On Jordan Generalized (σ, τ) -Higher Reverse Derivations of Gamma-Rings

Fawaz Raad Jarullah

Department of Mathematics ,college of Education, Al-Mustansirya University, Iraq

Abstract

: Let M be a Γ-ring and σ^{n}, τ^{n} be two higher endomorphisms of a Γ-ring M, for all $n \in N$ in the present paper we show that under certain conditions of M, every Jordan generalized (σ, τ)higher reverse derivation of a Γ-Ring M is a generalized (σ, τ)-higher reverse derivation

Mathematics Subject Classification(2000): 16W25, 16U80 .
Key Words: generalized derivation, reverse generalized derivation, generalized higher reverse derivation, Jordan generalized higher reverse derivation

1- Introduction:

Let M and Γ be two additive a belian groups, suppose that there is a mapping from $\mathrm{M} \times \Gamma \times \mathrm{M}$ $\longrightarrow \mathrm{M}$ (the image of (a, α, b) being denoted by $a \alpha b, a, b \in \mathrm{M}$ and $\alpha \in \Gamma$). Satisfying for all $a, b, c \in \mathrm{M}$ and $\alpha, \beta \in \Gamma:$
(i) $(a+b) \alpha c=a \alpha c+b \alpha c$

$$
a(\alpha+\beta) c=a \alpha c+a \beta c
$$

$a \alpha(b+c)=a \alpha b+a \alpha c$
(ii) $\quad(a \alpha b) \beta c=a \alpha(b \beta c)$

Then M is called a Γ-ring. This definition is due to Barnes [1].
Let M be Γ-ring then M is called 2-torsion free if $2 a=0$ implies $a=0$, for every $\in \mathrm{M}$, this definition is due to [3].
Let M be $a \Gamma$-ring and $d: M \longrightarrow M$ be an additive mapping (that is $\mathrm{d}(a+b)=\mathrm{d}(a)+\mathrm{d}(b))$ of a Γ-ring M into itself then d is called a derivation on M if :
$\mathrm{d}(a \alpha b)=\mathrm{d}(a) \alpha b+a \alpha \mathrm{~d}(b)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$ and d is called a Jordan derivation on M if $\mathrm{d}(a \alpha a)=\mathrm{d}(a) \alpha a+a \alpha \mathrm{~d}(a)$, for all $a \in \mathrm{M}$ and $\alpha \in \Gamma$, [2].

Let M be a Γ-ring, an additive mapping $\mathrm{F}: \mathrm{M} \longrightarrow \mathrm{M}$ is called
a generalized derivation on M if there exists a derivation $\mathrm{d}: \mathrm{M} \longrightarrow \mathrm{M}, \quad$ such that:
$\mathrm{F}(a \alpha b)=\mathrm{F}(a) \alpha b+a \alpha \mathrm{~d}(b)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$.
And F is called Jordan generalized derivation if there exists a Jordan derivation $\mathrm{d}: \mathrm{M} \longrightarrow \mathrm{M}$, such that:
$\mathrm{F}(a \alpha a)=\mathrm{F}(a) \alpha a+a \alpha \mathrm{~d}(b)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$, [2] .
Let M be a Γ-ring and σ, τ be tow endomorphisms of M. such that $d: M \longrightarrow M$ be an additive mapping. Then d is called (σ, τ)-derivation of M if:
$\mathrm{d}(a \alpha b)=\mathrm{d}(a) \alpha \tau(b)+\sigma(a) \alpha \mathrm{d}(b)$, for all $a, b \in \mathrm{M}, \alpha \in \Gamma$.
And d is called a Jordan (σ, τ)-derivation of M if:
$\mathrm{d}(a \alpha a)=\mathrm{d}(a) \alpha \tau(a)+\sigma(a) \alpha \mathrm{d}(a)$, for all $a \in \mathrm{M}, \alpha \in \Gamma$, [5].
Let M be a Γ-ring and σ, τ be tow endomorphisms of M. such that $F: M \longrightarrow M$ be an additive mapping. Then F is called a generalized (σ, τ)-derivation of M if there exists a (σ, τ) derivation d: $\mathrm{M} \longrightarrow \mathrm{M}$, such that:
$\mathrm{F}(a \alpha b)=\mathrm{F}(a) \alpha \tau(b)+\sigma(a) \alpha \mathrm{d}(b)$, for all $a, b \in \mathrm{M}, \alpha \in \Gamma$.
Let M be a Γ-ring and σ, τ be tow endomorphisms of M . such that $\mathrm{F}: \mathrm{M} \longrightarrow \mathrm{M}$ be an additive mapping. Then F is called a Jordan generalized (σ, τ)-derivation of M if there exists a Jordan (σ, τ)-derivation $\mathrm{d}: \mathrm{M} \longrightarrow \mathrm{M}$, such that:
$\mathrm{F}(a \alpha a)=\mathrm{F}(a) \alpha \tau(a)+\sigma(a) \alpha \mathrm{d}(a)$, for all $a \in \mathrm{M}, \alpha \in \Gamma,[5]$.
Let M be a Γ-ring and $\mathrm{d}: \mathrm{M} \longrightarrow \mathrm{M}$ be an additive mapping of a Γ-ring M into itself then d is called reverse derivation on M if
$\mathrm{d}(a \alpha b)=\mathrm{d}(\mathrm{b}) \alpha a+\operatorname{b} \alpha \mathrm{d}(a)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$.
Let M be a Γ-ring and $\mathrm{d}: \mathrm{M} \longrightarrow \mathrm{M}$ be an additive mapping of a Γ-ring M into itself then d is called a Jordan reverse derivation on M if
$\mathrm{d}(a \alpha a)=\mathrm{d}(a) \alpha a+a \alpha \mathrm{~d}(a)$, for all $a \in \mathrm{M}$ and $\alpha \in \Gamma$, [4].
Let M be a Γ-ring and $\mathrm{F}: \mathrm{M} \longrightarrow \mathrm{M}$ be an additive mapping of a Γ-ring M into itself then F is called generalized reverse derivation on M if there exists a reverse derivation $\mathrm{d}: \mathrm{M} \longrightarrow$ M , such that, $\mathrm{F}(a \alpha b)=\mathrm{F}(\mathrm{b}) \alpha a+\operatorname{b} \alpha \mathrm{d}(a)$, for all $a, b \in \mathrm{M} \quad$ and $\alpha \in \Gamma$.

Let M be a Γ-ring and $\mathrm{F}: \mathrm{M} \longrightarrow \mathrm{M}$ be an additive mapping of a Γ-ring M into itself then F is called a Jordan generalized reverse derivation on M if there exists a Jordan reverse derivation $\mathrm{d}: \mathrm{M} \longrightarrow \mathrm{M}$, such that
$\mathrm{F}(a \alpha a)=\mathrm{F}(a) \alpha a+a \alpha \mathrm{~d}(a)$, for all $a \in \mathrm{M}$ and $\alpha \in \Gamma,[6]$.

Let M be a Γ-ring and $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of M , such that $\mathrm{f}_{0}=\mathrm{id}_{\mathrm{M}}$ then F is called a generalized higher reverse derivation of M if there exists a higher reverse derivation $\mathrm{D}=\left(\mathrm{d}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ of M , such that for every $a, \mathrm{~b} \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$
$f_{\mathrm{n}}(a \alpha b)=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}(b) \alpha \mathrm{d}_{\mathrm{j}}(a)$
And F is called a Jordan generalized higher reverse derivation of M if there exists a Jordan higher reverse derivation $\mathrm{D}=\left(\mathrm{d}_{\mathrm{i}}\right)_{i \in \mathrm{~N}}$ of M , such that for every $a, \mathrm{~b} \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$
$f_{\mathrm{n}}(a \alpha a)=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}(a) \alpha \mathrm{d}_{\mathrm{j}}(a),[6]$.
Now, the main purpose of this paper is that every Jordan generalized (σ, τ) - higher reverse derivation of a 2-torsion free Γ-ring M into itself, such that $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ is a Jordan generalized triple (σ, τ)-higher reverse derivation.

2- Jordan generalized (σ, τ)-Higher Reverse Derivations on Γ-Ring :

Definition (2.1):

Let $F=\left(f_{i}\right)_{i \in N}$ be a family of additive mappings of a Γ-ring M into itself, such that $f_{0}=$ id_{M} and σ, τ be two endomorphisms of M. F is called a generalized (σ, τ)-higher reverse derivation if there exists a (σ, τ) - higher reverse derivation $D=\left(d_{i}\right)_{i \in N}$ of M, such that
$f_{\mathrm{n}}(a \alpha b)=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)$, for all $a, b \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$.

Example (2.2):

Let R be a ring and $\mathrm{f}=(\mathrm{fi})_{\mathrm{i} \in \mathrm{N}}$ be a generalized (σ, τ)-higher reverse derivation on R . Then there exists a (σ, τ) - higher reverse derivation $d=\left(d_{i}\right)_{i \in N}$ of R, such that for all $a, \mathrm{~b} \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$
$f_{\mathrm{n}}(a b)=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)$.
Let $M=M_{1 \times 2}(R)$ and $\Gamma=\left\{\binom{n}{0}, n \in N\right\}$. Then M is a Γ-ring. We define
$\mathrm{F}=\left(\mathrm{F}_{\mathrm{i}}\right)_{i \in \mathrm{~N}}$ be a family of additive mappings of M , such that $\mathrm{F}_{\mathrm{n}}((a \quad \mathrm{~b}))=\left(\mathrm{f}_{\mathrm{n}}(a) \quad \mathrm{f}_{\mathrm{n}}(b)\right)$. Then there exists a (σ, τ) - higher reverse derivation $\mathrm{D}=\left(\mathrm{d}_{\mathrm{i}}\right)_{i \in \mathrm{~N}}$ of M , such that for all a, $\mathrm{b} \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}_{\mathrm{n}}((a \quad \mathrm{~b}))=\left(\left(\mathrm{d}_{\mathrm{n}}(a) \quad \mathrm{d}_{\mathrm{n}}(b)\right)\right.$.
Let $\sigma_{1}^{\mathrm{n}}, \tau_{1}^{\mathrm{n}}$ be two endomorphisms of M, such that $\sigma_{1}^{\mathrm{n}}((a \quad b))=((\sigma(a) \quad \sigma(b))$, $\tau_{1}^{\mathrm{n}}\left(\left(\begin{array}{ll}(a & b))\end{array}\right)=((\tau(a) \quad \tau(b))\right.$.
Then F is a generalized (σ, τ)-higher reverse derivation.

Definition (2.3):

Let $F=\left(f_{i}\right)_{i \in N}$ be a family of additive mappings of a Γ-ring M into itself, such that $f_{0}=$ id_{M} and σ, τ be two endomorphisms of M. F is called a Jordan generalized (σ, τ)-higher reverse derivation if there exists a Jordan (σ, τ) - higher reverse derivation $\mathrm{D}=\left(\mathrm{d}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ of M , such that
$f_{\mathrm{n}}(a \alpha \mathrm{a})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)$, for all $a \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$.

Definition (2.4):

Let $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of a Γ-ring M into itself, such that f_{0} $=\mathrm{id}_{\mathrm{M}}$ and σ, τ be two endomorphisms of M. F is called a Jordan generalized triple $(\sigma, \tau)-$ higher reverse derivation if there exists a Jordan triple (σ, τ) - higher reverse derivation $\mathrm{D}=$ $\left(d_{i}\right)_{i \in N}$ of M, such that

$$
f_{\mathrm{n}}(a \alpha b \beta a)=f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)
$$

for all $a, b \in \mathrm{M}, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$.

Lemma (2.5):

Let $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a Jordan generalized triple (σ, τ)-higher reverse derivations on a Γ-ring M into itself. Then for all $a, b, c \in \mathrm{M}, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$

$$
\begin{equation*}
f_{\mathrm{n}}(a \alpha b+b \alpha a)=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right) \tag{i}
\end{equation*}
$$

(ii) $\quad \mathrm{f}_{\mathrm{n}}(a \alpha b \beta a+a \beta b \alpha a)=f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+$

$$
f_{\mathrm{n}}(a) \alpha a \beta b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{i}}(a)\right)
$$

(iii) If M is a 2 -torsion free Γ-ring.

$$
f_{\mathrm{n}}(a \alpha b \alpha a)=f_{\mathrm{n}}(a) \alpha a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)
$$

(iv) $f_{\mathrm{n}}(a \alpha b \beta c+c \alpha b \beta a)=f_{\mathrm{n}}(c) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+$

$$
f_{\mathrm{n}}(a) \beta c \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(c)\right)
$$

(v) In particular, if M is a 2-torsion free commutative Γ-ring

$$
f_{\mathrm{n}}(a \alpha b \beta c)=f_{\mathrm{n}}(c) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)
$$

(vi) $f_{\mathrm{n}}(a \alpha b \alpha c+c \alpha b \alpha a)=f_{\mathrm{n}}(c) \alpha a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+$

$$
f_{\mathrm{n}}(a) \alpha c \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)
$$

Proof:

(i) Replacing $a+b$ for a in the Definition (2.3), we get:

$$
\begin{align*}
f_{\mathrm{n}}((a+b) \alpha(a+b))= & \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a+b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a+b)\right) \\
= & \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)+\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)+\tau^{\mathrm{n}-\mathrm{j}}(b)\right) \\
= & \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right) \tag{1}
\end{align*}
$$

On the other hand:

$$
\begin{aligned}
f_{\mathrm{n}}((a+b) \alpha(a+b))= & f_{\mathrm{n}}(a \alpha a+a \alpha b+b \alpha a+b \alpha b) \\
= & \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right)+\cdots \\
& f_{\mathrm{n}}(a \alpha b+b \alpha a)
\end{aligned}
$$

Comparing (1) and (2), we get:
$f_{\mathrm{n}}(a \alpha b+b \alpha a)=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right)$
(ii) Replace $a \beta b+b \beta a$ for b in (i), we get:
$f_{\mathrm{n}}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)$
$=f_{\mathrm{n}}(a \alpha(a \beta b)+a \alpha(b \beta a)+(a \beta b) \alpha a+(b \beta a) \alpha a)$
$\left.=f_{\mathrm{n}}((a \alpha a) \beta b+(a \alpha b) \beta a)+(a \beta b) \alpha a+(b \beta a) \alpha a\right)$
$=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a \alpha a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a \alpha b)\right)+$ $\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a \beta a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b \beta a)\right)$

$$
\begin{align*}
= & \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta\left(\sum_{\mathrm{r}+\mathrm{s}=\mathrm{j}} \mathrm{~d}_{\mathrm{r}}\left(\sigma^{\mathrm{j}-\mathrm{r}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right) \alpha \mathrm{d}_{\mathrm{s}}\left(\tau^{\mathrm{j}-\mathrm{s}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta\left(\sum_{\mathrm{e}+\mathrm{f}=\mathrm{j}} \mathrm{~d}_{\mathrm{e}}\left(\sigma^{\mathrm{j}-\mathrm{e}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right) \alpha \mathrm{d}_{\mathrm{f}}\left(\tau^{\mathrm{j}-\mathrm{f}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha\left(\sum_{\mathrm{p}+\mathrm{q}=\mathrm{j}} \mathrm{~d}_{\mathrm{p}}\left(\sigma^{\mathrm{j}-\mathrm{p}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right) \beta \mathrm{d}_{\mathrm{q}}\left(\tau^{\mathrm{j}-\mathrm{q}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha\left(\sum_{\mathrm{x}+\mathrm{y}=\mathrm{j}} \mathrm{~d}_{\mathrm{x}}\left(\sigma^{\mathrm{j}-\mathrm{x}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right) \beta \mathrm{d}_{\mathrm{y}}\left(\tau^{\mathrm{j}-\mathrm{y}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right)\right) \\
= & \sum_{\mathrm{i}+\mathrm{r}+\mathrm{s}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{r}}\left(\sigma^{\mathrm{s}} \tau^{\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{s}}\left(\tau^{\mathrm{n}-\mathrm{s}}(a)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{e}+\mathrm{f}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{e}}\left(\sigma^{\mathrm{f}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{f}}\left(\tau^{\mathrm{n}-\mathrm{f}}(a)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{p}+\mathrm{q}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{p}}\left(\sigma^{\mathrm{q}} \tau^{\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{q}}\left(\tau^{\mathrm{n}-\mathrm{q}}(a)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{x}+\mathrm{y}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{x}}\left(\sigma^{\mathrm{y}} \tau^{\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{y}}\left(\tau^{\mathrm{n}-\mathrm{y}}(b)\right) \\
= & f_{\mathrm{n}}(b) \beta a \alpha a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+ \\
& f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+ \\
& f_{\mathrm{n}}(a) \alpha b \beta a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}(a) \alpha a \beta b+f_{\mathrm{i}}^{\mathrm{i}<\mathrm{n}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \beta{\mathrm{d}_{\mathrm{k}}}\left(\tau^{\mathrm{n}-\mathrm{k}}(b)\right)
\end{align*}
$$

On the other hand:

$$
\begin{align*}
& f_{\mathrm{n}}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a) \\
& =f_{\mathrm{n}}(a \alpha a \beta b+a \alpha b \beta a+a \beta b \alpha a+b \beta a \alpha a) \\
& =f_{\mathrm{n}}(b) \beta a \alpha a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+ \\
& \quad f_{\mathrm{n}}(a) \alpha b \beta a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i} n} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(b)\right)+f_{\mathrm{n}}(a \alpha b \beta a+a \beta b \alpha a) \tag{2}
\end{align*}
$$

Comparing (1) and (2), we get:

$$
\begin{aligned}
& f_{\mathrm{n}}(a \alpha b \beta a+a \beta b \alpha a)= \\
& =f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+ \\
& f_{\mathrm{n}}(a) \alpha a \beta b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)
\end{aligned}
$$

(iii) Replace α for β in (ii), we get:

$$
f_{\mathrm{n}}(a \alpha b \alpha a+a \alpha b \alpha a)=2 f_{\mathrm{n}}(a \alpha b \alpha a)
$$

Since M is a 2-torsion free Γ-ring

$$
=f_{\mathrm{n}}(a) \alpha a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)
$$

(iv) Replace $a+c$ for a in Definition (2.4), we get:

$$
\begin{align*}
& f_{\mathrm{n}}((a+c) \alpha b \beta(a+c))=f_{\mathrm{n}}(a+c) \beta(a+c) \alpha b+ \\
& \sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a+c)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a+c)\right) \\
& =f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+ \\
& f_{\mathrm{n}}(c) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+ \\
& f_{\mathrm{n}}(a) \beta c \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{j}}(c)\right)+ \\
& f_{\mathrm{n}}(c) \beta c \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{j}}(c)\right) \tag{1}
\end{align*}
$$

On the other hand

$$
\begin{align*}
& f_{\mathrm{n}}((a+c) \alpha b \beta(a+c))=f_{\mathrm{n}}(a \alpha b \beta a+a \alpha b \beta c+c \alpha b \beta a+c \alpha b \beta c) \\
& =f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+ \\
& f_{\mathrm{n}}(c) \beta c \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(c)\right)+f_{\mathrm{n}}(a \alpha b \beta c+c \alpha b \beta a) \tag{2}
\end{align*}
$$

Compare (1) and (2), we get:
$f_{\mathrm{n}}(a \alpha b \beta c+c \alpha b \beta a)=f_{\mathrm{n}}(c) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+$

$$
f_{\mathrm{n}}(a) \beta c \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(c)\right)
$$

(v) By (iv) and since M is a 2-torsion free commutative Γ-ring, we get:
$f_{\mathrm{n}}(a \alpha b \beta c+a \alpha b \beta c)=2 f_{\mathrm{n}}(a \alpha b \beta c)$

$$
=f_{\mathrm{n}}(c) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)
$$

(vi) Replace α for β in (iv), we get:

$$
\begin{array}{r}
f_{\mathrm{n}}(a \alpha b \alpha c+c \alpha b \alpha a)=f_{\mathrm{n}}(c) \alpha a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+ \\
f_{\mathrm{n}}(a) \alpha c \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(c)\right)
\end{array}
$$

Definition (2.6):

Let $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{i \in \mathrm{~N}}$ be a Jordan generalized (σ, τ)-higher reverse derivation of a $\quad \Gamma$-ring M into itself, then for all $a, b \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$, we define

$$
\delta_{n}=f_{\mathrm{n}}(a \alpha b)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)
$$

Lemma (2.7):

Let $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{i \in \mathrm{~N}}$ be a Jordan generalized (σ, τ)-higher reverse derivation of a Γ-ring M into itself, then for all $a, b, c \in \mathrm{M}, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$:
(i) $\delta_{\mathrm{n}}(a, b)_{\alpha}=-\delta_{\mathrm{n}}(b, a)_{\alpha}$
(ii) $\delta_{\mathrm{n}}(a+b, c)_{\alpha}=\delta_{\mathrm{n}}(a, c)_{\alpha}+\delta_{\mathrm{n}}(b, c)_{\alpha}$
(iii) $\delta_{\mathrm{n}}(a, b+c)_{\alpha}=\delta_{\mathrm{n}}(a, b)_{\alpha}+\delta_{\mathrm{n}}(a, c)_{\alpha}$
(iv) $\delta_{\mathrm{n}}(a, b)_{\alpha+\beta}=\delta_{\mathrm{n}}(a, b)_{\alpha}+\delta_{\mathrm{n}}(a, b)_{\beta}$

Proof:

(i) By Lemma (2.5) (i), we get:

$$
\begin{aligned}
& f_{\mathrm{n}}(a \alpha b+b \alpha a)=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right) \\
& f_{\mathrm{n}}(a \alpha b)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)=-\left(f_{\mathrm{n}}(b \alpha a)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right)\right) \\
& \delta_{\mathrm{n}}(a, b)_{\alpha}=-\delta_{\mathrm{n}}(b, a)_{\alpha}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \delta_{\mathrm{n}}(a+b, c)_{\alpha}=f_{\mathrm{n}}((a+b) \alpha c)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a+b)\right) \\
& =f_{\mathrm{n}}(a \alpha c+b \alpha c)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right) \\
& =f_{\mathrm{n}}(a \alpha c)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+f_{\mathrm{n}}(b \alpha c)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right) \\
& =\delta_{\mathrm{n}}(a, c)_{\alpha}+\delta_{\mathrm{n}}(b, c)_{\alpha}
\end{aligned}
$$

(iii) $\quad \delta_{\mathrm{n}}(a, b+c)_{\alpha}=f_{\mathrm{n}}(a \alpha(b+c))-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b+c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)$
$=f_{\mathrm{n}}(a \alpha b+a \alpha c)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)$
$=f_{\mathrm{n}}(a \alpha b)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{ni}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+f_{\mathrm{n}}(a \alpha c)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(c)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)$
$=\delta_{\mathrm{n}}(a, b)_{\alpha}+\delta_{\mathrm{n}}(a, c)_{\alpha}$
(iv) $\delta_{\mathrm{n}}(a, b)_{\alpha+\beta}=f_{\mathrm{n}}(a(\alpha+\beta) b)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right)(\alpha+\beta) \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)$

$$
\begin{aligned}
& =f_{\mathrm{n}}(a \alpha b)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+f_{\mathrm{n}}(a \beta b)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b) \beta \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right. \\
& =\delta_{\mathrm{n}}(a, b)_{\alpha}+\delta_{\mathrm{n}}(a, b)_{\beta}
\end{aligned}
$$

Remark (2.8):

Note that $F=\left(f_{i}\right)_{i \in N}$ is a generalized (σ, τ)-higher reverse derivation of a Γ-ring M into itself if and only if $\delta_{\mathrm{n}}=0$, for all $\mathrm{n} \in \mathrm{N}$.

3- The Main Result :

Theorem (3.1):

Let $F=\left(f_{i}\right)_{i \in N}$ be a Jordan generalized (σ, τ)-higher reverse derivation of a Γ-ring M into itself, then $\delta_{\mathrm{n}}=0$, for all $\mathrm{n} \in \mathrm{N}$.

Proof:

By Lemma (2.5) (i), we get

$$
\begin{equation*}
f_{\mathrm{n}}(a \alpha b+b \alpha a)=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right) \tag{1}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
f_{\mathrm{n}}(a \alpha b+b \alpha a)=f_{\mathrm{n}}(a \alpha b)+f_{\mathrm{n}}(b \alpha a)=f_{\mathrm{n}}(a \alpha b)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b)\right) \tag{2}
\end{equation*}
$$

Compare (1) and (2), we get:
$f_{\mathrm{n}}(a \alpha b)=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)$
$f_{\mathrm{n}}(a \alpha b)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a)\right)=0$
By Definition (2.4), we get:
$\phi_{\mathrm{n}}=0$, for all $\mathrm{n} \in \mathrm{N}$.

Corollary (3.2):

Every Jordan generalized (σ, τ)-higher reverse derivation of a Γ-ring M is a generalized (σ, τ)-higher reverse derivation of M

Proof:

By Theorem (3.1), we get $\phi_{\mathrm{n}}=0$, for all $\mathrm{n} \in \mathrm{N}$ and by Remark (2.8) we get the require result.

Proposition (3.3):

Every Jordan generalized (σ, τ)-higher reverse derivation of a 2-torsion free $\quad \Gamma$-ring M into itself, such that $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ is a Jordan generalized triple (σ, τ)-higher reverse derivation .

Proof:

Let $\mathrm{F}=\left(\mathrm{f}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a Jordan generalized (σ, τ)-higher reverse derivation of a Γ-ring M into itself.
Replace $a \beta b+b \beta a$ for b in Lemma (2.5) (i), we get:
$f_{\mathrm{n}}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)$
$=f_{\mathrm{n}}(a \alpha(a \beta b)+a \alpha(b \beta a)+(a \beta b) \alpha a+(b \beta a) \alpha a)$
$\left.=f_{\mathrm{n}}((a \alpha a) \beta b+(a \alpha b) \beta a)+(a \beta b) \alpha a+(b \beta a) \alpha a\right)$
$=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a \alpha a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a \alpha b)\right)+$

$$
\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(a \beta a)\right)+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\tau^{\mathrm{n}-\mathrm{j}}(b \beta a)\right)
$$

$$
\begin{aligned}
&= \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta\left(\sum_{\mathrm{r}+\mathrm{s}=\mathrm{j}} \mathrm{~d}_{\mathrm{r}}\left(\sigma^{\mathrm{j}-\mathrm{r}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right) \alpha \mathrm{d}_{\mathrm{s}}\left(\tau^{\mathrm{j}-\mathrm{s}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta\left(\sum_{\mathrm{e}+\mathrm{f}=\mathrm{j}} \mathrm{~d}_{\mathrm{e}}\left(\sigma^{\mathrm{j}-\mathrm{e}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right) \alpha \mathrm{d}_{\mathrm{f}}\left(\tau^{\mathrm{j}-\mathrm{f}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha\left(\sum_{\mathrm{p}+\mathrm{q}=\mathrm{j}} \mathrm{~d}_{\mathrm{p}}\left(\sigma^{\mathrm{j}-\mathrm{p}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right) \beta \mathrm{d}_{\mathrm{q}}\left(\tau^{\mathrm{j}-\mathrm{q}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha\left(\sum_{\mathrm{x}+\mathrm{y}=\mathrm{j}} \mathrm{~d}_{\mathrm{x}}\left(\sigma^{\mathrm{j}-\mathrm{x}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right) \beta \mathrm{d}_{\mathrm{y}}\left(\tau^{\mathrm{j}-\mathrm{y}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right)\right) \\
&=\sum_{\mathrm{i}+\mathrm{r}+\mathrm{s}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{r}}\left(\sigma^{\mathrm{s}} \tau^{\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{s}}\left(\tau^{\mathrm{n}-\mathrm{s}}(a)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{e}+\mathrm{f}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}=\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{e}}\left(\sigma^{\mathrm{f}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{f}}\left(\tau^{\mathrm{n}-\mathrm{f}}(a)\right)+ \\
& \sum_{\mathrm{i}+\mathrm{x}+\mathrm{y}=\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{x}}\left(\sigma^{\mathrm{y}} \tau^{\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{y}}\left(\tau^{\mathrm{n}-\mathrm{y}}(b)\right)
\end{aligned}
$$

$$
=f_{\mathrm{n}}(b) \beta a \alpha a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+
$$

$$
f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+
$$

$$
f_{\mathrm{n}}(a) \alpha a \beta b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+
$$

$$
f_{\mathrm{n}}(a) \alpha b \beta a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(b)\right)
$$

$$
=f_{\mathrm{n}}(b) \beta a \alpha a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+
$$

$$
2\left(f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)\right)+
$$

$$
f_{\mathrm{n}}(a) \alpha b \beta a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(b)\right)
$$

Since M is a 2 -torsion free Γ-ring, then

$$
=f_{\mathrm{n}}(b) \beta a \alpha a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+
$$

$$
f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+
$$

$$
\begin{equation*}
f_{\mathrm{n}}(a) \alpha b \beta a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(b)\right) \tag{1}
\end{equation*}
$$

On the other hand :

$$
\begin{aligned}
& f_{\mathrm{n}}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a) \\
& =f_{\mathrm{n}}(a \alpha a \beta b+a \alpha b \beta a+a \beta b \alpha a+b \beta a \alpha a)
\end{aligned}
$$

Since $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$

$$
\begin{align*}
= & f_{\mathrm{n}}(a \alpha a \beta b+a \alpha b \beta a+a \beta b \alpha a+b \beta a \alpha a) \\
= & f_{\mathrm{n}}(b) \beta a \alpha a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i} n \mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(b)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)+ \\
& f_{\mathrm{n}}(a) \alpha b \beta a+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<n} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \alpha \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(b)\right)+2 f_{\mathrm{n}}(a \alpha b \beta a) . . \tag{2}
\end{align*}
$$

Compare (1), (2) and since M is a 2 -torsion free Γ-ring, we have :
$f_{\mathrm{n}}(a \alpha b \beta a)=f_{\mathrm{n}}(a) \beta a \alpha b+\sum_{\mathrm{i}+\mathrm{j}+\mathrm{k}=\mathrm{n}}^{\mathrm{i}<\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{n}-\mathrm{i}}(a)\right) \beta \mathrm{d}_{\mathrm{j}}\left(\sigma^{\mathrm{k}} \tau^{\mathrm{i}}(b)\right) \alpha \mathrm{d}_{\mathrm{k}}\left(\tau^{\mathrm{n}-\mathrm{k}}(a)\right)$.

References:

[1] W.E.Barnes, "On The Г-Rings of Nobusawa", Pacific J.Math., Vol.18(3)(1966) , pp.411-422.
[2] Y. Ceven and M.A. Ozturk, "On Jordan Generalized Derivations in Gamma Rings", Hacettepe Journal of Mathematics and Statistics, Vol.33(2004), pp.11-14.
[3] S .Chakraborty and A.C .Paul, "On Jordan K-Derivations of 2-Torsion Free Prime $\Gamma_{\mathrm{N}^{-}}$ Rings", Journal of Mathematics, Vol.40(2008), pp.97-101.
[4] K.K.Dey ,A.C.Paul and I.S.Rakhimove "Semiprim Gamma Rings With Orthogonal Reverse Derivations", International Journal Of Pure and Applied Mathematics,
Vol.83(2)(2013), p.p 233-245.
[5] A.M. Kamal, " (σ, τ)-Derivations on Prime Γ-Rings ", M.Sc.Thesis, Department of Mathematics, college of Education, Al-Mustansirya University, 2012.
[6] M.R.Salih,"Reverse Derivations on Prime Г-Rings ", M.Sc.Thesis, Department of Mathematics, college of Education, Al-Mustansirya University, 2014.

