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Abstract 

Solutions of second – order nonlinear differential system is investigated. 

A sufficient condition for every solution of the system to exist globally is 

obtained. Sufficient conditions are placed on the functions  in the 

system that guarantee global existence of solutions to the system and 

these conditions are put into a theorem which is proved. 

1.0   Introduction 

Consider the second – order nonlinear differential system: 

𝑥′ =
1

𝑎(𝑥)
[𝑐(𝑦) − 𝑏(𝑥)] 

𝑦′ = −𝑎(𝑥)[ℎ(𝑥) − 𝑒(𝑡)]                                                (1) 

where a: R          (0,∞), b, c, h: R        R and e: R        R are continuous. Our aim in 

this paper is to establish criteria under which solutions to the second – 

order nonlinear differential system in Eq.(1) exist globally. 

 System (1) can be regarded as a mathematical model for many 

phenomena in applied sciences. It has been investigated by several 

authors. Constantin Adrian[2] considered sufficient conditions for the 

continuability of solutions for perturbed differential equations and some 

results for the global existence of solutions were obtained. Mustafa and 

Rogovchenko[6] proved global existence of solutions for a general class 

of nonlinear second-order differential equations that includes, in 

particular, Van der Pol, Rayleigh and Lienard equations and relevant 

examples were discussed. Then Cemil Tunc and Timur Ayhan[3] dealt 
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with the global existence and boundedness of solutions for a certain 

nonlinear integro-differential equation of second order with multiple 

constant delays and obtained some new sufficient conditions which 

guarantee the global existence and boundedness of solutions to the 

considered equation. Takasi Kusano and William F. Trench[7] 

established sufficient conditions that ensure that the solutions to 

nonlinear differential equations exist on a given interval and have the 

prescribed asymptotic behaviour. Our result is closely related to the one 

obtained in the paper[1]. 

Definition 1.1: Consider the following Cauchy problem for a nonlinear 

system: 

    

       (1.1) 

where (to, xo) ∈ A⫃R x Rn = Rn+1 is fixed, with A, a given open set and           

f: A     Rn continuous. We say that a function y: I      Rn is a solution of 

(1.1) on I if I   R is an open interval, to ∈ I, y ∈ c1(I , Rn ), y' (t)= f(t ,y(t))for 

all  𝑡 ∈ 𝐼 and y(to)= 𝑥o 
 

Definition 1.2: We say that the problem (1.1) admits global solutions or 

is globally solvable if for every open interval I   R such that  

{𝑥 ∈ Rn (𝑡, 𝑥) ∈ 𝐴} ≠ ∅    ∀ 𝑡 ∈ 𝐼, there exists a function y: I      Rn which is 

solution of (1.1) on I. 

Main Result 

Main result will be presented on the global existence of solutions to 

system (1.1) under general conditions on the nonlinearities. 

Define  ∫ 𝑐(𝑠)𝑑𝑠
𝑦

0
 , 𝐻(𝑥) = ∫

𝑥

0
a2(𝑠) ℎ(𝑠)𝑑𝑠 

Then we have the following: 

Theorem 2.1: Assume that  

(i) there exists some  𝑘 ≥ 0 such that  

𝑠𝑔𝑛(𝑥)𝐻(𝑥) + 𝑘 ≥ 0,         𝑥 ∈ R   (2.2) 

⫃ 

 

⫃ 

 

 𝑦’(𝑡0) =  𝑥0, 

y”(𝑡)  =  𝑓(𝑡, 𝑦(𝑡)), 
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𝑠𝑔𝑛 (𝑦)𝐶(𝑦) + 𝑘 ≥ 0,         𝑦 ∈ R 

(ii) there exists some 𝑁 ≥ 0 and 𝑄 > 0 such that 

𝐻(𝑥)  < 𝑄,   𝑥  >   𝑁,       (2.3) 

               𝐶(𝑦)     < 𝑄,   𝑦    > 𝑁, 

(iii) lim𝑦→∞ 𝑠𝑔𝑛(𝑦) 𝐶(𝑦) = Q lim𝑥→∞[(
1

𝑄−𝑠𝑔𝑛(𝑥)𝐻(𝑥)
) + 𝑠𝑔𝑛(𝑥)𝑏(𝑥)] = ∞ 

(iv) there exists two positive functions 𝜇, 𝑤 ∈ 𝑐([0, 𝐾 + 𝑄), (0, ∞)) such 

that 𝑎(𝑥) |𝑐(𝑦)|  ≤ min
    𝜇(𝑠𝑔𝑛(𝑥)𝐻(𝑥) + 𝐾) + 𝑤(𝑠𝑔𝑛(𝑥)𝐻(𝑥) + 𝐾),

𝜇(𝑠𝑔𝑛(𝑦)𝐶(𝑦) + 𝐾) + 𝑤(𝑠𝑔𝑛(𝑦)𝐶(𝑦) + 𝐾)
 

𝑥  >   𝑁, 𝑦  > 𝑁    (2.4) 

(v) 𝑠𝑔𝑛(𝑥)𝑎(𝑥)𝑏(𝑥)ℎ(𝑥) ≥ −[𝜇(𝑠𝑔𝑛(𝑥)𝐻(𝑥) + 𝐾) + 𝑤(𝑠𝑔𝑛(𝑥)𝐻(𝑥) + 𝐾)], 

𝑥 > 𝑁 𝑎𝑛𝑑 |ℎ(𝑥)| ≤ 𝑀 < ∞, 𝑥 ∈ R 

If 

∫
𝑑𝑠

𝜇(𝑠) + 𝑤(𝑠)
= ∞,

𝐾+𝑄

0

 

then every solution of (1.1) exists globally. 

Proof: Due that 𝑎: 𝐑 → (𝑜, ∞), 𝑏, 𝑐, ℎ ∶ 𝐑 → R and 𝑒: 𝐑 → 𝐑 are continuous, by 

Peano’s Existence Theorem [6 ], we have that the system (1.1) with any 

initial data (𝑥0 , 𝑦0) possesses a solution(𝑥(𝑡), 𝑦(𝑡)) on [𝑂 , 𝑇] for some 

maximal 𝑇 > 0. If 𝑇 < ∞, one has 

lim𝑡→𝑇( 𝑥(𝑡) +   𝑦(𝑡) ) = ∞  

First, assume that lim𝑡→𝑇 𝑦(𝑡)  = ∞   

 Since y(t) is continuous, there exists 0 ≤ 𝑇0 < 𝑇 such that 

𝑦(𝑡) > 𝑁,             𝑡 ∈   [𝑇0, 𝑇]       (2.7) 

Take 𝑉1(𝑡, 𝑥, 𝑦) = 𝑠𝑔𝑛(𝑦)𝐶(𝑦) + 𝐾, 𝑡 ∈ 𝐑+, 𝑥, 𝑦 ∈ 𝐑.  Differentiating 

𝑉1(𝑡, 𝑥, 𝑦) with respect to t along solution (𝑥(𝑡), 𝑦(𝑡)) of (1.1), we have 

𝑑𝑉1 =
𝜕𝑉1

𝜕𝑡
𝑑𝑡 +

𝜕𝑉1

𝜕𝑥
𝑑𝑥 +

𝜕𝑉1

𝜕𝑦
𝑑𝑦 
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Dividing both sides by 𝑑𝑡, we have 

𝑑𝑉1

𝑑𝑡
=

𝜕𝑉1

𝜕𝑡
+

𝜕𝑉1

𝜕𝑥
 
𝑑𝑥

𝑑𝑡
+

𝜕𝑉1 

𝜕𝑦

𝑑𝑦

𝑑𝑡
= 0 + 0 +

𝜕𝐶(𝑦)

𝜕𝑦
𝑦′ 

But  

𝐶(𝑦) = ∫ 𝑐(𝑠)𝑑𝑠 𝑎𝑛𝑑 𝑦′ = −𝑎(𝑥)[ℎ(𝑥) − 𝑒(𝑡)]
𝑦

0

= −𝑎(𝑥)ℎ(𝑥) + 𝑎(𝑥)𝑒(𝑡)

⇒
𝜕𝑐(𝑦)

𝜕𝑦
= 𝑐(𝑦) 

𝑑𝑉1

𝑑𝑡
= 𝑠𝑔𝑛(𝑦)𝑐(𝑦)[−𝑎(𝑥)ℎ(𝑥) + 𝑎(𝑥)𝑒(𝑡)] 

𝑑𝑉1

𝑑𝑡
= 𝑠𝑔𝑛(𝑦)[−𝑎(𝑥) 𝑐(𝑦) ℎ(𝑥) + 𝑎(𝑥) 𝑐(𝑦) 𝑒(𝑡)] 

Using triangle inequality, we have 

𝑑𝑉1

𝑑𝑡
≤ 𝑎(𝑥)𝑐(𝑦)  ℎ(𝑥) + 𝑒(𝑡)  

 ≤ 𝑎(𝑥)𝑐(𝑦)  (  ℎ(𝑥)  +   𝑒(𝑡)  ) 

≤ (  ℎ(𝑥)  +   𝑒(𝑡)  )  𝑎(𝑥)  𝑐(𝑦)  

Recall that ℎ(𝑥)   ≤   𝑀  and also by assumption (2.4), We have 

𝑑𝑉1

𝑑𝑡
≤ (𝑀 +   𝑒(𝑡)  )  [𝜇 (𝑠𝑔𝑛(𝑦) 𝑐(𝑦) + 𝐾) + 𝑤(𝑠𝑔𝑛(𝑦) 𝑐(𝑦) + 𝐾)],       

                                                                𝑡 ∈ [𝑇0,𝑇]                                       (2.8) 

Since 𝑜 ≤ 𝑠𝑔𝑛(𝑦(𝑡)) 𝐶(𝑦(𝑡)) + 𝐾 < 𝑄 < 𝑄 + 𝐾, 𝑡 ∈ [ 𝑇0, 𝑇], 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 

𝑑𝑉1 ≤ (𝑀 +   𝑒(𝑡)  ) [𝜇(𝑠𝑔𝑛(𝑦) 𝑐(𝑦) + 𝐾) + 𝑤(𝑠𝑔𝑛(𝑦) 𝑐(𝑦) + 𝐾]𝑑𝑡  

𝑑𝑉1(𝑡) ≤ (𝑀 +   𝑒(𝑡)  ) [(𝑠𝑔𝑛(𝑦) 𝑐(𝑦) + 𝐾)(𝜇 + 𝑤)]𝑑𝑡  

Dividing both sides by (𝑉1(𝑡)) + 𝑤(𝑉1(𝑡)) , we have  
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(2.10) 

𝑑𝑉1(𝑡)

𝜇(𝑉1(𝑡)) + 𝑤(𝑉1(𝑡))
≤

(𝑀 +   |𝑒(𝑡)|  )[𝑉1(𝑡)(𝜇 + 𝑤)]𝑑𝑡

𝑉1(𝑡)(𝜇 + 𝑤)
 

 

≤ (𝑀 +   𝑒(𝑡)  )𝑑𝑡,             𝑡 ∈ [𝑇0,𝑇]                   (2.9)

           

Denote 𝑉1(𝑡) = 𝑉1(𝑡, 𝑥(𝑡), 𝑦(𝑡))  

Since 

lim
  𝑦 →∞  

𝑠𝑔𝑛(𝑦)𝑐(𝑦) = 𝑄, ∫ 𝜕𝑠
(𝜇(𝑠) + 𝑤(𝑠)))) = ∞,⁄

𝐾+𝑄

0

 

𝑦(𝑡), 𝑐(𝑦) are continuous, there exists 𝑇0 ≤ 𝑡1 < 𝑡2 < 𝑇 such that  

   

∫
𝑑𝑠

𝜇(𝑠) + 𝑤(𝑠)

𝑉1(𝑡2)

𝑉1(𝑡1)

 

 

 

 

∫
𝑑𝑠

𝜇(𝑠) + 𝑤(𝑠)

𝑉1(𝑡2)

𝑉1(𝑡1)

 > 𝑀 ∫ 𝑑𝑡
𝑇

0

+ ∫ 𝑒(𝑡)  𝑑𝑡
𝑇

0

 

   

 Integrating (2.9) with respect to t, we obtain  

 

𝑀 ∫ 𝑑𝑡 + ∫ 𝑒(𝑡)  𝑑𝑡 < ∫
𝑑𝑠

𝜇(𝑠) + 𝑤(𝑠)
= ∫

𝑑𝑉1(𝑡)

𝜇(𝑉1(𝑡)) + 𝑤(𝑉1(𝑡))

𝑡2

𝑡1

𝑉1(𝑡2)

𝑉1(𝑡1)

𝑇

0

𝑇

0

≤ ∫ (𝑀 +    𝑒(𝑡)  ) 𝑑𝑡 ≤ 𝑀 ∫ 𝑑𝑡 +  ∫ 𝑒(𝑡)  𝑑𝑡
𝑇

0

 
𝑇

0

𝑡2

𝑡1

 

           ∃ 𝑎𝑛 𝑀 > 0 ∋ 

2.11 
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lim
 𝑥 →∞

𝑠𝑔𝑛(𝑥)𝐻(𝑥) = 𝑄,    ∫ (
𝑑𝑠

(𝜇(𝑠) + 𝑤(𝑠))
) = ∞, 𝑥(𝑡), 𝐻(𝑥)

𝐾+𝑄

0

  

𝑦(𝑡)   ≤ 𝑀             𝑡 ∈ [0, 𝑇]                                  2.12  

By the result above, we have lim𝑡→𝑇   𝑥(𝑡) = ∞  

Setting 𝑉2 (𝑡, 𝑥, 𝑦) = 𝑠𝑔𝑛(𝑥) 𝐻(𝑥) + 𝐾               𝑡 ∈ 𝐑+, 𝑥, 𝑦 ∈ 𝐑             2.13 

Since 𝑥(𝑡) is continuous, ∃  0 ≤ 𝑇1 < 𝑇 ∋  

𝑥(𝑡) > 𝑁, 𝑡 ∈ [𝑇1, 𝑇]                                                                                  2.14 

We differentiate 𝑉2 (𝑡, 𝑥, 𝑦) with respect to 𝑡 along solution 

(𝑥(𝑡), 𝑦(𝑡)) of (1.1), we obtain 𝑑𝑉2 =
𝜕𝑉2

𝜕𝑡
 𝑑𝑡 +

𝜕𝑉2

𝜕𝑡
 𝑑𝑥 +  

𝜕𝑉2

𝜕𝑦
𝑑𝑦    

𝑑𝑉2

𝑑𝑡
=

𝜕𝑉2

𝜕𝑡
+

𝜕𝑉2

𝜕𝑥
  

𝑑𝑥

𝑑𝑡
+

𝜕𝑉2

𝜕𝑦
  

𝑑𝑦

𝑑𝑡
 

  Following the same process as in (2.8), we obtain 

𝑑𝑉2

𝑑𝑡
= 𝑠𝑔𝑛(𝑥)[𝑎(𝑥)𝑐(𝑦)ℎ(𝑥) − 𝑎(𝑥)𝑏(𝑥)ℎ(𝑥)] 

≤ (𝑀 + 1)[𝜇(𝑠𝑔𝑛(𝑥)𝐻(𝑥) + 𝑘) + 𝑤(𝑠𝑔𝑛(𝑥)𝐻(𝑥) + 𝑘)]    (2.15) 

𝑑𝑉1(𝑡)

𝜇(𝑉1(𝑡))+𝑤(𝑉1(𝑡))
  ≤ (𝑀 +  1  )𝑑𝑡,             𝑡 ∈ [𝑇1,𝑇]           (2.16)  

    

Denote  𝑉2(𝑡) = 𝑉2(𝑡, 𝑥(𝑡), 𝑦(𝑡))    

 

Since 

          

are continuous, there exists 𝑇1 ≤ 𝑡3 < 𝑡4 < 𝑇  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

                        (2.17) 

  
∫

𝑑𝑠

𝜇(𝑠) + 𝑤(𝑠)
> (𝑀 + 1) ∫ 𝜕𝑡

𝑇

0

𝑉2(𝑡4)

𝑉2(𝑡3)
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(𝑀 + 1) ∫ 𝜕𝑡 <  ∫
𝜕𝑠

𝜇(𝑠) + 𝑤(𝑠)
= ∫

𝜕𝑉2(𝑡)

𝜇(𝑉2(𝑡)) + 𝑤(𝑉2(𝑡))

𝑡4

𝑡3

 
𝑉2(𝑡4)

𝑉2(𝑡3)

𝑇

0

 

Integrating (2.16) on [𝑡3, 𝑡4] with respect to t and using the above inequality, we 

obtain: 

               (2.18) 

 

≤ ∫ (𝑀 + 1)𝑑𝑡 ≤ (𝑀 + 1) ∫ 𝑑𝑡
𝑇

0

𝑡4

𝑡3

 

which is a contradiction. 

Considering                   

By (ii),   we have  

 

lim
  | 𝑥|  →∞

𝑠𝑔𝑛(𝑥)𝑏(𝑥) = ∞ 

Set 

𝑊(𝑡, 𝑥, 𝑦) = 𝑥,       𝑡 ∈ 𝐑+, 𝑥, 𝑦 ∈ 𝐑       (2.19) 

Then, along solutions to (1.1),    we have    

𝑑𝑊

𝑑𝑡
=

1

𝑎(𝑥)
[𝑐(𝑦) − 𝑏(𝑥)]                                                                           (2.20) 

If   lim𝑡→𝑇 𝑥(𝑡) = ∞ , we deduce that there exists 𝑥1𝑎𝑛𝑑 𝑥2  such that 

 𝑥0 < 𝑥1 < 𝑥2   and 
𝑑𝑊

𝜕𝑡
< 0,        𝑥1 ≤ 𝑥 < 𝑥2,           | 𝑦 |   ≤   𝑀        (2.21) 

Then, by the continuity of the solution, there exist  0 < 𝑡1 < 𝑡2 < 𝑇    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥(𝑡1) = 𝑥1    

𝑥(𝑡2) = 𝑥2  . Integrating (2.21) on [𝑡1, 𝑡2],  we have  

𝑊(𝑡1, 𝑥(𝑡1), 𝑦(𝑡1)) = 𝑥1 > 𝑥2 = 𝑊(𝑡2, 𝑥(𝑡2), 𝑦(𝑡2))          (2.22) 

This contradicts 𝑥1 < 𝑥2 . Hence   𝑥(𝑡) is bounded from above. 

lim
 | 𝑥|  →∞

(
1

(𝑄 − 𝑠𝑔𝑛(𝑥)𝐻(𝑥)) 
)

< ∞ 
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Similarly, if lim𝑡→𝑇 𝑥(𝑡) = −∞,  we can obtain a contradiction by setting W(t,x,y) = -

x. It follows that x(t) is also bounded from above. This forces T = ∞  and hence the 

proof is complete. 

Conclusion 

The main usefulness of this paper is the establishment of the sufficient conditions that 

guarantee global existence of solutions to a system of second-order nonlinear 

differential equations and the investigation that if solutions to a system of second-

order nonlinear differential equations exist globally, that is, the solutions are defined 

throughout the entire real axis, then the solutions are also bounded from above and 

below. 
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