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ABSTRACT 

This study investigated unsteady MHD flow of an incompressible fluid through horizontal semi-

infinite porous plates. A variable magnetic field was applied normal to the flow. The flow was 

assumed to occur along the positive x direction between two parallel horizontal plates stationed 

at y = ± L planes. Effects of different flow parameters were investigated when the lower plate 

was impulsively started in the positive x direction at a uniform velocity while the upper plate was 

kept stationary. The coupled non-linear partial differential equations governing the flow were 

first non-dimensionalised then solved using the finite difference method. The results obtained 

were presented in tables and graphs. It was noted that an increase in magnetic field intensity 

causes a decrease in both the primary and secondary velocity profiles. 
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 Introduction 

An ideal fluid is one that is incompressible and flows steadily, irrotationally and with no 

viscosity. According to the non dissipative nature of ideal fluids, experimental results have 

shown that fluids such as air and water are not so ideal and that ideal fluids do not actually exist. 

Real fluids are either compressible or incompressible and their flow exhibits viscous effect. This 

means that whenever there is a velocity gradient across the real fluid’s flow path, frictional 

forces arise between adjacent fluid particles due to the viscosity μ of the fluid. Real fluids obey 

the Newton’s law of viscosity i.e.    

 

This means that the shear stress τ in a fluid is proportional to the velocity gradient, which is the 

rate of change of velocity across the fluid flow path. For a Newtonian fluid, we can express   

                                                                                                                              (1) 

The constant of proportionality µ is known as the coefficient of viscosity. For some fluids 

sometimes known as exotic fluids, the value of µ changes with stress or velocity gradient. The 
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viscosity of a pure Newtonian fluid depends only on temperature and pressure. When viscous 

fluids flow between stationary solid surfaces, the velocity of fluid particles in contact with the 

solid boundary is zero. At the solid wall boundary, a type of frictional force called skin friction 

exists. A boundary layer forms in the fluid flow region close to the solid wall. This is due to the 

no slip boundary condition. The thickness of the boundary layer will be dependent on the 

Reynolds number and the local flow properties.    

Fluid flow can be classified as either steady or unsteady. The flow is said to be steady if the fluid 

flow variables such as velocity, applied magnetic field and temperature are independent of time. 

If on the other hand the flow variables are dependent on time the flow is said to be unsteady. 

Laminar fluid flow is the motion of the fluid particles in a very orderly manner with all particles 

moving in straight lines parallel to the boundary walls. The particles do not encounter 

disturbance on their path. Turbulence in fluid flow occurs when a flowing fluid suddenly 

encounters a disturbance such as a solid obstruction or a force. As a result the fluid particles 

move in a disorderly manner with different velocities and energy. The shape of the velocity 

curve (the velocity profile across any given section of the flow channel) depends upon whether 

the flow is laminar or turbulent. For turbulent flow in a pipe a fairly flat velocity distribution 

exists across the section of the flow field, with the result that the entire fluid flows at a given 

single value. If the flow is laminar the shape is parabolic with the maximum velocity at the 

centre being about twice the average velocity in the pipe.    

As in ordinary hydrodynamics, the dynamics of the conducting fluid flowing in a transverse 

magnetic field obeys theorems expressing the conservation of mass, momentum and energy. 

These theorems are; matter can neither be created nor destroyed, momentum of a moving body is 

always conserved and energy can never be destroyed but can be converted from one form to 

another. These theorems treat the fluid as a continuum. This is justified if the mean flee path of 

the individual particles is much shorter than the flow. Although this assumption does not 

generally hold for plasmas, one can gain much insight into hydrodynamics from the continuum 

approximation. For incompressible fluids, the mean distance between fluid particles remains 

fairly constant and is not affected by an increase in pressure.  

Magnetohydrodynamics (MHD) is a branch of science which concerns the study of the flow of 

an electrically conducting fluid in the presence of a magnetic field. The fluids can be ionized 

gases generally called plasmas or liquid metals. The central point of MHD theory is that 

magnetic field can induce a current in a moving conductive fluid which ends up creating 

pondermotive forces on the fluid particles and also change the magnetic field itself. When a 

conducting fluid moves through the magnetic lines of force the positive and negative charges are 

each accelerated in such a way that their average motion gives rise to an electric current 

. In accordance with the dynamo rule, the voltage drop or electric field which 
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causes this current is at right angles to the direction of fluid motion and the magnetic field lines; 

(Verma, 1968). 

 

Figure 1: Dynamo rule 

In the case of a fluid conductor flowing in presence of a transverse magnetic field, the ordinary 

laws of hydrodynamics can easily be extended to cover the effect of magnetic and electric fields. 

This is done by adding magnetic force (Lorentz force) to the momentum conservation equation. 

To incorporate exhaustively the effects of magnetic and electric fields, the electric heating and 

work are added to the energy conservation equation. The Lorentz force is in a direction 

perpendicular to both J and B and is proportional to the magnitude of both J and B and is given 

by the cross product of J and B i.e. 

                   (2)                                       

In MHD this force acts on the fluid particles. 

 Literature Review 

The problem of unsteady MHD convection heat and mass transfer past a semi- infinite vertical 

permeable moving plate with heat absorption has been studied by several researchers who 

include Chamkha,A.K. (2004) and Attia, H.A. (1999) who researched on transient MHD flow 

and heat transfer between two parallel plates with temperature dependent viscosity. Nithiarasu 

et., al (2001) presented their numerical work on natural convection in porous medium fluid 

interface problems where they used the finite difference method to solve the governing 

generalized porous medium equations. Chandra, B S (2005) studied a steady MHD flow of an 

electrically conducting fluid between two parallel infinite plates when the upper plate is made to 

move with constant velocity while the lower plate is stationary. Smokentsev et., al (2006) studied 

modeling quasi-two dimensional turbulence in MHD duct flows in a transverse uniform 

magnetic field where viscous and Ohmic losses occur in the boundary layers at the flow-

confining walls perpendicular to the magnetic field (Hartman layers). Ramana, et. al (2007) 

studied the effect of Hall current on MHD flow and heat transfer along a porous flat plate with 
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mass transfer. He applied numerical methods to obtain the solutions. Ganesh et. al (2007) studied 

unsteady magnetohydrodynamic Stokes flow of a viscous fluid between two parallel porous 

plates in a channel in the presence of a transverse magnetic field when the fluid is being 

withdrawn through both walls of the channel at the same rate. Singh, N P et., al (2007) studied 

two dimensional free convection and mass transfer flow of an incompressible, viscous and 

electrically conducting fluid past a continuously moving infinite vertical porous plate in the 

presence of heat source, thermal diffusion, large suction and under influence of a uniform 

magnetic field applied normal to the flow. The present research will be to investigate unsteady 

flow of an incompressible, viscous and electrically conducting fluid between two parallel semi-

infinite porous plates when the lower plate is set impulsively in motion at constant velocity U 

while the upper plate remains stationary in the presence of a variable magnetic field and constant 

suction. The fluid is considered to flow in the X-direction between two parallel flat plates located 

at y=±L and the variable transverse magnetic field is applied in Y-direction. The fluid will be 

assumed to be Newtonian. Semi- infinite implies that the flow field is unbounded in one 

direction; the z direction. 

Mathematical Formulations 

The flow geometry describing this system is presented in figure 2. The velocity, temperature and 

magnetic field initial and boundary conditions for this flow problem can be stated in summary as 

follows; 

 t<0,         u(x, y, 0) = 0,        w(x, y, 0) = 0,      T(x, y, 0) = T∞ 

 t≥0,         u(x, -L, t) = U,        w(x, -L, t) = 0,       T(x, -L, t) = T∞ 

 t≥0,         u(x, L, t) = 0,        w(x, L, t) = 0,     T(x, L, t) = Tw 

 t≥0,         u(X, y, t) = 0,        w(X, y, t) = 0,     T(X, y, t) = T∞ 
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Figure 2: The flow geometry 

The applied inhomogeneous magnetic field has the following boundary conditions: 

 t≥0, By = 0 for x<0,          for 0≤x≤X 

The flow set up is such that the rate at which the magnetic field intensity By changes in the 

defined length 0<x<X is constant, implying that the magnetic field gradient      

is constant. Vorticity is generated by the viscosity, and also by the interaction between the 

resultant electric field, ‘‘Curl By yields ’’ and the applied magnetic field 

 to produce an electromagnetic force (JxB). The governing equations for this 

research problem are: 

                        (3) 

                                     (4) 
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                                             (5)  

The final form of non-dimensional equations governing the primary and secondary velocity 

profiles are:   

                                   (6) 

                         (7) 

The final form of the energy equation is: 

                                 (8) 

The non-dimensional form of the equations governing this problem can be stated in summary as: 

                                 (9) 

                              (10) 

                               (11) 

The fluid particles in contact with the solid boundaries are assumed to stick tightly and not to 

slide over the plates, i.e. the fluid satisfies the no-slip condition. This implies that their velocity 

in time t≥0 is equal to that of the plates. Halfway plates separation distance (L) is taken as the 

characteristic length. The non-dimensional initial and boundary conditions on velocity, 

temperature and magnetic field for this problem can be summarized as shown below.  
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In the analysis it is assumed that electromagnetic interaction is initially zero; the magnetic field 

intensity  is varied instantaneously from 2.0T to 4.0T, and the magnetic flux gradient  

similarly from 0.03 to 0.05. Referring to equation (9), the effect of isolated variation of these two 

terms corresponds to the effect of transverse variable magnetic field on the flow of the 

conducting fluid without loss of approximate generality. In the referred equation, the non-

dimensionalised form of JxB has been simplified to  where Rh is the magnetic pressure 

number. This approach renders the induction equation solved a priori as well as the Lorentz 

force term, thus at t
*
≥0,      for 0≤ x

*
≤X/L and      elsewhere. 

The momentum equation can be expressed in finite difference form via time step k+1 yielding 

the primary velocity profile as 

                                                                                    

                                                                                                                                                    (12) 

The secondary velocity profile is similarly expressed in finite difference form as  

   
                                                                                                                   (13) 

The pressure gradient terms   and    are considered to be constant (zero) since the 

flow is fully developed and Fgrand represents the magnetic flux gradient   . These two 

expressions are used to determine the velocity profiles by subjecting   and   

   respectively. The energy equation in finite difference form is expressed as  
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                                                                                                                                                     (14)  

 Method of Solution   

The solution to this problem is obtained via an iterative strategy where the variable in question is expressed in terms 

of its local mesh point values at the previous time step. The values of velocity and temperature are computed via 

consecutive expressions of ,   and , i.e.   

 

(15) 

 

(16) 

 

(17) 
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The computations are performed using small values of Δt, ie constant time steps of Δt= 0.00625.  

The range of i and j follows from constant step sizes Δx≈0.05 and Δy≈0.05 within a square mesh 

framework. Using the expressions x*=iΔx and y*=jΔy, the range of j in terms of discrete units is 

transformed to  which is equivalent to -1 ≤y* ≤ 1. This follows from the 

deduction that for . Similarly when . This range 

is arbitrary and its equivalent whole unit grid steps over the entire mesh system are 0 ≤ j ≤ 40. 

The unit grid steps along the direction of flow are similarly calculated and for a square mesh 

framework, 0 ≤ i ≤ 40. The fluid exhibits free stream profiles in the region defined by i>40. Due 

to the sudden velocity given to the lower plate, the velocity at j=0 changes suddenly from zero at 

t≥0 to 1 while the velocity at the upper plate remains zero. The fluid exhibits free stream profiles 

in the region defined by i>40. In short, the discretised conditions become  

Flow Conditions Primary velocity  Secondary 

velocity 

Temperature  

        
   

       

 

                

 

   

   

   

This procedure ensures that the following conditions apply;  

 The flow variables converge after the 300 iterations, i.e. for k+1=300. An immediate result for 

this value of k follows when further iterations do not make any significant change of the flow 

variable being iterated. 

 The fluid exhibits free stream profiles in the region i>40 for all j and k, hence i=41=∞. 

 The locations of the parallel plates at y=±L are arbitrary.  

 The iterations are obtained for different values of j=0,1,2,3,……….41. To cater for the 

inhomogeneous magnetic field, iterations are carried out for i=0,1,2,3,……….41.  

To be able to cater for the inhomogeneous magnetic field, the variation of By and   are considered. 

These two terms are as a result of the simplified Lorentz force J×B; ‘‘the cross product of the induced 

current when the displacement current is neglected in line with Ampere’s law and the applied transverse 

inhomogeneous magnetic field’’. The results have been obtained for By=2.0-4.0 T, Fgrand=0.03-0.05 

T
2
m

-1
, Rh=1.0-3.0, θ=0-1.0, Pr=0.71-0.74, Ec=0.5-0.7, V0=0-0.5 and Re=1000-1500.  

 Results and discussions 
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The graphs below shows the primary velocity profiles, secondary velocity profiles as well as the 

temperature profiles. The various profiles are distinguished using different dash type line style curves 

which have been set apart by the use of different series code letters.    

  Pr = 0.71,   Ec = 0.05 

 

Figure 3: Primary Velocity Profiles 
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Pr=0.71, Ec=0.05 

 

Figure 4: Secondary Velocity Profiles 
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Re=1000, Fgrand=0.03, Rh =3.0 

 

Figure 5: Temperature Profiles 
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 Discussion of results 

Primary Velocity Profiles  

Figure (3) provides the primary velocity profiles obtained with respect to y when the Prandtl 

number (Pr) and Eckert number (Ec) are fixed and the other parameters varied. From this figure, 

it is clear that; 

 Removal of suction i.e. V0=0.0  leads to an increase primary velocity profiles.  

 An increase in Reynolds number leads to an increase primary velocity profiles. 

Since this parameter acts to dampen the viscous effects, inertial forces tend to 

dominate over the viscous forces and the fluid tends to continue with its state of 

motion with negligible resistance of frictional forces.   

 An increase in magnetic field gradient (Fgrand) leads to a decrease in primary 

velocity profiles. The interaction between the magnetic field gradient and the 

induced current in the fluid generates Lorentz force which opposes the flow thus 

slowing it down. The greater the flux gradient, the greater is this force implying 

greater opposition to the flow, yielding to reduced velocity profile.     

 An increase in magnetic field intensity (By) leads to a decrease in primary 

velocity profiles. The interaction between the magnetic field gradient and the 

induced current in the fluid generates Lorentz force which opposes the flow thus 

slowing it down. This is the effect of the inhomogeneous magnetic flux on the 

flow. 

 An increase in magnetic pressure number (Rh) leads to a decrease in primary 

velocity profiles. This implies that an increase in magnetic pressure number 

yields an increase in magnetic pressure force. This force acts to oppose the flow 

and hence slowing it down. 

 Secondary Velocity Profiles  

Figure (4) provides the secondary velocity profiles obtained with respect to y when the Prandtl 

number (Pr) and Eckert number (Ec) are fixed and the other parameters varied. From this figure, 

it is clear that; 

 Removal of suction leads to an increase in the secondary velocity profiles. 

 An increase in Reynolds number leads to a decrease in secondary velocity profiles. 

 An increase in magnetic field intensity leads to a decrease in secondary velocity 

profiles. 
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 An increase in magnetic field gradient leads to a decrease in secondary velocity 

profiles. 

 An increase in magnetic pressure number leads to a decrease in secondary velocity 

profiles. 

 

Temperature Profiles 

Figure (5) provides the secondary velocity profiles obtained with respect to y when the Reynolds 

number, magnetic flux gradient and magnetic pressure number are fixed and the other 

parameters varied. From this figure, it is clear that 

 Removal of suction leads to an increase in the temperature profiles. 

 An increase in Prandtl Number leads to a decrease in temperature profiles. 

 Variation of magnetic field intensity does not affect the temperature profiles. 

 An increase in Eckert Number leads to an increase in temperature profiles. Hence the 

rate at which the fluid loses heat decreases as the Eckert Number is increased which 

can be attributed to the viscous dissipation as the Eckert number is increased. 

Conclusion 

The applied magnetic field is varied lengthwise in the direction of the flow hence resulting to a 

magnetic flux gradient. This inhomogeneous magnetic field yields an opposing force; the 

Lorentz force which is due to the interaction between the field and the induced current in the 

fluid. The equations governing the MHD flow in the analysis are non-linear and hence finite 

difference scheme is used in order to obtain the solutions. In this study, the flow problem 

involves fluids of Reynolds number in the range of 1000 to 2000, and thus is the case for 

unsteady problem. The velocity at the upper plate was fixed at zero and the lower plate was 

impulsively started at constant velocity in the direction o the main flow.  The temperature at the 

lower plate was maintained constant and at the initial fluid temperature by cooling. There is 

significant effect on the velocity of the fluid by the inhomogeneous magnetic field. In 

conclusion, we can deduce the following from the    study: 

 Increase in magnetic field gradient causes a decrease in velocity profile in the 

direction of flow. 

 An increase in magnetic field intensity causes a decrease in both the primary and 

secondary velocity profiles. 

 The fluid is slowed down by an increase in magnetic pressure number. 

 An increase in Prandtl number causes a decrease in temperature profiles. 

 The fluids temperature flux increases with increase in Eckert number.  
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