ON JORDAN GENERALIZED HIGHER

BI-DERIVATIONS ON PRIME GAMMA

RINGS

Salah M.Salih and Ahmed M.Marir

Department of Mathematics college of Education Al-Mustansiriya University

Baghdad, Iraq.

Abstract

In this study, we define the concepts of a generalized higher bi-derivation, Jordan generalized higher bi-derivation and Jordan triple generalized higher bi-derivation on Γ -rings and show that a Jordan generalized higher bi-derivation on 2-torsion free prime Γ -ring is a generalized higher bi-derivation.

1.Introduction

Let M and Γ be two additive abelian groups. If there exists a mapping $(a, \propto, b) \rightarrow a \propto b$ of $M \times \Gamma \times M \rightarrow M$ satisfying the following for all a, b, c $\in M$ and $\propto, \beta \in \Gamma$:

(i) $(a+b) \propto c = a \propto c + b \propto c$, $a (\propto +\beta)b = a \propto b + a\beta b$, $a \propto (b+c) = a \propto b + a \propto c$ and

(*ii*) $(a \propto b)\beta c = a \propto (b\beta c)$.

Then M is called a $\Gamma - ring$

The notion of a Γ – *ring* was introduced by Nobusawa [9] and generalized by Barnes [2] as defined above. Many properties of Γ – *ring* were obtained by Barnes [2], kyuno [6], Luh [7] and others.

let M be a $\Gamma - ring$. then M is called 2-torsion free if 2a=0 implies a=0 for all $a \in M$. Besides, M is called a prime $\Gamma - ring$ if, for all $a, b \in M$, $a \Gamma M \Gamma b = (0)$ implies either a=0 or b=0. and, M is called semiprime if $a \Gamma M \Gamma a = (0)$ with $a \in M$ implies a=0. Note that every prime $\Gamma - ring$ is obviously semiprime. M is said to be a commutative $\Gamma - ring$ if $a \propto b = b \propto a$ holds for all $a, b \in M$ and $\alpha \in \Gamma$. Let M be a $\Gamma - ring$. then, for $a, b \in M$ and $\alpha \in \Gamma$, we define $[a, b]_{\alpha} = a \propto b - b \propto a$, known as the commutator of a and b with respect to α .

The notion of derivation and Jordan derivation on a Γ -ring were defined by M. Sapanci and A. Nakajima in [11], as follow

An additive mapping $d: M \to M$ is called a derivation of M if $d(a \propto b) = d(a) \propto b + a \propto d(b)$ for all $a, b \in M$, $\alpha \in \Gamma$. And, if $d(a \propto a) = d(a) \propto a + a \propto d(a)$ for all $a \in M$ and $\alpha \in \Gamma$, then d is called a Jordan derivation of M.

The concept of Jordan generalized derivation of a Γ -ring has been developed by Y.Ceven and M.A.Ozturk in [3] ,as follow

An additive map $F: M \to M$ is said to be a generalized derivation of M if there exists a derivation $d: M \to M$ such that $F(a \propto b) = F(a) \propto b + a \propto d(b)$ is satisfied for all $a, b \in M$ and $\alpha \in \Gamma$. And, F is said to be a Jordan generalized derivation of M if there

exists a Jordan derivation $d: M \to M$ such that $F(a \propto a) = F(a) \propto a + a \propto d(a)$ holds for all $a \in M$ and $\propto \in \Gamma$. A mapping $D: M \times M \to M$ is said to be symmetric if D(a, b) = D(b, a), for all $a, b \in M$

An bi-additive mapping $d: M \times M \to M$ is called a symmetric bi-derivation on M×M into M if $d(a \propto b, c) = d(a, c) \propto b + a \propto d(b, c)$ for all $a, b, c \in M$, $\alpha \in \Gamma$.

And, if $d(a \propto a, c) = d(a, c) \propto a + a \propto d(a, c)$ for all $a \in M$ and $\alpha \in \Gamma$, then d is called a Jordan bi-derivation on $M \times M$ into M.

The notion of symmetric bi-derivation was introduced by G.Maksa [8] and [5] An bi-additive map $F: M \times M \to M$ is said to be a generalized symmetric bi-derivation on $M \times M$ into M if there exists symmetric bi-derivation $d: M \times M \to M$ such that $F(a \propto b, c) = F(a, c) \propto b + a \propto d(b, c)$ is satisfied for all $a, b, c \in M$ and $\alpha \in \Gamma$. And, F is said to be a Jordan generalized bi-derivation on $M \times M$ into M if there exists a Jordan biderivation $d: M \times M \to M$ such that $F(a \propto a, c) = F(a, c) \propto a + a \propto d(a, c)$ holds for all $a, c \in M$ and $\alpha \in \Gamma$.

The notion of generalized symmetric bi-derivations was introduced by Nurcan [1].

In this paper we show that for our notions of generalized higher bi-derivation and Jordan generalized higher bi-derivation and Jordan triple generalized higher bi-derivation on a Γ -ring . In [10] the authors defined higher bi-derivations and Jordan higher bi-derivations as follows.

Let M be a Γ -ring and $D = (d_i)_{i \in N}$ be a family of biadditive mappings on M×M into M, such that $d_o(a, b) = a$ for all $a, b \in M$, then D is called a higher bi-derivation on M×M into M if for every $a, b, c, d \in M$, $\alpha \in \Gamma$ and $n \in N$

$$d_n(a \propto b, c \propto d) = \sum_{i+j=n} d_i(a, c) \propto d_j(b, d)$$

D is said to be a Jordan higher bi-derivation if

$$d_n(a \propto a, c \propto c) = \sum_{i+j=n} d_i(a, c) \propto d_j(a, c)$$

D is called a Jordan triple higher bi-derivation

$$d_n(a \propto b\beta a, c \propto d\beta c) = \sum_{i+j+k=n} d_i(a,c) \propto d_j(b,d)\beta d_k(a,c)$$

Note that $d_n(a+b,c+d) = d_n(a,c) + d_n(b,d)$ for all $a,b,c,d \in M$ and $n \in N$. we denote

$$\Psi_n(a,b,c,d)_{\propto} = d_n(a \propto b, c \propto d) - \sum_{i+j=n} d_i(a,c) \propto d_j(b,d)$$

for all $a, b, c, d \in M$, $\propto \in \Gamma$ and $n \in N$ Now, we present the properties of $\Psi_n(a, b, c, d)_{\propto}$ $\Psi_n(a, b, c, d)_{\propto} = -\Psi_n(b, a, d, c)_{\propto}$

A mapping $F: M \to M$ defined by F(a) = D(a, a), where $D: M \times M \to M$ is a symmetric mapping is called the trace of D it is obvious that in the case $D: M \times M \to M$ is a symmetric mapping which is also biadditive (i.e. additive in both arguments). the trace F of D satisfies the relation F(a + b) = F(a) + F(b), for all $a, b \in M$. In our work we need the following lemma.

lemma 1.1. [4] let M be a 2-torsion free semi prime Γ -ring and suppose that $a, b \in M$ if $a\Gamma m\Gamma b + b\Gamma m\Gamma a = (0)$ for all $m \in M$, then $a\Gamma m\Gamma b = b\Gamma m\Gamma a = (0)$

www.iiste.org

IISTE

2. Generalized higher bi-derivation on Γ-ring :

In this section we present the concepts of generalized higher

bi-derivation , Jordan generalized higher bi-derivation and Jordan triple generalized higher bi-derivation on Γ -rings and we study the properties of them .

Definition 2.1. let M be a Γ -ring and $F = (f_i)_{i \in N}$ be a family of biadditive mappings on M×M into M such that $f_0(a, b) = a$ for all $a, b \in M$ then F is called a generalized higher bi-derivation on M×M into M if there exists a higher bi-derivation $D = (d_i)_{i \in N}$ on M×M into M such that for all $n \in N$ we have .

 $f_n(a \propto b, c \propto d) = \sum_{i+j=n} f_n(a, c) \alpha d_i(b, d)$ for every a, b, c, d \in M and $\alpha \in \Gamma$

F is said to be a Jordan generalized higher bi-derivation on M×M into M if there exists a Jordan higher bi-derivation $D = (d_i)_{i \in N}$ on M×M into M such that for all n∈N we have :

$$f_n(a \propto a, c \propto c) = \sum_{i+j=n} f_i(a, c) \alpha dj(a, c)$$

for every a,c \in M and $\propto \in \Gamma$

F is said to be a Jordan triple generalized higher bi-derivation on M×M into M if there exists a Jordan triple generalized higher bi-derivation $D = (d_i)_{i \in N}$ on M×M into M such that for all

 $n \varepsilon N$ we have :

$$f_n(a \propto b\beta a, c \propto d\beta c) = \sum_{i+j+k=n} f_n(a,c) \propto d_j(b,d)\beta d_k(a,c)$$

For every $a, b, c, d \in M$ and $\propto, \beta \in \Gamma$.

Note that f_n (a+b,c+d)= f_n(a,c)+f_n(b,d) for all a,b,c,d \in M and n \in N

Example 2.2

Let M= { $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$: x,y $\in \mathbb{R}$ }, R is real number. M be a Γ -ring of 2×2 matrices and Γ = { $\begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix}$: r $\in \mathbb{R}$ } we use the usual addition and

multiplication on matrices of
$$M \times \Gamma \times M$$
, we define $f_i : M \times \Gamma \times M \rightarrow M$, $i \in N$ by

$$f_{i} \left(\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} c & a \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} \kappa a & (1+i)b \\ 0 & 0 \end{pmatrix} \text{ for all } \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} c & a \\ 0 & 0 \end{pmatrix} \in M$$
$$K = \frac{(i^{2} - in + 1) + |i^{2} - in + 1|}{2} = \begin{cases} 1 \text{ If } i \in \{0, n\} \\ 0 \text{ If } i \notin \{0, n\} \end{cases} \quad n \in N, 0 \le i \le n$$

Then f is generalized higher bi-derivation on Γ – ring because there exists a higher bi-derivation on Γ -ring

 $d_i: \mathbf{M} \times \Gamma \times \mathbf{M} \rightarrow \mathbf{M}$, i $\in \mathbf{N}$ defined by

$$d_i \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} ma & (m+i)b \\ 0 & 0 \end{pmatrix}$$

for all $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix} \in \mathbf{M}$

Such that $m = \frac{(1-i)+|1-i|}{2} = \begin{cases} 1 & if \ i = 0\\ 0 & if \ i \neq 0 \end{cases}$

Lemma 2.3. let M be a Γ -ring and $F=(f_i)_{I\in N}$ be a Jordan generalized higher bi- derivation on M×M into M associated with Jordan higher bi- derivation D=(d_i)_{i\in N} of M×M into M. Then for all a,b,c,d,s,t \in M, \propto , $\beta \in \Gamma$ and n \in N, the following statements hold :

(i) $f_n(a \propto b + b \propto a, c \propto d + d \propto c) = \sum f_i(a, c) \propto d_i(b, d) + f_i(b, d) \propto d_i(a, c)$

(ii)
$$f_n (a \propto b\beta a + a\beta b \propto a, c \propto d\beta c) =$$

$$\sum_{i+j+k=n} f_i (a, c) \propto d_j (b, d)\beta d_k(a, c) + f_i (a, c)\beta d_j (b, d) \propto d_k (a, c)$$

Especially, if M is 2-torsion free, then

(iii)
$$f_n(a \propto b \propto c, c \propto d \propto c) = \sum_{i+j+k=n} f_i(a,c) \propto d_j(b,d) \propto d_j(a,c)$$

(iv) f_n ($a \propto b \propto c + c \propto b \propto a$, $s \propto d \propto t + t \propto d \propto s$) =

$$\sum_{i+j+k=n} f_i(a,s) \propto d_j(b,d) \propto d_k(c,t) + f_i(c,t) \propto d_j(b,d) \propto d_k(a,s)$$

Proof. (i) is obtained by computing $f_n((a + b) \propto (a + b), (c + d) \propto (c + d))$ and (ii) is also obtained by replacing a β b+b β a for b and c β d+d β c for d in (i), in (ii). If we replace a+c for a and s+t for c in (iii), we can get (iv).

Definition 2.4. let M be a Γ -ring and $F=(f_i)_{I\in N}$ be a Jordan generalized higher bi- derivation on M×M into M associated with Jordan higher bi- derivation $D=(d_i)_{i\in N}$ of M×M into M. Then for all a,b,c,d,s,t \in M, \propto , $\beta \in \Gamma$ and n \in N, we define

$$\emptyset_n(a, b, c, d)_{\propto} = \text{ fn } (a \propto b, c \propto d) - \sum_{i+j=n} f_i(a, c) \propto d_j(b, d)$$

Lemma 2.5. let M be a Γ -ring and $F=(f_i)_{I\in N}$ be a Jordan generalized higher bi- derivation on M×M into M associated with Jordan higher bi- derivation D=(d_i)_{i\in N} of M×M into M. Then for all a,b,c,d,s,t \in M, \propto , $\beta \in \Gamma$ and n \in N.

(i)
$$\emptyset_n$$
 (a, b, c, d) _{\propto} = - \emptyset_n (b, a, d, c) _{\propto}

$$(ii) \ \emptyset_n \ (a+s,b,c,d)_{\propto} = \ \emptyset_n \ (b,a,d,c)_{\propto} + \ \emptyset_n \ (s,b,c,d)_{\propto}$$

 $(iii) \ \emptyset_n \ (a, b + s, c, d)_{\alpha} = \ \emptyset_n \ (a, b, c, d)_{\alpha} + \ \emptyset_n \ (a, s, c, d)_{\alpha}$

 $(iv) \ \emptyset_n (a, b, c + s, d)_{\alpha} = \ \emptyset_n (a, b, c, d)_{\alpha} + \ \emptyset_n (a, b, s, d)_{\alpha}$

 $(v) \ \emptyset_n (a, b, c, d + s)_{\alpha} = \ \emptyset_n (a, b, c, d)_{\alpha} + \ \emptyset_n (a, b, c, s)_{\alpha}$

Proof. These results follow easily by Lemma 2.3 (i) and the definition of \emptyset_n (a, b, c, d)_{\propto}

Note that F is a generalized higher bi-derivation iff \emptyset_n (*a*, *b*, *c*, *d*)_{α} = 0 for all a,b,c,d $\in M$, $\alpha \in \Gamma$ and $n \in N$.

www.iiste.org

IISTE

3. The Main Results

In this section we present, the main results of this paper.

Lemma 3.1. let M be a 2-torsion free and $f=(f_i)_{I\in N}$ be a Jordan generalized higher biderivation on M×M into M associated with Jordan higher biderivation $D=(d_i)_{i\in N}$ of M×M into M then for all a,b,c,d,s,t \in M, \propto , $\beta \in \Gamma$ and n \in N, if \emptyset_t (*a*, *b*, *c*, *d*) $_{\propto}$ =0 for every t<n and Ψ_t (*a*, *b*, *c*, *d*) $_{\propto}$ = 0 for every t<n then: $\emptyset_n(a, b, c, d)_{\propto}\beta m\beta[a, b]_{\propto} + [a, b]_{\propto}\beta m\beta \Psi_n(a, b, c, d)_{\propto} = 0$

Proof . let $S \in M$, since f_n is bi additive mapping then by Lemma 2.3. (iv) we obtain :

 $f_n(a \propto b\beta m\beta b \propto a + b \propto a\beta m\beta a \propto b, c \propto d\beta s\beta d \propto c + d \propto c\beta s\beta c \propto d)$

 $= f_n \left((a \propto b)\beta m\beta(b \propto a) + (b \propto a)\beta m\beta(a \propto b), (c \propto d)\beta s\beta(d \propto c) + (d \propto c)\beta s\beta(c \propto d) \right)$

$$= \sum_{i+j+k=n} f_i(a \propto b, c \propto d)\beta d_j(m, s)\beta d_k(b \propto a, d \propto c) + f_i(b \propto a, d \propto c)\beta d_j(m, s)\beta d_k(a \propto b, c \propto d)$$

$$= f_n(a \propto b, c \propto b)\beta m\beta b \propto a + a \propto b\beta m\beta d_n \ (b \propto a, c \propto d) + f_n \ (b \propto a, d \propto c)\beta m\beta a$$

$$\propto b$$

$$+ \sum_{\substack{0 < i,k < n \\ + \sum_{i+j+k}} f_i(a \propto b, c \propto d)\beta d_j(m,s)\beta d_k(b \propto a, d \propto c)$$

$$+ f_i(b \propto a, d \propto c)\beta d_j(m,s)\beta d_k(a \propto b, c \propto d)$$

 $= f_n(a \propto b, c \propto b)\beta m\beta \ b \propto a + a \propto b \ \beta m\beta \ d_n(b \propto a, d \propto c) + f_n(b \propto a, d \propto c) \ \beta m\beta \ a \\ \propto b + b \\ \propto a \ \beta m\beta \ d_n(a \propto b, c \propto d) \\ + \sum_{\substack{q+t,h+g < n \\ q+t+j+h+g=n}} f_q(a,c) \propto d_t(b,d)\beta d_j(m,s)\beta d_h(b,d) \propto d_g(a,c) + f_q(b,d) \\ \propto d_t(a,c)\beta d_j(m,s)\beta d_h(a,c) \propto d_g(b,d) \qquad \dots (1)$

On the other hand : by lemma 2.3. (*iii*)

$$f_n(a \propto b \ \beta m\beta \ b \propto a + b \propto a \ \beta m\beta \ a \propto b \ , c \propto d \ \beta s\beta \ d \propto c + d \propto c \ \beta s\beta \ c \propto d)$$

= $f_n(a \propto (b\beta m\beta b) \propto a + b \propto (a\beta m\beta a) \propto b, \ c \propto (d\beta s\beta d) \propto c + d \propto (c\beta s\beta c) \propto d)$
= $f_n(a \propto (b \ \beta m\beta \ b) \propto a, c \propto (d \ \beta s\beta \ d) \propto c) + f_n(b \propto (a\beta m\beta a) \propto b, d \propto (c\beta s\beta c) \propto d)$

www.iiste.org

$$\begin{split} &= \sum_{q+k+g=n} f_q(a,c) \propto d_k(b \ \beta m \beta \ b, d \ \beta s \beta \ d \) \propto d_g(a,c) + f_q(b,d) \propto d_k(a \beta m \beta a, c \beta s \beta c) \\ &\propto d_g(b,d) \end{split}$$

$$&= \sum_{q+t+j+h+g=n} f_q(a,c) \propto d_t(b,d) \beta d_j(m,s) \beta d_n(b,d) \propto d_g(a,c) + f_q(b,d) \\ &\propto d_t(a,c) \beta d_j(m,s) \beta d_h(a,c) \propto d_g(b,d) \end{aligned}$$

$$&= \sum_{q+t=n} f_q(a,c) \propto d_t(b,d) \beta m \beta \ b \propto a + a \propto b \ \beta m \beta \sum_{h+g=n} d_h(b,d) \\ &\propto d_g(a,c) \\ &+ \sum_{q+t=n} f_q(b,d) \propto d_t(a,c) \beta m \beta \ a \propto b + b \propto a \ \beta m \beta \sum_{h+g} d_h(a,c) \\ &\propto d_g(b,d) \\ &q_{t,h+g$$

Compare (1) and (2) we get :

$$\begin{split} f_n(a \propto b, c \propto d) \ \beta m \beta b \propto a - \sum_{q+t=n} f_q(a,c) \propto d_t(b,d) \ \beta m \beta b \propto a + a \\ & \propto b \beta m \beta d_n(b \propto a, d \propto c) - a \propto b \ \beta m \beta \sum_{h+g=n} d_h(b,d) \\ & \propto d_g(a,c) + f_n(b \propto a, d \propto c) \ \beta m \beta a \propto b - \sum_{q+t=n} f_q(b,d) \\ & \propto d_t(a,c) \ \beta m \beta \ a \propto b + b \propto a \ \beta m \beta d_n(a \propto b, c \propto d) - b \\ & \propto a \ \beta m \beta \sum_{h+g=n} d_h(a,c) \propto d_g(b,d) = 0 \end{split}$$

$$\begin{split} & \phi_n(a,b,c,d)_{\propto}\,\beta m\beta\,b \propto a - a \propto b\,\beta m\beta\,\Psi_n(a,b,c,d)_{\propto} - \phi_n(a,b,c,d)_{\propto}\,\beta m\beta\,a \propto b + b \propto \\ & a\,\beta m\beta\,\Psi_n(a,b,c,d)_{\propto} = 0 \end{split}$$

$$\begin{split} & \phi_n(a,b,c,d)_{\propto} \,\beta m\beta \, [b,a]_{\propto} + [b,a]_{\propto} \,\beta m\beta \, \Psi_n(a,b,c,d)_{\propto} = 0 \\ & \phi_n(a,b,c,d)_{\propto} \,\beta m\beta \, [a,b]_{\propto} + [a,b]_{\propto} \,\beta m\beta \, \Psi_n(a,b,c,d)_{\propto} = 0 \end{split}$$

Lemma 3.2. let M be 2-torsion free prime Γ – ring and $F = (f_i)_{i \in N}$ be a Jordan generalized higher bi-derivation on M×M into M associated with Jordan higher bi-derivation $D = (d_i)_{i \in N}$ on M×M into M. then for all $a, b, c, d, m \in M$, $\alpha, \beta \in \Gamma$ and $n \in N$

$$\emptyset_{n}(a, b, c, d)_{\alpha} \beta m \beta [a, b]_{\alpha} = [a, b]_{\alpha} \beta m \beta \Psi_{n}(a, b, c, d)_{\alpha} = 0$$

Proof: By Lemma 3.1. and Lemma 1.1., we obtain the proof.

Theorem 3.3. let M be 2-torsion free prime Γ – ring and $F = (f_i)_{i \in N}$ be a Jordan generalized higher bi-derivation on M×M into M associated with Jordan higher bi-derivation $D = (d_i)_{i \in N}$ on M×M into M, then for all a, b, c, d, $m \in M$, $\alpha, \beta \in \Gamma$ and $n \in N \emptyset_n(a, b, c, d)_{\alpha} \beta m\beta [s, t]_{\alpha} = 0$

Proof . Replacing a + s for a in lemma 3.2. we get

$$\begin{split} & \phi_n(a, b, c, d)_{\alpha} \ \beta m\beta \ [a, b]_{\alpha} + \phi_n(a, b, c, d)_{\alpha} \ \beta m\beta \ [s, b]_{\alpha} + \phi_n(s, b, c, d)_{\alpha} \ \beta m\beta \ [a, b]_{\alpha} + \\ & \phi_n(s, b, c, d)_{\alpha} \ \beta m\beta \ [s, b]_{\alpha} = 0 \end{split}$$

By Lemma 3.2. we get $\emptyset_n(a, b, c, d)_{\alpha} \beta m \beta [s, b]_{\alpha} + \emptyset_n(s, b, c, d)_{\alpha} \beta m \beta [a, b]_{\alpha} = 0$

There fore

$$\begin{split} \phi_n(a,b,c,d)_{\propto} \beta m\beta \ [s,b]_{\propto} \beta m\beta \ \phi_n(a,b,c,d)_{\propto} \beta m\beta [s,b]_{\propto} \\ &= -\phi_n(a,b,c,d)_{\propto} \beta m\beta \ [s,b]_{\propto} \beta m\beta \ \phi_n(s,b,c,d)_{\propto} \beta m\beta \ [a,b]_{\propto} = 0 \end{split}$$

Hence, by the primmess on M:

$$\emptyset_n(a, b, c, d)_{\propto} \beta m \beta [s, b]_{\propto} = 0 \quad \dots (1)$$

Similarly, by replacing b+t for b in this equality we get :

$$\emptyset_n(a, b, c, d)_{\propto} \beta m \beta [a, t]_{\propto} = 0 \quad \dots (2)$$

Thus: $\emptyset_n(a, b, c, d)_{\propto} \beta m \beta [a + s, b + t]_{\propto} = 0$

$$\begin{split} & \phi_n(a,b,c,d)_{\propto} \,\beta m\beta \, [a,b]_{\propto} + \phi_n(a,b,c,d)_{\propto} \,\beta m\beta \, [a,t]_{\propto} + \phi_n(a,b,c,d)_{\propto} \,\beta m\beta \, [s,b]_{\propto} \\ & + \phi_n(a,b,c,d)_{\propto} \,\beta m\beta \, [s,t]_{\propto} = 0 \end{split}$$

By using (1), (2) and Lemma 3.2. we get $\phi_n(a, b, c, d)_{\alpha} \beta m \beta [s, t]_{\alpha} = 0$

Theorem 3.4. let M be 2-torsion free prime $\Gamma - ring$. Then every Jordan generalized higher bi-derivation on M×M into M is a generalized higher bi-derivation on M×M into M

Proof. Let M be 2-torsion free prime $\Gamma - ring$ and $F = (f_i)_{i \in N}$ be a Jordan generalized higher bi-derivation on M×M into M associated with Jordan higher biderivation $D = (d_i)_{i \in N}$ on M×M into M By Theorem 3.3. $\emptyset_n(a, b, c, d)_{\propto} \beta m\beta [s, t]_{\propto} = 0$ for all $a, b, c, d, m, s, t \in M$, $\propto, \beta \in$

 Γ and $n \in N$ since M is prime, we get either $\emptyset_n(a, b, c, d)_{\alpha} = 0$ or $[s, t]_{\alpha} = 0$, for all $a, b, c, d, s, t \in M$, $\alpha \in \Gamma$, and $n \in N$ if $[a, t]_{\alpha} \neq 0$ for all $s, t \in M$ and $\alpha \in \Gamma$.

Then $\phi_n(a, b, c, d)_{\alpha} = 0$ for all $a, b, c, d \in M$. $\alpha \in \Gamma$ and $n \in N$ hence we get, F is a generalized higher bi-derivation on M×M into M.

But, if $[s, t]_{\alpha} = 0$ for all $s, t \in M$ and $\alpha \in \Gamma$, then M is commutative and there fore, we have from lemma 2.3.(i)

$$2f_n(a \propto b, c \propto d) = 2 \sum_{i+j=n} f_i(a, c) \propto d_j(b, d)$$

Since M is 2-torsion free , we obtain that $\ F$ is a generalized higher bi-derivation on $M \rtimes M$ into $\ M$.

Proposition 3.5. let M be 2-torsion free $\Gamma - ring$ then every Jordan generalized higher be-derivation on M×M into M such that $a \propto b\beta c = a\beta b \propto c$ for all $a, b, c \in M$ and $\propto, \beta \in \Gamma$ is a Jordan triple generalized higher bi-derivation on M×M into M.

Proof. Let M be 2-torsion free $\Gamma - ring$ and $F=(f_i)_{i\in n}$ be a Jordan generalized higher bi-derivation on M×M into M associated with Jordan higher bi-derivation $D = (d_i)_{i\in N}$ on M×M into M

By lemma 2.3. (ii)

$$\begin{aligned} f_n(a \propto b\beta a + a\beta b \propto a, c \propto d\beta c + c\beta d \propto c) \\ &= \sum_{i+j+k=n} f_i(a,c) \propto d_j(b,d)\beta d_k(a,c) + f_i(a,c)\beta d_j(b,d) \propto d_k(a,c) \\ \text{for all } a, b, c, d \in M. \quad \propto, \beta \in \Gamma \text{ . and } n \in N \end{aligned}$$

$$f_n(a \propto b\beta a, c \propto d\beta c) + f_n(a\beta b \propto a, c\beta d \propto c)$$

= $\sum_{i+j+k=n} f_i(a, c)$
 $\propto d_j(b, d)\beta d_k(a, c) + \sum_{i+j+k=n} f_i(a, c)\beta d_j(b, d) \propto d_k(a, c)$

Since $a \propto b\beta c = a\beta b \propto c$ for all $a, b, c \in M$ and $\propto, \beta \in \Gamma$ we get :

$$2f_n(a \propto b\beta a, c \propto d\beta c) = 2 \sum_{i+j+k=n} f_i(a, c) \propto d_j(b, d)\beta d_k(a, c)$$

Since M is a 2-torsion free we have :

$$f_n(a \propto b\beta a, c \propto d\beta c) = \sum_{i+j+k=n} f_i(a, c) \propto d_j(b, d)\beta d_k(a, c)$$

i.e F is Jordan triple generalized higher bi-derivation on $M \times M$ into M.

Reference

[1] N. Argac , " On prime and semi prime rings with Derivations " , Alegbra col-loq . 13 (3) (2006) , 371-380

[2] Barnes, W.E." On the $\Gamma - rings$ of Nobusawa", pasific J.Math. 18, 411-422, 1966.

[3] Y. Ceven and M.A Ozturk ," on Jordan Generalized Derivations in Gamma Rings" , Hacettepe J.Math . and stat ., 33 (2004) , 11-14

[4] Cortes W. and Haetinger C., "On Jordan Generalized Higher Derivation in Rings", Turkish, J. Math. Vol. 29, No.1, PP.1-10, 2005.

[5] C.Jayasubba Reddy, G.VenkataBhaskara Rao,K.Madhusudhan Reddy "Symmetric Left Bi-Derivations in Semiprime Rings"IOSR Journal of Mathematics (IOSR-JM),Volume 11, Issue 5 Ver.5, pp 25-26,2015

[6] Kyuno, S." On prime gamma rings", pacific J.Math. 75,185-190, 1978

[7] Luh , J." On the theory of simple $\Gamma - rings$ ", Michigan Math . J. 16, 65 – 75, 1969.

[8] G. Maksa . " Remark on symmetric biadditive functions having non-negative diagonalization " , Glasink Math . 15 (1980) 279-280

[9] Nobusawa, N." On a generalization of the ring theory", Osaka J.Math. 1, 81-89, 1964.

[10] Salah M.Salih and Ahmed M.Marir " On Jordan higher bi-derivation on prime Γ - rings "to apper IOSR Journal of Mathematics, 2016

[11] M. Sapanci , M. and A. Nakajima ," Jordan derivations on completely prime gamma rings" , Math . Japonica , 46 (1), 47-51 , 1997 .