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Abstract

In this paper, we have considered different methods of estimation of the unknown param-

eters of GILD. First we briefly describe different methods of estimations, namely maximum

likelihood estimators, moments estimators, least squares estimators, weighted least squares,

maximum product spacing estimates, methods of minimum distances, method of Cramer-

von-Misses and methods of Anderson-Darling and compare them using extensive numerical

simulations.
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1 Introduction

Lifetime distribution represents an attempt to describe, mathematically, the length of the life of
a system or a device. Lifetime distributions are most frequently used in the fields like medicine,
engineering etc. Many parametric models such as exponential, gamma, Weibull have been fre-
quently used in statistical literature to analyze lifetime data. But there is no clear motivation
for the gamma and Weibull distributions. They only have more general mathematical closed
form than the exponential distribution with one additional parameter.

Recently, one parameter Lindley distribution has attracted the researchers for its use in
modelling lifetime data, and it has been observed in several papers that this distribution has
performed excellently. The Lindley distribution was originally proposed by Lindley in the context
of Bayesian statistics, as a counter example of fudicial statistics which can be seen that as a
mixture of exp(θ) and gamma(2, θ).

Some of the advances in the literature of Lindley distribution are given by Ghitany et al.
(2011) who has introduced a two-parameter weighted Lindley distribution and has pointed that
Lindley distribution is particularly useful in modeling biological data from mortality studies.
Mahmoudi et al. (2010) have proposed generalized Poisson Lindley distribution. Bakouch et al.
(2012) have come up with extended Lindley (EL) distribution, Adamidis and Loukas (1998) have
introduced exponential geometric (EG) distribution. Shanker et al. (2013) have introduced a
two-parameter Lindley distribution. Zakerzadeh et al. (2012) have proposed a new two parame-
ter lifetime distribution: model and properties. M.K. Hassan (2008) has introduced convolution
of Lindley distribution. Ghitany et al. (2013) worked on the estimation of the reliability of a
stress-strength system from power Lindley distribution. Elbatal et al. (2013) has proposed a
new generalized Lindley distribution.
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Definition 1.1. A random variable X is said to have Lindley distribution with parameter θ if
its probability density function is defined as:

gX(x; θ) =
θ2

(θ + 1)
(1 + x)e−θx;x > 0, θ > 0 (1)

with cumulative distribution function

G(x) = 1−
e−θx(1 + θ + θx)

1 + θ
(2)

Because of the wide applicability of inverse distributions, Sharma et al. introduced general-
ized inverse Lindley distribution (GILD)with probability density function

f (x, α, θ) =
αθ2

(1 + θ)

[
1 + xα

x2α+1

]
e−

θ
xα , x > 0, α > 0, θ > 0 (3)

and cumulative distribution function

F (x, α, θ) =

[
1 +

θ

1 + θ

1

xα

]
e−

θ
xα , x > 0, α > 0, θ > 0 (4)

where, θ is the scale parameter while the parameter α controls its shape.

2 Maximum likelihood estimation

In this section, we briefly review the MLEs of the parameters of GILD distribution. Let
x1, x2, . . . , xn be a independent and identically distributed (i.i.d) observed random sample of
size n from GIL distribution (3). Then, the likelihood function is defined as

ℓ
(
x
∼

, α, θ
)
=

αnθ2n

(1 + θ)n

n∏

i=1

(1 + xα
i )

n∏

i=1

x
(−2α−1)
i e

θ
n∑

i=1

x
−α
i

(5)

The log-likelihood function corresponding to (5), is given by

log ℓ = n ln (α) + 2n ln (θ)− n ln (1 + θ) +

n∑

i=1

ln (1 + xα
i )− (2α+ 1)

n∑

i=1

ln (xi)− θ

n∑

i=1

x−α
i (6)

The maximum likelihood estimates α̂ML and θ̂ML of σ and λ, respectively can be obtained as
the simultaneous solution of the following non-linear equations:

∂ log ℓ

∂α
= 0 =

n

α
+

n∑

i=1

ln (xi)x
α
i

1 + xα
i

− 2

n∑

i=1

ln (xi) + θ

n∑

i=1

ln (xi)x
−α
i (7)

∂ log ℓ

∂θ
= 0 =

2n

1 + θ
−

n

1 + θ
−

n∑

i=1

x−α
i (8)

2.1 Maximum product spacing estimates

The maximum product spacing (MPS) method has been proposed by [4]. This method is based
on an idea that the differences of the consecutive points should be identically distributed. The
geometric mean of the differences is given as

GM = n+1

√√√√
n+1∏

i=1

Di (9)
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where, the difference Di is defined as

Di =

x(i)∫

x(i−1)

f (x, α, θ) dx; i = 1, 2, . . . , n+ 1. (10)

where, F (x(0), α, θ) = 0 and F (x(n+1), α, θ) = 1. The MPS estimators α̂PS and θ̂PS of α and
θ are obtained by maximizing the geometric mean (GM) of the differences. Substituting (3) in
(17) and taking logarithm of the above expression, we will have

LogGM =
1

n+ 1

n+1∑

i=1

log
[
F (x(i), α, θ)− F (x(i−1), α, θ)

]
(11)

The MPS estimators α̂PS and θ̂PS of α and θ can be obtained as the simultaneous solution of
the following non-linear equations:

∂LogGM

∂α
=

1

n+ 1

n+1∑

i=1

[
F

′

α(x(i), α, θ)− F
′

α(x(i−1), α, θ)

F (x(i), α, θ)− F (x(i−1), α, θ)

]

=
1

n+ 1

n+1∑

i=1




θ
1+θ

log(x(i))
xα
(i)

e
−

θ
xα
(i) − θ

1+θ

log(x(i−1))
xα
(i−1)

e
−

θ
xα
(i−1)

[
1 + θ

1+θ
1

xα
(i)

]
e
−

θ
xα
(i) −

[
1 + θ

1+θ
1

xα
(i−1)

]
e
−

θ
xα
(i−1)


 = 0 (12)

∂LogGM

∂θ
=

1

n+ 1

n+1∑

i=1

[
F

′

θ(x(i), α, θ)− F
′

θ(x(i−1), α, θ)

F (x(i), α, θ)− F (x(i−1), α, θ)

]

1

n+ 1

n+1∑

i=1



− θ

(1+θ)2
1+θ(1+xα

(i))
x2α
(i)

e
−

θ
xα
(i) + θ

(1+θ)2
1+θ(1+xα

(i−1))
x2α
(i−1)

e
−

θ
xα
(i−1)

[
1 + θ

1+θ
1

xα
(i)

]
e
−

θ
xα
(i) −

[
1 + θ

1+θ
1

xα
(i−1)

]
e
−

θ
xα
(i−1)


 = 0

where,

F
′

α(x, α, θ) =
θ

1+θ

log(x)
xα e−

θ
xα and F

′

θ(x, α, θ) = − θ

(1+θ)2
1+θ(1+xα)

x2α e−
θ

xα .

3 Moments Estimators

It is observed by Sharma et al. that if X follows GILD distribution, then

E(X) =
θ

1
α

α (1 + θ)
Γ

(
α− 1

α

)
(α (1 + θ)− 1) , α > 1 (13)

E(X2) =
θ

2
α

α (1 + θ)
Γ

(
α− 2

α

)
(α (1 + θ)− 2) , α > 2

The MMEs of the two-parameter GIL distribution can be obtained by equating the first two
theoretical moments with the sample moments 1

n

∑n

i=1 xi and
1
n

∑n

i=1 x
2
i respectively,

1

n

n∑

i=1

xi =
θ

1
α

α (1 + θ)
Γ

(
α− 1

α

)
(α (1 + θ) − 1) (14)
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and
1

n

n∑

i=1

x2
i =

θ
2
α

α (1 + θ)
Γ

(
α− 2

α

)
(α (1 + θ)− 2) (15)

The method of moments estimators are the roots of the two equations. Similar to the MLEs,
such non-linear equations do not have closed form solutions. We can apply numerical method
such as Newton-Raphson method to determine the roots.

4 Maximum product spacing estimates

The maximum product spacing (MPS) method has been proposed by Cheng and Amin [Cheng,
R. C. H., and N. A. K. Amin. ”Estimating parameters in continuous univariate distributions
with a shifted origin.” Journal of the Royal Statistical Society. Series B (Methodological) (1983):
394-403.] This method is based on an idea that the differences (Spacings) of the consecutive
points should be identically distributed.

The geometric mean of the differences is given as

GM = n+1

√√√√
n+1∏

i=1

Di (16)

where, the difference Di is defined as

Di =

x(i)∫

x(i−1)

f (x, β) dx; i = 1, 2, . . . , n+ 1. (17)

where, F (x(0), β) = 0 and F (x(n+1), β) = 1. The MPS estimator β̂PS of β is obtained by
maximizing the geometric mean (GM) of the differences. Substituting (3) in (17) and taking
logarithm of the above expression, we will have

LogGM =
1

n+ 1

n+1∑

i=1

log
[
F (x(i), β)− F (x(i−1), β)

]

=
1

n+ 1

n+1∑

i=1

log

[[
1 +

θ

1 + θ

1

xα
(i)

]
e
−

θ
xα
(i) −

[
1 +

θ

1 + θ

1

xα
(i−1)

]
e
−

θ
xα
(i−1)

]
(18)

The MPS estimator β̂PS of β can be obtained as the simultaneous solution of the following
non-linear equation:

∂LogGM

∂β
=

1

n+ 1

n+1∑

i=1

[
F

′

β(x(i), β)− F
′

β(x(i−1), β)

F (x(i), β)− F (x(i−1), β)

]
= 0 (19)

4.1 Methods of Minimum Distances

Most theoretical studies of minimum distance estimation, and most applications, make use of
”distance” measures which underlie already-established goodness of fit tests: the test statistic
used in one of these tests is used as the distance measure to be minimized.In this subsection we
present three estimation methods for ᾱ and θ̄ based on the minimization, with respect to α and
θ, of the goodness-of-fit statistics. This class of statistics is based on the difference between the
estimate of the cumulative distribution function and the empirical distribution function.
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4.1.1 Method of Cramér-von-Mises

To motivate our choice of Cramer-von Mises type minimum distance estimators, MacDonald
(1971) provided empirical evidence that the bias of the estimator is smaller than the other

minimum distance estimators. Thus, The Cramé-von Mises estimates α̂CME and λ̂CME of the
parameters α and λ are obtained by minimizing, with respect to α and λ, the function:

C(α, λ) =
1

12n
+

n∑

i=1

(
F (xi:n | α, λ) −

2i− 1

2n

)2

1

12n
+

n∑

i=1

([
1 +

θ

1 + θ

1

xα
(i)

]
e
−

θ
xα
(i) −

2i− 1

2n

)2

. (20)

These estimates can also be obtained by solving the non-linear equations:

n∑

i=1

([
1 +

θ

1 + θ

1

xα
(i)

]
e
−

θ
xα
(i) −

2i− 1

2n

)
θ

1 + θ

log
(
x(i)

)

xα
(i)

e
−

θ
xα
(i) = 0,

−

n∑

i=1

([
1 +

θ

1 + θ

1

xα
(i)

]
e
−

θ
xα
(i) −

2i− 1

2n

)
θ

(1 + θ)
2

1 + θ
(
1 + xα

(i)

)

x2α
(i)

e
−

θ
xα
(i) = 0.

4.1.2 Methods of Anderson-Darling and Right-tail Anderson-Darling

The Anderson-Darling test is similar to the Cramrvon Mises criterion except that the integral
is of a weighted version of the squared difference, where the weighting relates the variance of
the empirical distribution function The Anderson-Darling test was developed by T.W. Anderson
and D.A. Darling as an alternative to other statistical tests for detecting sample distributions
departure from normality. The Anderson-Darling estimates α̂ADE and λ̂ADE of the parameters
α and λ are obtained by minimizing, with respect to α and λ, the function:

A(α, λ) = −n−
1

n

n∑

i=1

(2i− 1)
{
logF (xi:n | α, λ) + logF (xn+1−i:n | α, λ)

}
. (21)

These estimates can also be obtained by solving the non-linear equations:

n∑

i=1

(2i− 1)


F

′

α (xi:n | α, λ)

F (xi:n | α, λ)
−

F
′

α

(
x

n+1−i:n
| α, λ

)

F (xn+1−i:n | α, λ)


 = 0,

n∑

i=1

(2i− 1)


F

′

θ (xi:n | α, λ)

F (xi:n | α, λ)
−

F
′

θ

(
x

n+1−i:n
| α, λ

)

F (xn+1−i:n | α, λ)


 = 0,

The Right-tail Anderson-Darling estimates α̂RTADE and λ̂RTADE of the parameters α and
λ are obtained by minimizing, with respect to α and λ, the function:

R(α, λ) =
n

2
− 2

n∑

i=1

F (xi:n | α, λ) −
1

n

n∑

i=1

(2i− 1) logF (xn+1−i:n | α, λ) . (22)

These estimates can also be obtained by solving the non-linear equations:

−2

n∑

i=1

F
′

θ (xi:n | α, λ)

F (xi:n | α, λ)
+

1

n

n∑

i=1

(2i− 1)
F

′

θ

(
x

n+1−i:n
| α, λ

)

F (xn+1−i:n | α, λ)
= 0,

−2
n∑

i=1

F
′

α (xi:n | α, λ)

F (xi:n | λ, σ)
+

1

n

n∑

i=1

(2i− 1)
F

′

α

(
x

n+1−i:n
| α, λ

)

F (xn+1−i:n | α, λ)
= 0.
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5 Least square estimates

The least square estimators and weighted least square estimators were proposed by Swain,
Venkataraman and Wilson (1988) to estimate the parameters of Beta distributions. The least
square estimators of the unknown parameters α and λ of LE distribution can be obtained by
minimizing

n∑

j=1

[
F (X(i))−

j

n+ 1

]2

with respect to unknown parameters λ and θ. Suppose F (X(i)) denotes the distribution function
of the ordered random variables X(1) < X(2) < · · · < X(n) where {X1, X2, · · · , Xn} is a random
sample of size n from a distribution function F (·). Therefore, in this case, the least square

estimators of λ and θ, say λ̂LSE and θ̂LSE respectively, can be obtained by minimizing

n∑

i=1

[[
1 +

θ

1 + θ

1

xα

]
e−

θ
xα −

i

n+ 1

]2

with respect to α and λ.
The least square estimates (LSEs) λ̂LS and θ̂LS of λ and θ are obtained by minimizing

LS (λ, θ) =
n∑

j=1

[[
1 +

θ

1 + θ

1

xα

]
e−

θ
xα −

j

n+ 1

]2
(23)

Therefore, λ̂LS and θ̂LS of λ and θ can be obtained as the solution of the following system of
equations:

∂LS (λ, θ)

∂α
=

n∑

i=1

F
′

α(x(i), λ, θ)

(
F
(
x(i), λ, θ

)
−

i

n+ 1

)

=

n∑

i=1

θ

1 + θ

log (x)

xα
e−

θ
xα

×

[[
1 +

θ

1 + θ

1

xα

]
e−

θ
xα −

j

n+ 1

]2
(24)

∂LS (λ, θ)

∂θ
=

n∑

i=1

F
′

θ(x(i), λ, θ)

(
F
(
x(i), λ, θ

)
−

i

n+ 1

)

= −

n∑

i=1

θ

(1 + θ)2
1 + θ (1 + xα)

x2α
e−

θ
xα (25)

×

[[
1 +

θ

1 + θ

1

xα

]
e−

θ
xα −

j

n+ 1

]2
(26)

These non-linear can be routinely solved using Newton’s method or fixed point iteration
techniques. The subroutines to solve non-linear optimization problem are available in R software
namely.

5.1 The weighted least square estimators

The weighted least square estimators of the unknown parameters can be obtained by minimizing

n∑

j=1

wj

[
F (X(j))−

j

n+ 1

]2
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with respect to α and λ. The weights wj are equal to 1
V (X(j))

= (n+1)2(n+2)
j(n−j+1) . Therefore, in this

case, the weighted least square estimators of α and λ, say α̂WLSE and λ̂WLSE respectively, can
be obtained by minimizing

n∑

j=1

(n+ 1)2(n+ 2)

n− j + 1

[(
1− e−λx

)θ (
1 + θ − θ log

(
1− e−λx

))

1 + θ
−

j

n+ 1

]2

with respect to α and λ.
Therefore, λ̂WLSW and θ̂WLSW of λ and θ can be obtained as the solution of the following

system of equations:

∂WLS (λ, θ)

∂α
=

n∑

i=1

(n+ 1)2(n+ 2)θ

(n− j + 1)(1 + θ)

log (x)

xα
e−

θ
xα

×

[[
1 +

θ

1 + θ

1

xα

]
e−

θ
xα −

j

n+ 1

]2
(27)

∂WLS (λ, θ)

∂θ
= −

n∑

i=1

(n+ 1)2(n+ 2)θ

(n− j + 1) (1 + θ)
2

1 + θ (1 + xα)

x2α
e−

θ
xα (28)

×

[[
1 +

θ

1 + θ

1

xα

]
e−

θ
xα −

j

n+ 1

]2
(29)

These non-linear can be routinely solved using Newton’s method or fixed point iteration
techniques. The subroutines to solve non-linear optimization problem are available in R software
namely optim(), nlm() and bbmle() etc. We used nlm() package for optimizing (5), (18) and
(23).

6 Simulation algorithms and study

To generate a random sample of size n from GILD, we follow the following steps:

1. Set n, Θ = (β) and initial value x0.

2. Generate U ∼ Unifrom (0, 1).

3. Update x0 by using the Newton’s formula
x⋆ = x0 −R(x0,Θ)

where, R(x0,Θ) =
FX(x0,Θ)−U

fX (x0,Θ) , FX(.) and fX(.) are cdf and pdf of GILD, respectively.

4. If | x0 − x⋆ |≤ ǫ, (very small, ǫ > 0 tolerance limit), then store x = x⋆ as a sample from
GILD.

5. If | x0 − x⋆ |> ǫ, then, set x0 = x⋆ and go to step 3.

6. Repeat steps 3-5, n times for x1, x2, . . . , xn respectively.
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7 Comparison study of the proposed estimators

This subsection deals with the comparisons study of the proposed estimators in terms of their
mean square error on the basis of simulates sample from pdf of GILD with varying sample
sizes. For this purpose, we take α = 2 and θ = 1.5, arbitrarily and n = 10, 20, . . . , 50. All the
algorithms are coded in R, a statistical computing environment and we used algorithm given
above for simulations purpose.

We calculate Maximum likelihood estimation(MLE),methods of moments(MM), modified
method of moments(MME), Least square estimatior(LSE), Percentile estimation(PE),Maximum
product spacing(MPS),Cramer-vonMises estimation(CME) and Anderson Darling estimation(ADE)
of β based on each generated sample. This proses is repeated 1000 of times, and average es-
timates and corresponding mean square errors are computed and also reported in Table 1 and
2.

From Table 1 and Table 2 it can be observed that as sample size increases the mean square
error decreases, it proves the consistency of the estimators. Maximum product spacing(MPS) of
parameter α and θ is superior than the others methods of estimation.

Table 1: Estimates and mean square errors (in IInd row of each cell) of the proposed estimators
with varying sample size for α

MLE LSE PSE WLS CVM AD RADE MM
10 2.313455 2.009112 1.830988 2.001844 1.891834 2.21844 1.85142 1.87431

0.5658535 0.6818355 0.3271637 0.7147259 0.8096587 0.8291452 0.874785 0.8325914
20 2.163287 1.996208 1.880599 2.019074 2.059119 1.933184 2.11358 1.87431

0.1931416 0.2429763 0.1410891 0.2813676 0.2704694 0.3115214 0.294857 0.2791485
30 2.111635 1.995606 1.903263 2.011532 2.037083 1.93134 8 2.14418 1.88153

0.1117104 0.1408858 0.09011919 0.161499 0.1508393 0.161415 0.168574 0.1748591
40 2.086004 1.999337 1.918055 2.011878 2.029909 1.974878 2.10243 1.92147

0.07687683 0.1033162 0.06559104 0.1172614 0.1088453 0.109845 0.108745 0.1045988
50 2.068373 1.997535 1.926667 2.008684 2.021861 1.984878 2.05198 1.974781

0.06050827 0.08165715 0.05416229 0.09471132 0.08508901 0.095845 0.098785 0.094652
60 2.056900 1.998592 1.933338 2.010485 2.018830 1.984878 2.05198 1.974781

0.04814758 0.06681029 0.04422282 0.07685404 0.06913374 0.067888 0.068142 0.064101
70 2.050378 1.999597 1.940829 2.011620 2.016889 1.989654 2.04546 1.978812

0.0411482 0.05691567 0.03829946 0.06535114 0.05864063 0.060432 0.061156 0.059101
80 2.039288 1.996869 1.940636 2.009087 2.012009 1.991023 2.03899 1.980043

0.03328447 0.04881408 0.03240416 0.0563805 0.05247164 0.051243 0.051156 0.050123
90 2.036175 1.997161 1.946137 2.009747 2.010623 1.992048 2.03147 1.980987

0.02975332 0.04297147 0.02900838 0.04937122 0.04392276 0.044256 0.045178 0.043582
100 2.034124 1.997009 1.951037 2.008582 2.009096 1.994002 2.02949 1.982486

0.02716096 0.03795049 0.02648156 0.04372492 0.03868394 0.039147 0.040128 0.038146
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Table 2: Estimates and mean square errors (in IInd row of each cell) of the proposed estimators
with varying sample size for θ

MLE LSE PSE WLS CVM AD RAD MM
10 1.616402 1.567633 1.518994 1.573889 1.713010 1.753413 1.743125 1.72450

0.3975645 0.3997802 0.1843967 0.5893906 0.616127 0.631267 0.634276 0.626785
20 1.544120 1.520683 1.503077 1.528378 1.585997 1.653413 1.62125 1.59478

0.1093108 0.1086653 0.07540591 0.1516769 0.1394856 0.14540465 0.1616234 0.1594192
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