COMMON RANDOM FIXED POINT RESULT IN SYMMETRIC SPACE

¹Manoj kumar Shukla , ²Arjun Kumar Mehra

¹Department of Mathematics, Institute for Excellence in Higher Education,Bhopal manojshukla_10@yahoo.com

²Research Scholor, Rani Durgavati Vishwavidyalaya, Jabalpur,(MP),India marjunmehra1111@gmail.com

Abstract

Under random iteration scheme we study necessary conditions for convergence to a common fixed point of two pair of JSR random operators satisfying generalized contractive condition in the framework of symmetric spaces.

Mathematical Subject Classification(2000): 54H25,47H10

Keywords: Symmetric space, JSR random operator, common fixed point.

1.Introduction and Preliminaries

Random fixed point theorems are stochastic generalization of classical fixed point theorems. Random fixed point theory is used to obtained the solution of nonlinear random system. Beg [1,2], Beg and Shahzad [3,5] studied the structure of common random fixed points and random coincidence points of a pair of compatible random operator. Recently, Beg and shahzad [4,5] had used different iteration process to obtain common random fixed points.Recently, Some results are obtained by Mehta e.l.[6].In this paper we study necessary conditions for convergence to a common fixed point of two pair of JSR random operator satisfying generalized contractive conditions in Polish and symmetric spaces.

Throughout this paper (Ω, Σ) denote a measurable space. A symmetric function on a set X is non-negative real valued function d on XxX such that for all x, $y \in X$ we have (i) d(x,y) = 0 if and only if x=y, and

(ii) d(x,y) = d(y,x)

Let d be a symmetric function on X. For $\varepsilon > 0$ and $x \in X$, $B(x, \varepsilon)$ denote the spherical open ball centered at x and radius ε . A topology t(d) on X is given by $U \in t(d)$ if and only if for each $x \in U$, $B(x, \varepsilon) \subset U$ for some $\varepsilon > 0$.

Here $x_n \rightarrow x$ as $n \rightarrow \infty$ if and only if $x_n \rightarrow x$ in topology t(d) Let F be a subset of X. A mapping $\xi:\Omega \rightarrow X$ is *measurable* if $\xi^{-1}(U) \in \Sigma$ for each open subset U of X. The mapping T: $\Omega \times F \rightarrow F$ is a random map if and only if for each fixed $x \in F$, the mapping T(.,x): $\Omega \rightarrow F$ is measurable. The mapping T is continuous if for each $\omega \in \Omega$, the mapping t(ω ,.): $F \rightarrow X$ is continuous. A measurable mapping $\xi:\Omega \rightarrow X$ is a random fixed point of random map

T: $\Omega \times F \to F$ if and only if $T(\omega,\xi(\omega)) = \xi(\omega)$ for each $\omega \in \Omega$. We denote the set of random fixed point of a random map T by RF(T) and the set of all measurable mapping from Ω into a symmetric space X by M(Ω ,X). We denote the nth iterate T(ω ,T(ω ,...,T(ω ,x) of T by T_n(ω ,x).

Definition 1.1 Let X be a separable complete space i.e.X is Polish space. Random operators $S,T:X \rightarrow X$ is said to be T-JSR mapping if

 $\alpha d(T(\omega,\xi n(\omega),S(\omega,\xi n(\omega))) \le \alpha d(T(\omega,T(\xi n(\omega)),T(\omega,\xi n(\omega))) = 0 \quad \forall \omega \in \Omega$ where $\alpha = \lim \text{ sup or lim inf and } \{(\xi n(\omega)\} \text{ is a sequence in } X \text{ such that lim } T(\omega,\xi n(\omega)) = \lim S(\omega,\xi n(\omega)) = \xi(\omega).$

Definition 1.2 Let X be a polish space. Random operators $S,T:\Omega \times X \rightarrow X$ are said to be weakly T-JSR if $T(\omega,\xi(\omega))=S(\omega,\xi(\omega))$ for some ξ in $M(\Omega,X)$, then

 $S(\omega,T(\omega,\xi(\omega))) \le T(\omega,T(\omega,\xi(\omega))).$

Definition 1.3 Let $\{x_n\}, \{y_n\}$ be two sequences in symmetric space (X,d) and x,y in X. The space satisfy the following conditions

- (a) $\lim_{n\to\infty} d(x_n,x) = \lim_{n\to\infty} d(x_n,y) = 0$ then x = y
- (b) $\lim_{n\to\infty} d(x_n,x) = \lim_{n\to\infty} d(x_n,y_n) = 0$ then $\lim_{n\to\infty} d(y_n,x) = 0$

Definition 1.4 Let $\{x_n\}$, $\{y_n\}$ be two sequences in metric space (X,d) and x in X. The space X is said to satisfy condition (H_E) if

 $\lim_{n\to\infty} d(x_n,x) = \lim_{n\to\infty} d(x,y_n) = 0 \text{ then } \lim_{n\to\infty} d(x_n,y_n) = 0$

Definition 1.5 Let d be a symmetric function on X. The two random mappings

S,T: $\Omega x X \rightarrow X$ are said to satisfy property (I) if there exists a sequence $\{\xi_n\}$ in M(Ω, X) such that for some ξ in M(Ω, X),

 $\lim_{n \to \infty} d(T(\omega, \xi n(\omega), \xi(\omega))) = \lim_{n \to \infty} d(S(\omega, \xi n(\omega), \xi(\omega))) = 0 \ \forall \omega \in \Omega.$

1. MAIN RESULTS

THEOREM 2.1: Let (X,d) be a Symmetric space that satisfy (I) and (H_E). Let S and T are S- JSR random operators from ΩxX to X which satisfy the property (I).Moreover, $\forall x,y \in X$ and $\omega \in \Omega$ we have

n→∝

$$\begin{split} d(T(\omega,x),T(\omega,y)) &\leq [\max\{d(S(\omega,x),S(\omega,y)),d(S(\omega,x),T(\omega,x))+d(S(\omega,y),T(\omega,y)),\\ &\quad d(S(\omega,x),T(\omega,y))+d(S(\omega,y),T(\omega,x))\}]......(2.1) \end{split}$$

If T $(\omega,X) \subset S(\omega,X)$ and one of T (ω,X) or S (ω,X) is a complete subspace of X for every $\omega \in \Omega$, then T and S have unique and common random fixed point.

Proof : Since random operators S and T satisfy the property (I) therefore there exists a sequence $\{\xi_n\}$ in $M(\Omega,X)$ such that for some $\xi \in M(\Omega,X)$ and for every $\omega \in \Omega$ lim $d(T(\omega,\xi_n(\omega),\xi(\omega))) = \lim d(S(\omega,\xi_n(\omega),\xi(\omega))) = 0$(2.2)

n→∞

Then by property (H_E), we have $\lim d(T(\omega,\xi_n(\omega)),S(\omega,\xi_n(\omega))) = 0$ for every $\omega \in \Omega$.

Now, suppose $S(\omega,X)$ is a complete subspace of X for every $\omega \in \Omega$. Let $\xi_1: \Omega \to X$ be the limit of the sequence of measurable mapping $\{S(\omega,\xi_n(\omega))\}$ and $S(\omega,\xi_n(\omega))$ in $S(\omega,X)$ for every $\omega \in \Omega$ and $n \in \mathbb{N}$. Since X is separable, therefore $\xi_1 \in M(\Omega,X)$.

Moreover $\xi_1(\omega) \in S(\omega, X)$ for every $\omega \in \Omega$. Then this allows obtaining the measurable mapping $\overline{\xi}: \Omega \to X$ such that $\xi(\omega) = S(\omega, \overline{\xi}(\omega))$. Now for every $\omega \in \Omega$ we show that that $T(\omega, \overline{\xi}(\omega)) = S(\omega, \overline{\xi}(\omega))$. Consider

 $d(T(\omega, \overline{\xi}(\omega)), T(\omega, \xi_n(\omega))) \le \max[d(S(\omega, \overline{\xi}(\omega)), S(\omega, \xi_n(\omega))),$ $\{d(S(\omega, \overline{\xi}(\omega)), T(\omega, \overline{\xi}(\omega))) + d(S(\omega, \xi_n(\omega)), T(\omega, \xi_n(\omega)))\}/2,$ {d(S($\omega, \overline{\xi}(\omega)$),T($\omega,\xi_n(\omega)$))+d(S($\omega,\xi_n(\omega)$),T($\omega, \overline{\xi}(\omega)$))}/2] $d(T(\omega, \overline{\xi}(\omega)), T(\omega, \xi_n(\omega))) \le \max[d(\xi(\omega)), S(\omega, \xi_n(\omega))),$ $\{d(\xi(\omega)), T(\omega, \overline{\xi}(\omega))\} + d(S(\omega, \xi_n(\omega)), T(\omega, \xi_n(\omega)))\}/2,$ { $d(\xi(\omega)), T(\omega, \xi_n(\omega))) + d(S(\omega, \xi_n(\omega)), T(\omega, \xi(\omega)))$ }/2] Now by (2.2) and on taking limit we obtain $d(T(\omega, \xi(\omega)), \xi(\omega)) \le d(\xi(\omega), T(\omega, \xi(\omega)))$ which is contradiction therefore $\xi(\omega) = T(\omega, \overline{\xi}(\omega)) \Longrightarrow T(\omega, \overline{\xi}(\omega)) = S(\omega, \overline{\xi}(\omega)).$ The weak T-JSR of random mapping T and S implies that for some ξ in M(Ω ,X). Now we show that $T(\omega, T(\omega, \overline{\xi}(\omega))) = T(\omega, \overline{\xi}(\omega))$ for every $\omega \in \Omega$. Consider $d(T(\omega, \xi(\omega)), T(\omega, \xi(\omega))) \le \max[d(S(\omega, \xi(\omega)), S(\omega, \xi(\omega))),$ $\{d(S(\omega, \overline{\xi}(\omega)), T(\omega, \overline{\xi}(\omega))) + d(S(\omega, \xi(\omega)), T(\omega, \xi(\omega)))\}/2,$ {d(S(ω , $\xi(\omega)$),T(ω , $\xi(\omega)$)),d(S(ω , $\xi(\omega)$),T(ω , $\xi(\omega)$))}/2] $\leq \max[d(T(\omega, \overline{\xi}(\omega)), S(\omega, T(\omega, \overline{\xi}(\omega))),$ $\{d(T(\omega, \overline{\xi}(\omega)), T(\omega, \overline{\xi}(\omega))) + d(S(\omega, T(\omega, \overline{\xi}(\omega))), T(\omega, T(\omega, \overline{\xi}(\omega)))\}/2,$ {d(T(ω , $\xi(\omega)$),T(ω ,T(ω , $\xi(\omega)$))+d(S(ω ,T(ω , $\xi(\omega)$)),T(ω , $\xi(\omega)$))}/2] $\leq \max[d(T(\omega, \xi(\omega)), T(\omega, T(\omega, \xi(\omega))),$ $\{d(T(\omega, \overline{\xi}(\omega)), T(\omega, \overline{\xi}(\omega))) + d(T(\omega, T(\omega, \overline{\xi}(\omega))), T(\omega, T(\omega, \overline{\xi}(\omega)))\}/2,$ $\{d(T(\omega, \overline{\xi}(\omega)), T(\omega, T(\omega, \overline{\xi}(\omega))) + d(T(\omega, T(\omega, \overline{\xi}(\omega))), T(\omega, \overline{\xi}(\omega)))\}/2\}$ $\leq d(T(\omega, \xi(\omega)), T(\omega, T(\omega, \xi(\omega)))] < d(T(\omega, \xi(\omega)), T(\omega, \xi(\omega)))$ Which is contradictions, therefore $T(\omega, T(\omega, \overline{\xi}(\omega))) = T(\omega, \overline{\xi}(\omega))$ i.e. $T(\omega, \overline{\xi}(\omega))$ is a random fixed point of T.Again,

 $d(S(\omega,T(\omega,\ \overline{\xi}(\omega))),T(\omega,\ \overline{\xi}(\omega))) \leq d(T(\omega,T(\omega,\ \overline{\xi}(\omega))),T(\omega,\ \overline{\xi}(\omega)))$

$$= d(T(\omega, \overline{\xi}(\omega)), T(\omega, \overline{\xi}(\omega))) = 0.$$

It implies that $T(\omega, \overline{\xi}(\omega))$ is also fixed point of S. Thus $T(\omega, \overline{\xi}(\omega))$ is common fixed point of S and T. The proof is similar when $T(\omega,X)$ is supposed to be complete subspace of X for every $\omega \in \Omega$ as $T(\omega,X) \subset S(\omega,X)$.

Uniqueness:- Let v and \overline{v} from Ω to X are two common fixed point of S and T.

Let $v(\omega) \neq v(\omega)$ then by contraction we have

 $d(v(\omega), \overline{v}(\omega)) = d(T(\omega, v(\omega)), T(\omega, \overline{\xi}(\omega)))$

 $\leq \max[d(S(\omega, v(\omega)), S(\omega, v(\omega)))),$

 $\{ d(S(\omega,v(\omega)),T(\omega,v(\omega))) + d(S(\omega, v(\omega)),T(\omega, v(\omega))) \}/2, \\ \{ d(S(\omega,v(\omega)),T(\omega, v(\omega))), d(S(\omega, v(\omega)),T(\omega,v(\omega))) \}/2 \}$

 $\leq d(v(\omega), \overline{v}(\omega))$

which contradiction, therefore $v(\omega) = \overline{v(\omega)}$ for every $\omega \in \Omega$.

Example1:- Let $\Omega = [0,1]$ and Σ be the sigma algebra of Lebesgue's measurable subset of [0,1]. Let X = R with $d(x,y) = a^{|x-y|} - 1$, where a > 1 and clearly d is symmetric on R. Define random operators S and T from ΩxX to X as

$$S(\omega,x) = (1-\omega^2+2x)/3$$
 and $T(\omega,x) = (1-\omega^2+3x)/4$.

Also sequence of mapping $\xi_n : \Omega \to X$ is defined by $\xi_n(\omega) = 1 + (1/n) - \omega^2$

for every $\omega \in \Omega$ and $n \in N$. Define measurable mapping $\xi : \Omega \to X$ as

 $\xi(\omega) = 1 \cdot \omega^2$ for every $\omega \in \Omega$.

$$\lim_{n \to \infty} d(T(\omega, \xi_n(\omega)), \xi(\omega)) = \lim_{n \to \infty} a^{|T(\omega, \xi_n(\omega)) - \xi(\omega)|} - 1 = \lim_{n \to \infty} a^{3/4n} - 1 = 0$$

and

 $\begin{array}{ll} \lim d(S(\omega,\xi n(\omega)),\xi(\omega)) = \lim a |^{T(\omega,\xi n(\omega))-\xi(\omega)|} - 1 = \lim a |^{2/3n} - 1 = 0 \\ n \rightarrow \infty & n \rightarrow \infty \end{array}$

Clearly S and T satisfy property I.

Example2: Let S and T from $\Omega x X$ to X as $S(\omega, x) = (1-\omega^2-2x)$ and $T(\omega, x) = (1-\omega^2-3x)/2$ and let $\overline{\xi}(\omega) = 1-\omega^2$ for every $\omega \in \Omega$. Then

 $T(\omega, \ \overline{\xi}(\omega)) = -1 + \omega^2 = S(\omega, \ \overline{\xi}(\omega)) \Longrightarrow S(\omega, T(\omega, \ \overline{\xi}(\omega))) < T(\omega, T(\omega, \ \overline{\xi}(\omega))).$

Thus S and T are weakly T-JSR operators.

Also in **Example 1** S and T are weakly T-JSR operators and $T(\omega, \overline{\xi}(\omega)) = 1-\omega^2$ is a unique random fixed point of S and T.

References

- [1] Beg,I.,Random fixed points of random operators satisfying semi **c**ontractivity conditions, Mathematica Japonica 46(1997), no. 151-155.
- [2] Beg,I., Approximation of random fixed points in normed spaces, Nonlinear Analysis 51(2002), no.8 1363-1372
- [3] Beg,I., and N. Shahzad, Random fixed points of random multivalued operators on polish spaces, Nonlinear Analysis 20(1993), no.7, 835-847.
- [4] Beg,I.,and N. Shahzad, Random fixed points for nonexpansive and contractive-type random operators on Banach spaces, Journal of

Applied Mathematics and stochastic Analysis 7(1994), no.4, 569-580.

- [5] Beg,I.,and N. Shahzad, Common random fixed points of random multivalued operators on metric space, Bollettino della Unione Mathematica Italiana, Serie VII.A 9 (1995) no.3 493-503
- [6] Smriti Mehta and Vanita Ben Dhagat" Some Fixed Point Theorem in Polish Spaces" Applied Mathematical Sciences, Vol.4, 2010, no.28, 1395-1403.