are 

factored arrangements such that either 𝒜1 or 𝒜2 is not completely factored".  

4. As an illustration, we proved: "every reducible 3-arrangement is supersolvable", "every reducible 

arrangement into product of rank 2 arrangements is supersolvable", "every reducible arrangement into 

product of rank 2 arrangements and rank 1-arrangements is supersolvable" and "every reducible arrangement 

into product of the complexification Coxeter arrangement, either of type 𝐴 or 𝐵 is supersolvable". 

As a future work, we are looking to study the topological properties of the complement of a factored 

arrangement that not supersolvable.                      
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