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Abstract  
Under random iteration scheme we study necessary conditions for convergence to a      

common fixed point of two pair of JSR random operators satisfying generalized contractive 

condition in the framework of  symmetric spaces. 
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1.Introduction and Preliminaries 

 

Random fixed point theorems are stochastic generalization of classical fixed point 

theorems. Random fixed point theory is used to obtained the solution of nonlinear random 

system. Beg [1,2], Beg and Shahzad [3,5] studied the structure of common random fixed 

points and random coincidence points of a pair of compatible random operator. Recently, 

Beg and shahzad [4,5] had used different iteration process to obtain common random fixed 

points.Recently, Some results are obtained by Mehta e.l.[6].In this paper we study necessary 

conditions for convergence to a common fixed point of two pair of JSR random operator 

satisfying generalized contractive conditions in Polish and symmetric spaces. 

 

Throughout this paper (Ω,Σ) denote a measurable space. A symmetric function on a 

set X is  non-negative real valued function d on XxX such that for all x, y X we have 

(i) d(x,y) = 0 if and only if x=y, and 

(ii) d(x,y) = d(y,x) 

Let d be a symmetric function on X. For > 0 and x X , B(x, ) denote the spherical 

open ball centered at x and radius . A topology t(d) on X is given by U t(d) if and only if 

for each x U, B(x, ) U for some > 0. 

Here xnx as n if and only if xnx in topology tdLet F be a subset of X. A 

mapping :X is measurable if 
-1
U for each open subset U of X. The mapping 

T:FF is a random map if and only if for each fixed xF , the mapping T(.,x):F is 

measurable. The mapping T is continuous if for each  , the mapping t(,.):FX is 

continuous.  A  measurable  mapping  :X  is  a  random  fixed  point  of  random   map 
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T:FF if and only if T(,())=() for each .We denote the set of random 

fixed point of a random map T by RF(T) and the set of all measurable mapping from Ω into a 

symmetric space X by M(Ω,X). We denote the nth iterate T(ω,T(ω,……….,T(ω,x) of T by 

Tn(ω,x). 

 
Definition 1.1 Let X be a separable complete space i.e.X is Polish space. Random operators 

S,T:XX is said to be T-JSR mapping if 

d(T(,n(),S(,n())) ≤ d(T(,T(n()),T(,n())) = 0  

where = lim sup or lim inf and {(n()} is a sequence in X such that lim 

T(,n()) = lim  S(,n()) = ξ(ω) . 

Definition 1.2 Let X be a polish space. Random operators S,T:XX are said to be 

weakly T-JSR if T(,())=S(,()) for some in M(,X), then 

S(,T(,()))T (,T(,())). 

Definition 1.3 Let {xn},{yn} be two sequences in symmetric space (X,d) and x,y in X. The 

space satisfy the following conditions 

(a) lim d(xn,x) = lim d(xn,y) = 0 then x = y 
n n

(b) lim d(xn,x) = lim d(xn,yn) = 0 then lim d(yn,x) = 0 
n n n



Definition 1.4 Let {xn}, {yn} be two sequences in metric space (X,d) and x in X. The space 

X is said to satisfy condition (HE) if 

lim d(xn,x) = lim d(x,yn) = 0 then  lim d(xn,yn) = 0 
n n n







Definition 1.5 Let d be a symmetric function on X. The two random mappings  

S,T:xXX are said to satisfy property (I) if there exists a sequence {n} in M(,X) such 

that for some in M(,X), 

lim d(T(,n(),())) = lim  d(S(,n(),())) = 0 . 

n n





1. MAIN RESULTS 

 
THEOREM 2.1: Let (X,d) be a Symmetric space that satisfy (I) and (HE). Let S and T are 

S- JSR random operators from xX to X which satisfy the property (I).Moreover, 

x,yX and we have 
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d(T(,x),T(,y))  [max{d(S(,x),S(,y)),d(S(,x),T(,x))+d(S(,y),T(,y)), 

                      d(S(,x),T(,y))+d(S(,y),T(,x))}]………(2.1) 

If T (,X)  S(,X) and one of T(,X) or S(,X)is a complete subspace of X for every 

,then T and S have unique and common random fixed point. 

Proof : Since random operators S and T satisfy the property (I) therefore there exists a sequence {n} in 

M(,X) such that for some   M(,X) and for every  

lim d(T(,n(),())) = lim d(S(,n(),())) = 0………(2.2) 
n

                                              
n 

Then by property (HE), we have lim d(T(,n()),S(,n())) =0 for every . 

                                                                                 
n 

Now,  suppose S(,X) is a complete subspace of X for every . Let 1:X be the limit of 

the sequence of measurable mapping {S(,n())} and S(,n()) in S(,X) for every  and 

nN. Since X is separable, therefore 1M(,X).  

Moreover 1()S(,X) for every . Then this allows obtaining the measurable 

mapping:X such that () = S(,()). Now for every  we show that that 

T(,()) = S(,()). Consider 

 

d(T(,()),T(,n()))  max[d(S(,()),S(,n())),   

                                            {d(S(,()),T(,()))+ d(S(,n()),T(,n()))}/2,  

                                            {d(S(,()),T(,n()))+d(S(,n()),T(,()))}/2] 

d(T(,()),T(,n()))  max[d(()),S(,n())),  

                                                   {d(()),T(,()))+d(S(,n()),T(,n()))}/2,   

                                                 {d(()),T(,n()))+d(S(,n()),T(,()))}/2] 

Now by (2.2) and on taking limit we obtain  

d(T(,()),()) d((),T(,())) 

which is contradiction therefore    () = T(,())  T(,()) = S(,()). 

The weak T-JSR of random mapping T and S implies that for some in M(,X). 

Now we show that T(,T(,())) = T(,()) for every  . Consider 

d(T(,()),T(,()))   max[d(S(,()),S(,())), 

                                          {d(S(,()),T(,()))+d(S(,()),T(,()))}/2, 

                                          {d(S(,()),T(,())),d(S(,()),T(,()))}/2] 

                                         max[d(T(,()),S(,T(,())),   

                          {d(T(,()),T(,()))+d(S(,T(,())),T(,T(,()))}/2, 

                           {d(T(,()),T(,T(,()))+d(S(,T(,())),T(,()))}/2] 

  max[d(T(,()),T(,T(,())), 

          {d(T(,()),T(,()))+d(T(,T(,())),T(,T(,()))}/2,  

             {d(T(,()),T(,T(,()))+d(T(,T(,())),T(,()))}/2] 

  d(T(,()),T(,T(,()))] < d(T(,()),T(,())) 

Which is contradictions,therefore T(,T(,())) = T(,()) i.e. T(,()) is  a random 

fixed point of T.Again, 

d(S(,T(,())),T(,()))  d(T(,T(,())),T(,())) 
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                                                    = d(T(,()),T(,())) = 0. 

It implies that T(,()) is also fixed point  of S. Thus T(,()) is common fixed point of S 

and T. The proof is similar when T(,X) is supposed to be complete subspace of  X  for every 

 as T(,X)  S(,X). 

Uniqueness:- Let  and   from  to X are two common fixed point of S and T .  

Let ()  () then by contraction we have 

d((),()) = d(T(,()),T(,())) 

           max[d(S(, ()),S(,())),  

                       {d(S(,()),T(,()))+d(S(,()),T(,()))}/2,  

                           {d(S(,()),T(,())),d(S(,()),T(,()))}/2] 

 ≤ d( (),()) 

which contradiction, therefore  () =() for every . 

Example1:- Let  = [0,1] and  be the sigma algebra of Lebesgue’s  measurable subset of [0,1]. 

Let X = R with d(x,y) = a
x-y

 - 1, where a > 1 and clearly d is symmetric on R. Define random 

operators S and T from  xX  to X as  

S(,x) = (1-
2
+2x)/3 and T(,x) = (1-

2
+3x)/4. 

Also sequence of mapping n :  X is defined by n () = 1+(1/n) -
2
 

 for every  and n N. Define measurable mapping   :   X as  

 () = 1-
2 

 for every . 

lim d(T(,n()), ()) = lim a 
 T(,n())   ()

 - 1 = lim a 
3/4n 

 - 1 = 0 
n                                                      n                                                       n 

and  

lim d(S(,n()),())=lim a 
T(,n())-()

-1= lim a 
2/3n

 –1=0 

n                              n                           n  

Clearly S and T satisfy property I. 

Example2:- Let S and T from  xX  to X as S(,x) = (1-
2
-2x) and T(,x) = (1-

2
-3x)/2 and 

let  () = 1-
2 

 for every . Then  

T(,())  = –1+
2
 = S(,())  S(,T(,())) < T(,T(,())). 

Thus S and T are weakly T-JSR operators.  

 Also in Example 1 S and T are weakly T-JSR operators and T(,()) = 1-
2 

is a unique 

random fixed point of S and T. 
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