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Abstract 

In many instances, when one encounters a continuous response in model building, the normal distribution is 

often the preferred choice for the distribution of the response given the predictors. In particular, to some 

statisticians, the normal distribution is seen as the only distribution for a continuous response. Even when the 

assumption of normality is not met, various transformations are applied on the data so that it appears to be more 

nearly normal. This is sometimes not pleasant since, the model may no longer apply directly to the original scale 

of measurement, which is in most cases of interest. Likewise, in doing so, one tries to force the model framework 

and distributional assumption that may not be best for the data at hand. Aside transformations, other distributions 

exist and can equally (or even better) be used for a continuous response in a linear regression model. The theory 

in GLM extends the linear regression theory such that, a much broader family of distributions can be used for the 

error terms other than the normal distribution. In this paper, other continuous distributions are used to illustrate 

how they outperform the normal distribution in some instances. It is also shown that, occasionally (for a 

continuous response), the normal distribution does not seem to be a choice unless transformations are applied. As 

a tool for assessing which of the distributions provides the best fit, both AIC and BIC are used.  

To fit a GLM in SAS, the GENMOD procedure is used. In R, this can be accomplished by using the glm function. 

With these tools, only a handful of distributions can be used for the error terms. However, with the GAMLSS 

package in R, a number of distributions can be utilized. In using GAMLSS, the distribution of the response 

variable does not necessarily have to belong to the exponential family. 

Keywords: GLM, Exponential Family, AIC, BIC, GAMLSS. 

 

1. Introduction 

Linear models are used to study how a quantitative variable depends on one or more 

predictors/covariates/explanatory variables. In a linear model, the predictors can either be quantitative or 

qualitative. A linear regression model can be written as 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖 + 𝜀𝑖  

Where  𝑦 is the outcome, 𝑥1, 𝑥2, … , 𝑥𝑝 are the set of predictors, 𝛽1, 𝛽2, . . 𝛽𝑝 are the set of parameters to be 

determined and 𝜀𝑖 are the random errors (residuals). The model makes the assumptions that 𝜀𝑖~𝑁(0, 𝜎2). That is, 

the random errors are independent of each other and are normally distributed with a zero mean and a constant 

variance  , 𝜎2 (Neter et al. 2005). With these assumptions, the expected value of the response, 𝑦, in the linear 

model is 

𝐸(𝑦𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖 

This is called a linear model because, the mean response is a linear function of the unknown 

parameters, 𝛽1, 𝛽2, . . 𝛽𝑝. The popularity of linear regression model is ascribed to several factors. Linear regression 

models are natural approximating polynomials for more complex functional relationships. Secondly, the 

parameters, 𝛽1, 𝛽2, . . 𝛽𝑝, of the linear regression model are straightforward to estimate. Furthermore, there is a 

well-developed statistical theory for linear regression models. Provided the assumptions of the linear regression 

model are satisfied, statistical tests on the model parameters, confidence and predictive intervals for the mean 

response, etc, can easily be obtained and used for inferences (Myers et al, 2012). Likewise, linear regression 

models can be fitted in almost all statistical packages.  

Like with any other statistical model, the assumptions underlying the use of the linear regression model should be 
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met before it can be used in making inference (Oppong and Agbedra, 2016). Occasionally, in a linear regression 

model, the assumption of normally distributed errors is violated. In such instances, data transformations are often 

applied so that in the end, the random errors will appear to be more nearly normal. Nonetheless, data 

transformation comes with some consequences. First, the model no longer applies directly to the original scale of 

measurement, which is in most cases of interest. Secondly, in applying transformations, one tries to force the 

model framework and distributional assumption that may not be best for the data.  

 

2. Methodology 

The linear regression model can be extended such that, other distribution aside the normal distribution can also be 

used. The theory in generalized linear model (GLM) is a significant development beyond linear regression theory 

in which a much broader family of distributions can be used for the error terms other than the normal distribution 

as used in linear regression (McCullagh and Nelder, 1989).  In GLM, three components are distinguished namely, 

the random component, systematic component and the link function. The random component specifies a 

probability distribution for the response variable (𝑌), the systematic component identifies the set of predictors used 

and the link function specifies a function that maps 𝐸(𝑌) to the systematic component (Nelder and Wedderburn, 

1972). In this paper, interest is in the random component of GLM. More specifically, the random component in 

GLM allows the inclusion of distributions from the Exponential Family. The idea of the random component in 

GLM is to allow one to include more suitable probability models, rather than to try and make things fit into the 

usual (often not appropriate) normal-based methods. In the absence of a rigorous treatment of GLM, McCullagh 

and Nelder (1989) can be referred to for more detail. In this paper, a real data set is used to illustrate an instance in 

which the normal distribution is not a better distribution for the continuous response. To aid in the selection of a 

best fitting model (distribution), Akaike Information Criterion (AIC) together with Bayesian Information 

Criterion (BIC) is used. 

 

2.1 AIC and BIC 

AIC and BIC are the most common information-theoretic criteria used in model selection (Lesaffre and Lawson, 

2012). In particular, information criteria techniques for model selection emphasize minimizing the amount of 

information required to express the data and the model. This leads to the selection of models that are efficiently 

represented by the data (Acquah, 2010). That is, AIC and BIC balance model fit with model complexity (number 

of parameters). Unlike with other model selection tools, AIC and BIC can be used for both nested and 

non-nested models although, they are mostly used for non-nested models. By definition,  

𝐴𝐼𝐶 = −2 log (ℒ(�̂�)) + 2𝐾 and 𝐵𝐼𝐶 = −2 log (ℒ(�̂�)) + (log 𝑛)𝐾 

ℒ is the likelihood function, �̂� is the maximum likelihood estimate of 𝛽 , 𝐾  is the number of estimated 

parameters (including the variance) and 𝑛 is the sample size. The distinction between AIC and BIC is in the 

second term which depends on the sample size, 𝑛, in the case of BIC. AIC tends to select more complicated 

models whereas BIC often leads to the selection of simpler models (Kuha, 2004). With these criteria, models 

with smaller AIC or BIC are considered to provide a better fit. Ideally, a difference of more than 5 is considered 

a substantial evidence for the model with smaller AIC or BIC whereas, a difference of more than 10 is often 

considered a strong evidence (Lesaffre and Lawson, 2012). In this paper both criteria will be used in the 

selection of the “best” fitting model. 
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2.2 Other distributions for continuous response 

With GLM, continuous distributions of the Exponential Family can equally be used in a regression model aside 

the normal distribution (McCullagh and Nelder, 1989). For a continuous response, members of the one parameter 

or multi-parameter exponential family of distributions can be implemented. However, preference for one 

distribution over the other depends on the range of support of the distribution, that is, (−∞, ∞), (0, ∞) or (0,1). 

Some of these distributions include normal, inverse normal, exponential, gamma, inverse gamma, beta, Pareto, 

Weibull, chi-squared and many others. All of these distributions take the form 

𝑓(𝑦; 𝜃, 𝜙) = exp {(𝑦𝜃 − 𝑏(𝜃))/𝑎(𝜙)  + 𝑐(𝑦, 𝜙)} 

𝐸(𝑌) = 𝑏′(𝜃), 𝑉𝑎𝑟(𝑌) = 𝑏′′(𝜃)𝑎(𝜙), 𝜙 is called the dispersion parameter and 𝜃 is the natural parameter 

(Agresti, 2012).  

As a way of illustrating situations in which other continuous distributions are more practical compared to the 

normal distribution, the salmonella data (Ribbens et al, 2007) is used in a regression model. The data set used 

consist of measurements of three variables from 1402 pigs. The measured variable are Sample to Positive ratios 

(SP-ratios), weight and sampling time in days. SP-ratios is a continuous variable calculated as the ratio of the 

differences between Optical density (OD) and the mean optical density of the positive and negative controls 

(𝑂𝐷̅̅ ̅̅ 𝑝𝑜𝑠 and  𝑂𝐷̅̅ ̅̅ 𝑛𝑒𝑔). Weight is put into four categories, that is, <40kg, 40-59kg, 60-80kg and >80kg and 

Sampling time (in days) records the day of the year (day 3 to day 363) on which measurements are taken. Here, 

SP ratio is regressed on weight and sampling time. That is, it is of interest to study the effect of weight and 

sampling time on SP ratio. 

 

2.3 Model selection. 

For illustration sake, a simple model which assumes a linear relationship between the predictors (weight, 

sampling time) and the response variable (SP ratio) is considered. Also, for simplicity, a model without 

interaction is used. The fitted model is expressed as: 

𝑓(𝑥; 𝛽) = 𝛽0 +  𝛽1Weight1 + 𝛽2Weight2 + 𝛽3Weight3 +  𝛽4Sampling Time, 

Where 𝑓(𝑥; 𝛽) specifies the distribution of the response, that is, gamma, inverse gamma, lognormal, inverse 

Gaussian, Weibull or normal (Gaussian) distribution.  

Weight1 = {
1  weight < 40
0  Otherwise    

,  Weight2 = {
1   weight 40 − 59
0  Otherwise          

,  Weight3 = {
1   weight is 60 − 80  
0  Otherwise               

 

To illustrate how to fit this model in practical applications, SAS® 9.4 and R version 3.1.3 are used. In SAS, the 

GENMOD procedure is used to fit a generalized linear model. However, not all distributions of the exponential 

family are available in the GENMOD procedure. On the other hand, one can easily define a distribution through 

DATA step programming statements used within the procedure. The available distributions are gamma, 

geometric, inverse Gaussian, multinomial, negative binomial, normal, Poisson and the zero-inflated Poisson 

(SAS Institute Inc., 2008). All the aspects of the GENMOD procedure will not be considered in this paper. Here, 

the procedure is used to illustrate how other continuous distributions can be incorporated in the linear regression 

model. For our model, the following SAS program is used. 

 

 

 

With the dist option which stand for distribution, other distributions can be included. For example, dist= 

GAMMA uses the gamma distribution instead of the normal distribution for the distribution of the response. The 

class option allows SAS to treat weight as a classification variable and not a continuous variable. 

To fit a GLM in R, the glm function can be used. With this function, the family of distributions in use are the 

normal (Gaussian), binomial, Poisson, gamma, inverse Gaussian and the quasi family which allows fitting 

user-defined models by maximum quasi-likelihood. To fit the model in R, the following program can be used.  

 

proc genmod data =pigData; 

class weight; 

model SP_Ratio=weight day /dist=NORMAL; 

run; 
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1. glm(SP ~ Weight1  + Weight2  + Weight3  + day,  

family=gaussian) 

2. glm(SP ~ Weight1 + Weight2 + Weight3 + day,  family=Gamma) 

With the family option, other distributions can be included aside the normal distribution. For instance, model 2 

makes use of the gamma distribution. 

With the Generalized Additive Models for Location Scale and Shape (GAMLSS) package in R, a number of 

distributions can be included in the regression model. “GAMLSS is a general framework for fitting regression 

type models where the distribution of the response variable does not necessarily have to belong to the 

exponential family” (Stasinopoulos and Rigby, 2007). With GAMLSS, distribution that belong to the exponential 

family as well as those that do not belong to the exponential family of distributions can equally be used in the 

regression model. For the distributions considered in this paper, we illustrate how they can be used in a linear 

regression model using the GAMLSS package. 

gamlss(SP~ Weight1  + Weight2  + Weight3  + day, 

family=NO) 

The family=NO option uses the normal distribution as the conditional distribution of the response given the 

predictors. For the other distributions, we replace with family=LOGNO for the lognormal distribution, family= 

GA for gamma, family= IGAMMA for the inverse gamma distribution, family= IG for inverse Gaussian and 

family= WEI for the Weibull distribution.  

 

3. Results 

To gain insight in the distribution of the response, a histogram of SP ratio is obtained (Figure 1). The histogram 

depicts a positively skewed distribution. It should be emphasized that the response (SP ratio), can only take 

positive values (0, ∞). SP ratio is a continuous variable which usually ranges from 0 to 4 but even higher values 

can be observed. With the data at hand, SP ratio ranges from 0.005 to 3.44. Hence, the family of distribution that 

will be more appropriate are those distribution that take non-negative values. Hence, in this case, the normal 

distribution will not be a good choice since it will stand the chance of predicting a negative SP ratio. However, 

for the purpose of illustration, the normal distribution is also used, just to show how inappropriate it is in such 

situations. For the positively skewed distributions, gamma, inverse gamma, lognormal, inverse Gaussian and the 

Weibull distributions are considered. Also the symmetric nature of the log(SP ratio) suggests that a regression 

model with a normal distribution and logarithm of SP ratio as the response could be considered as well. However, 

given the fact that the linear regression model is conditional on the covariates and since the normality 

assumption is on the residuals and not on the response, the choice of the model cannot be entirely based on this 

plot. 

Figure 1. Histogram of SP ratio and log(SP ratio) 

Since this is not an actual data analysis, not all output will be presented. Here, interest is in choosing a 

distribution that provides the best fit in terms of AIC and BIC.  

In fitting the specified model with these distributions, the results in Table 1 is obtained. From the output, the 

normal distribution is seen to perform poorly among all the distributions considered. This was indeed to be 

expected since all the other distribution have support between (0, −∞) whereas the normal distribution has 
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support form (−∞, ∞). SP ratio can only take positive values hence, distributions with support between (0, −∞) 

will provide better fit. It should be emphasized that, in practical applications, either AIC or BIC is used and not 

both. In this paper, both are used to show that it many situation (not always), they lead to the selection of the 

same model. Here, the distribution that provides the best fit is the lognormal distribution. Compared to all the 

other distributions, the lognormal distribution has the lowest AIC and/or BIC 

Table 1. AIC and BIC for models with different distributions for the response. 

Distribution  AIC BIC 

gamma -369.23 -348.24 

inverse gamma -384.03 -363.05 

lognormal -652.14 -631.16 

inverse Gaussian -430.32 -409.33 

Weibull -426.21 -405.23 

normal 1850.92 1871.91 

 

To further provide evidence that the normal distribution is not the only ultimate distribution for continuous 

responses, some attention is given to this distribution. From the symmetric nature of the histogram in Figure 1 

(b), a model with log(SP ratio) as response is also considered for the normal distribution. Without delving much 

into the model assumptions, it is observed in Figure 2 that the error (residuals) are normally distributed as 

expected. However the AIC and BIC associated with this model is still very high compared to the other 

distribution considered in Table 1. The AIC for the model with a normal distribution and log(SP ratio) as 

response is 4524.403 and a BIC of 4555.877. Compared to the model with the normal distribution on the original 

response scale, the model with the log transformed response performs even worse.   

 

 

 

 

 

 

 

 

Figure 2. Histogram of residuals of model with log(SP ratio) as response 

 

4. Conclusion  

Although the normal distribution is often seen as an “omnipresent” distribution in many statistical application 

(Oppong and Agbedra, 2016) particularly in modelling a continuous response, it is not by far the only available 

distribution. In some instances, when a continuous response is encountered in a regression model, the normal 

distribution is often not a plausible distribution for the response given the predictors. With GLM, a much broader 

family of distributions can be used for the error terms other than the normal distribution as used in linear regression 

(McCullagh and Nelder, 1989).  

In this paper, it has been shown that, many other continuous distribution can be used in a linear regression model 

and often, some of these distributions provide a better fit compared to the normal distribution. Likewise, it has 

been demonstrated that, the normal distribution is sometimes not a choice at all even though transformations are 

possible alternatives. However, transformations to near normality comes with a price. First, the model no longer 

applies directly to the original scale of measurement, which is mostly of interest. Likewise, in applying 

transformations, one forces the model framework and distributional assumption that may not be best for the data 

at hand.  

In illustrating how GLM is implemented in practice, the GENMOD procedure in SAS as well as the glm function 

in R is employed. With these procedures, a handful of distributions are allowed for the distribution of the 
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response. However, with the GAMLSS package in R, a substantial number of distributions can be used. In 

GAMLSS, the distribution of the response variable does not necessarily have to belong to the exponential family. 

Hence distributions of the exponential family together with distributions that do not belong to the exponential 

family can be used in the regression model (Stasinopoulos and Rigby, 2007). 
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