ON JORDAN GENERALIZED HIGHER

BI-DERIVATIONS ON PRIME GAMMA

RINGS

Salah M.Salih and Ahmed M.Marir
Department of Mathematics college of Education Al-Mustansiriya University
Baghdad, Iraq.

Abstract

In this study, we define the concepts of a generalized higher bi-derivation, Jordan generalized higher bi-derivation and Jordan triple generalized higher bi-derivation on Γ-rings and show that a Jordan generalized higher bi-derivation on 2 -torsion free prime Γ-ring is a generalized higher bi-derivation .

1.Introduction

Let M and Γ be two additive abelian groups. If there exists a mapping $(a, \propto, b) \rightarrow a \propto b$ of $M \times \Gamma \times M \rightarrow M$ satisfying the following for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in M$ and $\propto, \beta \in \Gamma$:
(i) $(a+b) \propto c=a \propto c+b \propto c, a(\alpha+\beta) b=a \propto b+a \beta b, a \propto(b+c)=a \propto b+a \propto$ c and
(ii) $(a \propto b) \beta c=a \propto(b \beta c)$.

Then M is called a Γ - ring
The notion of a Γ - ring was introduced by Nobusawa [9] and generalized by Barnes [2] as defined above. Many properties of Γ - ring were obtained by Barnes [2], kyuno [6] , Luh [7] and others .
let M be a Γ - ring . then M is called 2-torsion free if $2 \mathrm{a}=0$ implies $\mathrm{a}=0$ for all $a \in M$. Besides, M is called a prime $\Gamma-r i n g$ if, for all $a, b \in M, a \Gamma M \Gamma b=(0)$ implies either $\mathrm{a}=0$ or $\mathrm{b}=0$. and, M is called semiprime if $a \Gamma M \Gamma a=(0)$ with $a \in M$ implies $\mathrm{a}=0$. Note that every prime Γ-ring is obviously semiprime. M is said to be a commutative $\Gamma-\operatorname{ring}$ if $a \propto b=b \propto a$ holds for all $a, b \in M$ and $\propto \in \Gamma$. Let M be a Γ-ring . then, for $a, b \in M$ and $\alpha \in \Gamma$, we define $[a, b]_{\alpha}=a \propto b-b \propto a$, known as the commutator of a and b with respect to α.
The notion of derivation and Jordan derivation on a Γ-ring were defined by M. Sapanci and A. Nakajima in [11], as follow

An additive mapping $d: M \rightarrow M$ is called a derivation of M if $d(a \propto b)=d(a) \propto b+a \propto d(b)$ for all $a, b \in M, \propto \in \Gamma$. And, if $d(a \propto a)=d(a) \propto$ $a+a \propto d(a)$ for all $a \in M$ and $\propto \in \Gamma$, then d is called a Jordan derivation of M .

The concept of Jordan generalized derivation of a Γ-ring has been developed by Y.Ceven and M.A.Ozturk in [3] , as follow

An additive map $F: M \rightarrow M$ is said to be a generalized derivation of M if there exists a derivation $d: M \rightarrow M$ such that $F(a \propto b)=F(a) \propto b+a \propto d(b)$ is satisfied for all $a, b \in M$ and $\propto \in \Gamma$. And, F is said to be a Jordan generalized derivation of M if there
exists a Jordan derivation $d: M \rightarrow M$ such that $F(a \propto a)=F(a) \propto a+a \propto d(a)$ holds for all $a \in M$ and $\propto \in \Gamma$.
A mapping $D: M \times M \rightarrow M$ is said to be symmetric if $\quad D(a, b)=D(b, a)$, for all $a, b \in M$

An bi-additive mapping $d: M \times M \rightarrow M$ is called a symmetric bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M if $d(a \propto b, c)=d(a, c) \propto b+a \propto d(b, c)$ for all $a, b, c \in M, \quad \propto \in \Gamma$.

And, if $d(a \propto a, c)=d(a, c) \propto a+a \propto d(a, c)$ for all $a \in M$ and $\propto \in \Gamma$, then d is called a Jordan bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M .
The notion of symmetric bi-derivation was introduced by G.Maksa [8] and [5]
An bi-additive map $F: M \times M \rightarrow M$ is said to be a generalized symmetric bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M if there exists symmetric bi-derivation $d: M \times M \rightarrow M$ such that $F(a \propto$ $b, c)=F(a, c) \propto b+a \propto d(b, c)$ is satisfied for all $a, b, c \in M$ and $\propto \in \Gamma$. And, F is said to be a Jordan generalized bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M if there exists a Jordan biderivation $d: M \times M \rightarrow M$ such that $F(a \propto a, c)=F(a, c) \propto a+a \propto d(a, c)$ holds for all $a, c \in M$ and $\alpha \in \Gamma$.
The notion of generalized symmetric bi-derivations was introduced by Nurcan [1] .
In this paper we show that for our notions of generalized higher bi-derivation and Jordan generalized higher bi-derivation and Jordan triple generalized higher bi-derivation on a Γ ring . In [10] the authors defined higher bi-derivations and Jordan higher bi-derivations as follows.
Let M be a Γ-ring and $D=\left(d_{i}\right)_{i \in N}$ be a family of biadditive mappings on $\mathrm{M} \times \mathrm{M}$ into M , such that $d_{o}(a, b)=a$ for all $a, b \in M$, then D is called a higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M if for every $a, b, c, d \in M, \propto \in \Gamma$ and $n \in N$

$$
d_{n}(a \propto b, c \propto d)=\sum_{i+j=n} d_{i}(a, c) \propto d_{j}(b, d)
$$

D is said to be a Jordan higher bi-derivation if

$$
d_{n}(a \propto a, c \propto c)=\sum_{i+j=n} d_{i}(a, c) \propto d_{j}(a, c)
$$

D is called a Jordan triple higher bi-derivation

$$
d_{n}(a \propto b \beta a, c \propto d \beta c)=\sum_{i+j+k=n} d_{i}(a, c) \propto d_{j}(b, d) \beta d_{k}(a, c)
$$

Note that $d_{n}(a+b, c+d)=d_{n}(a, c)+d_{n}(b, d) \quad$ for all $a, b, c, d \in M$ and $n \in N$.
we denote

$$
\Psi_{n}(a, b, c, d)_{\alpha}=d_{n}(a \propto b, c \propto d)-\sum_{i+j=n} d_{i}(a, c) \propto d_{j}(b, d)
$$

for all $a, b, c, d \in M, \propto \in \Gamma$ and $n \in N$
Now, we present the properties of $\Psi_{n}(a, b, c, d)_{\alpha}$
$\Psi_{n}(a, b, c, d)_{\alpha}=-\Psi_{n}(b, a, d, c)_{\alpha}$
A mapping $F: M \rightarrow M$ defined by $F(a)=D(a, a)$, where $D: M \times M \rightarrow M$ is a symmetric mapping is called the trace of D it is obvious that in the case $\quad D: M \times M \rightarrow M$ is a symmetric mapping which is also biadditive (i.e. additive in both arguments). the trace F of D satisfies the relation $F(a+b)=F(a)+F(b)$, for all $a, b \in M$.
In our work we need the following lemma.
lemma 1.1. [4] let M be a 2 -torsion free semi prime Γ-ring and suppose that $a, b \in M$ if $a \Gamma m \Gamma \mathrm{~b}+b \Gamma m \Gamma a=(0)$ for all $m \in M$, then $a \Gamma m \Gamma b=b \Gamma m \Gamma a=(0)$

2. Generalized higher bi-derivation on Γ-ring :

In this section we present the concepts of generalized higher
bi-derivation, Jordan generalized higher bi-derivation and Jordan triple generalized higher bi-derivation on Γ-rings and we study the properties of them .

Definition 2.1. let M be a Γ-ring and $F=\left(f_{i}\right)_{i \in N}$ be a family of biadditive mappings on $\mathrm{M} \times \mathrm{M}$ into M such that $f_{0}(a, b)=a$ for all $a, b \in M$ then F is called a generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M if there exists a higher bi-derivation $D=\left(d_{i}\right)_{i \in N}$ on $\mathrm{M} \times \mathrm{M}$ into M such that for all $n \in N$ we have.
$\mathrm{f}_{\mathrm{n}}(\mathrm{a} \propto \mathrm{b}, \mathrm{c} \propto \mathrm{d})=\sum_{i+j=n} f_{n}(a, c) \alpha d_{j}(b, d)$ for every $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{M}$ and $\alpha \in \Gamma$
F is said to be a Jordan generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M if there exists a Jordan higher bi-derivation $\mathrm{D}=\left(d_{i}\right)_{i \in N}$ on $\mathbf{M} \times \mathrm{M}$ into M such that for all $\mathrm{n} \in \mathrm{N}$ we have :

$$
f_{n}(a \propto a, c \propto c)=\sum_{i+j=n} f_{i}(a, c) \alpha d j(a, c)
$$

for every a, $c \in \mathrm{M}$ and $\propto \epsilon \Gamma$
F is said to be a Jordan triple generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M if there exists a Jordan triple generalized higher bi-derivation $\mathrm{D}=\left(d_{i}\right)_{i \in N}$ on $\mathrm{M} \times \mathrm{M}$ into M such that for all $\mathrm{n} \in \mathrm{N}$ we have :
$f_{n}(a \propto b \beta a, c \propto d \beta c)=\sum_{i+j+k=n} f_{n}(a, c) \propto d_{j}(b, d) \beta d_{k}(a, c)$
For every $a, b, c, d \in M$ and $\alpha, \beta \in Г$.
Note that $f_{n}(\mathrm{a}+\mathrm{b}, \mathrm{c}+\mathrm{d})=\mathrm{f}_{\mathrm{n}}(\mathrm{a}, \mathrm{c})+\mathrm{f}_{\mathrm{n}}(\mathrm{b}, \mathrm{d})$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{M}$ and $\mathrm{n} \in \mathrm{N}$

Example 2.2

Let $\mathrm{M}=\left\{\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right): \mathrm{x}, \mathrm{y} \in \mathrm{R}\right\}, \mathrm{R}$ is real number .
M be a Γ-ring of 2×2 matrices and $\Gamma=\left\{\left(\begin{array}{ll}r & 0 \\ 0 & 0\end{array}\right): r \in R\right\}$ we use the usual addition and multiplication on matrices of $M \times \Gamma \times M$, we define $f_{i}: M \times \Gamma \times M \rightarrow M, i \in N$ by
$\mathrm{f}_{\mathrm{i}}\left(\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}c & d \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}k a & (1+i) b \\ 0 & 0\end{array}\right)$ for all $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}c & d \\ 0 & 0\end{array}\right) \in \mathrm{M}$
$\mathrm{K}=\frac{\left(i^{2}-i n+1\right)+\left|i^{2}-i n+1\right|}{2}=\left\{\begin{array}{l}1 \text { If i } \in\{0, \mathrm{n}\} \\ 0 \text { If } \mathrm{i} \notin\{0, \mathrm{n}\}\end{array} \quad n \in N, 0 \leq i \leq n\right.$
Then f is generalized higher bi-derivation on Γ - ring because there exists a higher biderivation on Γ-ring
$d_{i}: \mathrm{M} \times \Gamma \times \mathrm{M} \rightarrow \mathrm{M}, \mathrm{i} \in \mathrm{N}$ defined by
$d_{i}\left(\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}c & d \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}m a & (m+i) b \\ 0 & 0\end{array}\right)$
for all $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}c & d \\ 0 & 0\end{array}\right) \in \mathrm{M}$
Such that $\mathrm{m}=\frac{(1-i)+|1-i|}{2}= \begin{cases}1 & \text { if } i=0 \\ 0 & \text { if } i \neq 0\end{cases}$
Lemma 2.3. let M be a Γ-ring and $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{IEN}}$ be a Jordan generalized higher bi- derivation on $M \times M$ into M associated with Jordan higher bi- derivation $D=\left(d_{i}\right)_{i \in N}$ of $M \times M$ into M. Then for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{s}, \mathrm{t} \in \mathrm{M}, \propto, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$, the following statements hold :
(i) $\mathrm{f}_{\mathrm{n}}(\mathrm{a} \propto \mathrm{b}+\mathrm{b} \propto \mathrm{a}, \mathrm{c} \propto \mathrm{d}+\mathrm{d} \propto \mathrm{c})=\sum f_{i}(a, c) \propto d_{j}(b, d)+\mathrm{f}_{\mathrm{i}}(b, d) \propto d_{j}(a, c)$
(ii) $\mathrm{f}_{\mathrm{n}}(\mathrm{a} \propto \mathrm{b} \beta \mathrm{a}+\mathrm{a} \beta \mathrm{b} \propto \mathrm{a}, \mathrm{c} \propto \mathrm{d} \beta \mathrm{c})=$

$$
\sum_{i+j+k=n} \mathrm{f}_{\mathrm{i}}(\mathrm{a}, \mathrm{c}) \propto \mathrm{d}_{\mathrm{j}}(\mathrm{~b}, \mathrm{~d}) \beta \mathrm{d}_{\mathrm{k}}(\mathrm{a}, \mathrm{c})+\mathrm{f}_{\mathrm{i}}(\mathrm{a}, \mathrm{c}) \beta \mathrm{d}_{\mathrm{j}}(\mathrm{~b}, \mathrm{~d}) \propto \mathrm{d}_{\mathrm{k}}(\mathrm{a}, \mathrm{c})
$$

Especially , if M is 2-torsion free ,then

$$
\text { (iii) } \mathrm{f}_{n}(\mathrm{a} \propto \mathrm{~b} \propto \mathrm{c}, \mathrm{c} \propto \mathrm{~d} \propto \mathrm{c})=\sum_{i+j+k=n} f_{i}(a, c) \propto d_{j}(b, d) \propto d_{j}(a, c)
$$

(iv) $\mathrm{f}_{\mathrm{n}}(\mathrm{a} \propto \mathrm{b} \propto \mathrm{c}+\mathrm{c} \propto \mathrm{b} \propto \mathrm{a}, \mathrm{s} \propto d \propto t+t \propto d \propto s)=$

$$
\sum_{i+j+k=n} f_{i}(a, s) \propto d_{j}(b, d) \propto d_{k}(c, t)+f_{i}(c, t) \propto d_{j}(b, d) \propto d_{k}(\mathrm{a}, \mathrm{~s})
$$

Proof. (i) is obtained by computing $f_{n}((a+b) \propto(a+b),(c+d) \propto(c+d))$ and (ii) is also obtained by replacing $a \beta b+b \beta a$ for b and $c \beta d+d \beta c$ for d in (i), in (ii). If we replace $a+c$ for a and $\mathrm{s}+\mathrm{t}$ for c in (iii), we can get (iv).

Definition 2.4. let M be a Γ-ring and $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{I} \in \mathrm{N}}$ be a Jordan generalized higher bi- derivation on $M \times M$ into M associated with Jordan higher bi- derivation $D=\left(d_{i}\right)_{i \in N}$ of $M \times M$ into M. Then for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{s}, \mathrm{t} \in \mathrm{M}, \propto, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$, we define

$$
\emptyset_{n}(a, b, c, d)_{\propto}=\mathrm{fn}(\mathrm{a} \propto \mathrm{~b}, \mathrm{c} \propto \mathrm{~d})-\sum_{i+j=n} f_{i}(a, c) \propto d_{j}(b, d)
$$

Lemma 2.5. let M be a Γ-ring and $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{I} \in \mathrm{N}}$ be a Jordan generalized higher bi- derivation on $M \times M$ into M associated with Jordan higher bi- derivation $D=\left(d_{i}\right)_{i \in N}$ of $M \times M$ into M. Then for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{s}, \mathrm{t} \in \mathrm{M}, \propto, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$.
(i) $\emptyset_{n}(a, b, c, d)_{\alpha}=-\emptyset_{n}(b, a, d, c)_{\alpha}$
(ii) $\emptyset_{n}(a+s, b, c, d)_{\alpha}=\emptyset_{n}(b, a, d, c)_{\alpha}+\emptyset_{n}(s, b, c, d)_{\alpha}$
(iii) $\emptyset_{n}(a, b+s, c, d)_{\alpha}=\emptyset_{n}(a, b, c, d)_{\alpha}+\emptyset_{n}(a, s, c, d)_{\alpha}$
(iv) $\emptyset_{n}(a, b, c+s, d)_{\alpha}=\emptyset_{n}(a, b, c, d)_{\alpha}+\emptyset_{n}(a, b, s, d)_{\alpha}$
(v) $\emptyset_{n}(a, b, c, d+s)_{\alpha}=\emptyset_{n}(a, b, c, d)_{\alpha}+\emptyset_{n}(a, b, c, s)_{\alpha}$

Proof. These results follow easily by Lemma 2.3 (i) and the definition of $\emptyset_{n}(a, b, c, d)_{\alpha}$

Note that F is a generalized higher bi-derivation iff $\emptyset_{n}(a, b, c, d)_{\alpha}=0$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in M$, $\alpha \in \Gamma$ and $\mathrm{n} \in N$.

3. The Main Results

In this section we present, the main results of this paper .
Lemma 3.1. let M be a 2-torsion free and $\mathrm{f}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{I} \in \mathrm{N}}$ be a Jordan generalized higher biderivation on $M \times M$ into M associated with Jordan higher bi- derivation $D=\left(d_{i}\right)_{i \in N}$ of $M \times M$ into M. then for all a,b,c,d,s,t $\in \mathrm{M}, \propto, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$, if $\emptyset_{t}(a, b, c, d)_{\alpha}=0$ for every $\mathrm{t}<\mathrm{n}$ and $\Psi_{t}(a, b, c, d)_{\alpha}=0$ for every $\mathrm{t}<\mathrm{n}$ then:
$\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[a, b]_{\alpha}+[a, b]_{\alpha} \beta m \beta \Psi_{n}(a, b, c, d)_{\alpha}=0$
Proof . let $S \in M$, since f_{n} is bi additive mapping then by Lemma 2.3. (iv) we obtain :
$f_{n}(a \propto b \beta m \beta b \propto a+b \propto a \beta m \beta a \propto b, c \propto d \beta s \beta d \propto c+d \propto c \beta s \beta c \propto d)$
$=f_{n}((a \propto b) \beta m \beta(b \propto a)+(b \propto a) \beta m \beta(a \propto b),(c \propto d) \beta s \beta(d \propto c)+(d \propto c) \beta s \beta(c \propto$
d))

$$
\begin{aligned}
&=\sum_{i+j+k=n} f_{i}(a \propto b, c \propto d) \beta d_{j}(m, s) \beta d_{k}(b \propto a, d \propto c) \\
& \quad+f_{i}(b \propto a, d \propto c) \beta d_{j}(m, s) \beta d_{k}(a \propto b, c \propto d)
\end{aligned}
$$

$=f_{n}(a \propto b, c \propto b) \beta m \beta b \propto a+a \propto b \beta m \beta d_{n}(b \propto a, c \propto d)+f_{n}(b \propto a, d \propto c) \beta m \beta a$ $\propto b$

$$
\begin{aligned}
& +\sum_{i+j+k}^{0<i, k<n} f_{i}(a \propto b, c \propto d) \beta d_{j}(m, s) \beta d_{k}(b \propto a, d \propto c) \\
& +f_{i}(b \propto a, d \propto c) \beta d_{j}(m, s) \beta d_{k}(a \propto b, c \propto d)
\end{aligned}
$$

$=f_{n}(a \propto b, c \propto b) \beta m \beta b \propto a+a \propto b \beta m \beta d_{n}(b \propto a, d \propto c)+f_{n}(b \propto a, d \propto c) \beta m \beta a$ $\propto b+b$ $\propto a \beta m \beta d_{n}(a \propto b, c \propto d)$

$$
\begin{align*}
& +\sum_{\substack{q+t+j+h+g=n}}^{q+t, h+g<n} f_{q}(a, c) \propto d_{t}(b, d) \beta d_{j}(m, s) \beta d_{h}(b, d) \propto d_{g}(a, c)+f_{q}(b, d) \\
& \propto d_{t}(a, c) \beta d_{j}(m, s) \beta d_{h}(a, c) \propto d_{g}(b, d) \tag{1}
\end{align*}
$$

On the other hand : by lemma 2.3. (iii)
$f_{n}(a \propto b \beta m \beta \propto a+b \propto a \beta m \beta a \propto b, c \propto d \beta s \beta d \propto c+d \propto c \beta s \beta c \propto d)$
$=f_{n}(a \propto(b \beta m \beta b) \propto a+b \propto(a \beta m \beta a) \propto b, c \propto(d \beta s \beta d) \propto c+d \propto(c \beta s \beta c) \propto d)$
$=f_{n}(a \propto(b \beta m \beta b) \propto a, c \propto(d \beta s \beta d) \propto c)+f_{n}(b \propto(a \beta m \beta a) \propto b, d \propto(c \beta s \beta c) \propto d)$

$$
\begin{align*}
&=\sum_{q+k+g=n} f_{q}(a, c) \propto d_{k}(b \beta m \beta b, d \beta s \beta d) \propto d_{g}(a, c)+f_{q}(b, d) \propto d_{k}(a \beta m \beta a, c \beta s \beta c) \\
& \propto d_{g}(b, d) \\
&=\sum_{q+t+j+h+g=n} f_{q}(a, c) \propto d_{t}(b, d) \beta d_{j}(m, s) \beta d_{n}(b, d) \propto d_{g}(a, c)+f_{q}(b, d) \\
& \propto d_{t}(a, c) \beta d_{j}(m, s) \beta d_{h}(a, c) \propto d_{g}(b, d) \\
& \sum_{q+t=n} f_{q}(a, c) \propto d_{t}(b, d) \beta m \beta b \propto a+a \propto b \beta m \beta \sum_{h+g=n} d_{h}(b, d) \\
& \propto d_{g}(a, c) \\
&+\sum_{q+t=n}^{q+t} f_{q}(b, d) \propto d_{t}(a, c) \beta m \beta a \propto b+b \propto a \beta m \beta \sum_{h+g} d_{h}(a, c) \\
& \propto d_{g}(b, d) \\
&+\sum_{q+t, h+g<n}^{q+t+j+h+g=n} f_{q}(a, c) \propto d_{t}(b, d) \beta d_{j}(m, s) \beta d_{h}(b, d) \propto d_{g}(a, c)+f_{q}(b, d) \tag{2}\\
& \propto d_{t}(a, c) \beta d_{j}(m, s) \beta d_{h}(a, c) \propto d_{g}(b, d)
\end{align*}
$$

Compare (1) and (2) we get:
$f_{n}(a \propto b, c \propto d) \beta m \beta b \propto a-\sum_{q+t=n} f_{q}(a, c) \propto d_{t}(b, d) \beta m \beta b \propto a+a$

$$
\begin{aligned}
& \propto b \beta m \beta d_{n}(b \propto a, d \propto c)-a \propto b \beta m \beta \sum_{h+g=n} d_{h}(b, d) \\
& \propto d_{g}(a, c)+f_{n}(b \propto a, d \propto c) \beta m \beta a \propto b-\sum_{q+t=n} f_{q}(b, d) \\
& \propto d_{t}(a, c) \beta m \beta a \propto b+b \propto a \beta m \beta d_{n}(a \propto b, c \propto d)-b \\
& \propto a \beta m \beta \sum_{h+g=n} d_{h}(a, c) \propto d_{g}(b, d)=0
\end{aligned}
$$

$\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta b \propto a+a \propto b \beta m \beta \Psi_{n}(b, a, d, c)_{\alpha}+\emptyset_{n}(b, a, d, c)_{\alpha} \beta m \beta a \propto b+b$ $\propto a \beta m \beta \Psi_{n}(a, b, c, d)_{\alpha}=0$
$\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta b \propto a-a \propto b \beta m \beta \Psi_{n}(a, b, c, d)_{\alpha}-\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta a \propto b+b \propto$ $a \beta m \beta \Psi_{n}(a, b, c, d)_{\alpha}=0$

$$
\begin{aligned}
& \emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[b, a]_{\alpha}+[b, a]_{\alpha} \beta m \beta \Psi_{n}(a, b, c, d)_{\alpha}=0 \\
& \emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[a, b]_{\alpha}+[a, b]_{\alpha} \beta m \beta \Psi_{n}(a, b, c, d)_{\alpha}=0
\end{aligned}
$$

Lemma 3.2. let M be 2-torsion free prime Γ - ring and $F=\left(f_{i}\right)_{i \in N}$ be a Jordan generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M associated with Jordan higher biderivation $D=\left(d_{i}\right)_{i \in N}$ on $M \times M$ into M. then for all $a, b, c, d, m \in M \quad, \alpha, \beta \in \Gamma$ and $n \in N$
$\emptyset_{\mathrm{n}}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})_{\alpha} \beta \mathrm{m} \beta[\mathrm{a}, \mathrm{b}]_{\alpha}=[\mathrm{a}, \mathrm{b}]_{\alpha} \beta \mathrm{m} \beta \Psi_{\mathrm{n}}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})_{\alpha}=0$

Proof: By Lemma 3.1. and Lemma 1.1., we obtain the proof .
Theorem 3.3. let M be 2-torsion free prime Γ - ring and $F=\left(f_{i}\right)_{i \in N}$ be a Jordan generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M associated with Jordan higher biderivation $D=\left(d_{i}\right)_{i \in N}$ on $M \times M$ into M, then for all $a, b, c, d, m \in M \quad, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N} \emptyset_{\mathrm{n}}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})_{\alpha} \beta \mathrm{m} \beta[\mathrm{s}, \mathrm{t}]_{\alpha}=0$

Proof. Replacing $\mathrm{a}+\mathrm{s}$ for a in lemma 3.2. we get

$$
\emptyset_{\mathrm{n}}(\mathrm{a}+\mathrm{s}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})_{\alpha} \beta \mathrm{m} \beta[\mathrm{a}+\mathrm{s}, \mathrm{~b}]_{\alpha}=0
$$

$\emptyset_{\mathrm{n}}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})_{\alpha} \beta \mathrm{m} \beta[\mathrm{a}, \mathrm{b}]_{\alpha}+\emptyset_{\mathrm{n}}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})_{\alpha} \beta \mathrm{m} \beta[\mathrm{s}, \mathrm{b}]_{\alpha}+\emptyset_{\mathrm{n}}(\mathrm{s}, \mathrm{b}, \mathrm{c}, \mathrm{d})_{\alpha} \beta \mathrm{m} \beta[\mathrm{a}, \mathrm{b}]_{\alpha}+$ $\emptyset_{\mathrm{n}}(\mathrm{s}, \mathrm{b}, \mathrm{c}, \mathrm{d})_{\alpha} \beta \mathrm{m} \beta[\mathrm{s}, \mathrm{b}]_{\alpha}=0$

By Lemma 3.2. we get $\emptyset_{\mathrm{n}}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})_{\alpha} \beta \mathrm{m} \beta[\mathrm{s}, \mathrm{b}]_{\alpha}+\emptyset_{\mathrm{n}}(\mathrm{s}, \mathrm{b}, \mathrm{c}, \mathrm{d})_{\alpha} \beta \mathrm{m} \beta[\mathrm{a}, \mathrm{b}]_{\alpha}=0$
There fore

$$
\begin{aligned}
\emptyset_{n}(a, b, c, d)_{\alpha} & \beta m \beta[s, b]_{\alpha} \beta m \beta \emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[s, b]_{\alpha} \\
& =-\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[s, b]_{\alpha} \beta m \beta \emptyset_{n}(s, b, c, d)_{\alpha} \beta m \beta[a, b]_{\alpha}=0
\end{aligned}
$$

Hence, by the primmess on M :

$$
\begin{equation*}
\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[s, b]_{\alpha}=0 \tag{1}
\end{equation*}
$$

Similarly, by replacing $b+t$ for b in this equality we get :

$$
\begin{equation*}
\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[a, t]_{\alpha}=0 \tag{2}
\end{equation*}
$$

Thus: $\quad \emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[a+s, b+t]_{\alpha}=0$

$$
\begin{aligned}
\emptyset_{n}(a, b, c, d)_{\alpha} & \beta m \beta[a, b]_{\alpha}+\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[a, t]_{\alpha}+\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[s, b]_{\alpha} \\
& +\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[s, t]_{\alpha}=0
\end{aligned}
$$

By using (1), (2) and Lemma 3.2. we get $\quad \emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[s, t]_{\alpha}=0$
Theorem 3.4. let M be 2-torsion free prime Γ-ring. Then every Jordan generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M is a generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M

Proof. Let M be 2 -torsion free prime Γ-ring and $F=\left(f_{i}\right)_{i \in N}$ be a Jordan generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M associated with Jordan higher biderivation $D=\left(d_{i}\right)_{i \in N}$ on $\mathrm{M} \times \mathrm{M}$ into M
By Theorem 3.3. $\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta[s, t]_{\alpha}=0 \quad$ for all $a, b, c, d, m, s, t \in M, \propto, \beta \in$ Γ. and $n \in N$ since M is prime, we get either $\emptyset_{n}(a, b, c, d)_{\alpha}=0$ or $[s, t]_{\alpha}=0$, for all $a, b, c, d, s, t \in M, \alpha \in \Gamma$, and $n \in N$ if $[a, t]_{\alpha} \neq 0$ for all $s, t \in M$ and $\alpha \in \Gamma$.

Then $\emptyset_{n}(a, b, c, d)_{\alpha}=0$ for all $a, b, c, d \in M . \propto \in \Gamma$ and $n \in N$ hence we get, F is a generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M .

But, if $[s, t]_{\alpha}=0$ for all $s, t \in M$ and $\propto \in \Gamma$, then M is commutative and there fore, we have from lemma 2.3.(i)

$$
2 f_{n}(a \propto b, c \propto d)=2 \sum_{i+j=n} f_{i}(a, c) \propto d_{j}(b, d)
$$

Since M is 2-torsion free, we obtain that F is a generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M.

Proposition 3.5. let M be 2-torsion free Γ - ring then every Jordan generalized higher be-derivation on $\mathrm{M} \times \mathrm{M}$ into M such that $a \propto b \beta c=a \beta b \propto c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ is a Jordan triple generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M .

Proof. Let M be 2-torsion free Γ - ring and $\mathrm{F}=\left(f_{i}\right)_{i \in n}$ be a Jordan generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M associated with Jordan higher bi-derivation $D=\left(d_{i}\right)_{i \in N}$ on $\mathrm{M} \times \mathrm{M}$ into M

By lemma 2.3. (ii)

$$
\begin{aligned}
f_{n}(a \propto b \beta a+ & a \beta b \propto a, c \propto d \beta c+c \beta d \propto c) \\
& =\sum_{i+j+k=n} f_{i}(a, c) \propto d_{j}(b, d) \beta d_{k}(a, c)+f_{i}(a, c) \beta d_{j}(b, d) \propto d_{k}(a, c)
\end{aligned}
$$

for all $a, b, c, d \in M . \quad \alpha, \beta \in \Gamma$. and $n \in N$

$$
\begin{aligned}
f_{n}(a \propto b \beta a, c & \propto d \beta c)+f_{n}(a \beta b \propto a, c \beta d \propto c) \\
& =\sum_{i+j+k=n} f_{i}(a, c) \\
& \propto d_{j}(b, d) \beta d_{k}(a, c)+\sum_{i+j+k=n} f_{i}(a, c) \beta d_{j}(b, d) \propto d_{k}(a, c)
\end{aligned}
$$

Since $a \propto b \beta c=a \beta b \propto c$ for all $a, b, c \in M$ and $\propto, \beta \in \Gamma \quad$ we get :
$2 f_{n}(a \propto b \beta a, c \propto d \beta c)=2 \sum_{i+j+k=n} f_{i}(a, c) \propto d_{j}(b, d) \beta d_{k}(a, c)$
Since M is a 2-torsion free we have :
$f_{n}(a \propto b \beta a, c \propto d \beta c)=\sum_{i+j+k=n} f_{i}(a, c) \propto d_{j}(b, d) \beta d_{k}(a, c)$
i.e F is Jordan triple generalized higher bi-derivation on $\mathrm{M} \times \mathrm{M}$ into M .

Reference

[1] N. Argac , " On prime and semi prime rings with Derivations " , Alegbra col-loq . 13 (3) (2006), 371-380
[2] Barnes , W.E." On the Γ - rings of Nobusawa" , pasific J.Math . 18, 411-422, 1966.
[3] Y. Ceven and M.A Ozturk ," on Jordan Generalized Derivations in Gamma Rings" ,
Hacettepe J.Math . and stat ., 33 (2004), 11-14
[4] Cortes W. and Haetinger C. , " On Jordan Generalized Higher Derivation in Rings",Turkish,J.Math.Vol. 29 ,No.1, PP.1-10,2005.
[5] C.Jayasubba Reddy, G.VenkataBhaskara Rao,K.Madhusudhan Reddy "Symmetric Left Bi-Derivations in Semiprime Rings"IOSR Journal of Mathematics (IOSR-JM),Volume 11, Issue 5 Ver.5, pp 25-26,2015
[6] Kyuno , S." On prime gamma rings" , pacific J.Math . 75,185-190, 1978
[7] Luh , J." On the theory of simple Γ-rings" , Michigan Math . J. 16, 65-75, 1969.
[8] G. Maksa . " Remark on symmetric biadditive functions having non-negative diagonalization " , Glasink Math . 15 (1980) 279-280
[9] Nobusawa , N." On a generalization of the ring theory", Osaka J.Math . 1, 81-89, 1964.
[10] Salah M.Salih and Ahmed M.Marir " On Jordan higher bi-derivation on prime Γ - rings "to apper IOSR Journal of Mathematics, 2016
[11] M. Sapanci , M. and A. Nakajima," Jordan derivations on completely prime gamma rings" , Math . Japonica, 46 (1), 47-51, 1997.

