F₁- **Delta** -Lifting modules

¹ Wasan Khalid Hasan, Aseel Amer Hasan ²

¹Departement of Mathematics, College of Science, Baghdad University, Baghdad, Iraq, ²Departement of Mathematics, College of Science, Baghdad University, Baghdad , Iraq.

Abstract:

Let R be an associative ring with identity and let M be an unitary left R-module. An R-module M is called F₁- lifting, if every fully invariant sub module A of M contains a direct summand B of M such that $B \leq_{ce} A$. In this paper we introduce F₁- δ -lifting as a generalization of F₁-lifting module. We prove similar results of F₁-lifting.

Keywords: F_1 - δ -lifting modules , strongly F_1 - δ -lifting modules.

Introduction

Let R be an associative ring with identity, and let M be a unitary left R-module. A sub module N of an R-module M is called small in M denoted by ($N \le M$), if whenever M = N + K, for $K \le M$ implies K = M. [6]. We say that a sub module K is a coessential sub module of N in M (denoted by K \leq _{ce} N), if N / K << M / K,[6]. A module M is called lifting or satisfies (D₁), if every sub module N of M contains a direct summand K of M such that $K \leq 1$ _{ce} N.[4]. A non-zero module M is called hollow, if every proper sub module of M is small in M, [3]. Recall that $Z(M) = \{m \in M; ann(m) \le R\}$, is the singular sub module of M, if Z(M)= M then M is singular, and if Z(M) = 0, then M is non-singular. A sub module N of M is called δ -small in M, if whenever M = N + K, $K \leq M$ with M / K singular implies M = K [6]. A non-zero module M is called δ - hollow, if every proper sub module of M is δ - small. It is clear that every hollow module is δ -hollow, but the converse in general is not hold. Consider R is a semi simple ring and M is a non- zero R-module. Then M is non-singular and semi simple. For any non-zero sub module $N \leq M$, N is a direct summand of M, and hence is not small in M, but every sub module of M (even M itself) Is δ -small. A sub module N of M is called fully invariant, if $f(N) \le N$ for every $f \in End_R(M)$. In [5] it was introduced F_1 lifting module. An R-module M is called F₁-lifting, if every fully invariant sub module N of M contains a direct summand K of M such that $K \leq _{ce} N$. According to this definition we introduce another generalization for lifting modules. We introduce F_1 - δ -lifting module. A

module M is called F_1 - δ -lifting, if every invariant sub module N of M contains a direct summand K of M such that N / K << δ M / K and we prove similar results of F_1 -lifting module.[5].

$I_1 - \delta$ - lifting module

In this section we introduce F_1 - δ - lifting module and give some properties of this type of module, but first we recall some known results which will be needed in our work.

Lemma(1.1) :-[1.lemma 1.1] Let M be an R-module, then

- Any sum of fully invariant sub module of M is again a fully invariant sub module of M.
- 2. Any intersection of fully invariant sub module is again a fully invariant sub module of M.
- 3. If $X \le Y \le M$, such that Y is a fully invariant sub module of M and X is a fully invariant sub module of Y, then X is a fully invariant sub module of M.
- 4. If $M = \bigoplus_{i \in I} X_i$ and S is a fully invariant sub module of M, then $S = \bigoplus_{i \in I} (X_i \cap S)$ and $(X_i \cap S)$ is a fully invariant sub module of X_i , $\forall i \in I$.

Definition (1.2) : Let N , K be sub module of an R - module M such that $K \le N$, we say that K is a generalized coessential sub module of N (denoted by $K \le _{\delta ce} N$), if N / K << $_{\delta} M$ / K

It is clear that if $K \leq_{ce} N$, then $K \leq_{\delta ce} N$, but the convers in general is not true, if R is semi-simple ring and M is non-zero R- module, then M is semi-simple and non-singular hence $\forall N \leq M$, $0 \leq N$ is not small in M / 0, but N / $0 \ll_{\delta} M / 0$.

Definition(1.3): Let M be an R-module, we say that M is $F_{\underline{1}}$ - δ -lifting, if every fully invariant sub module N of M contains a direct summand K such that $K \leq_{\delta ce} N$.

It is clear that every δ - hollow module is F₁- δ -lifting.

By [5]. M is F₁- δ -lifting, if and only if every fully invariant A of M can be written as A = B \oplus S where B is a direct summand of M and S<< M.

In the following we prove a similar result for F_1 - δ -lifting module.

Proposition(1.4):- The following are equivalent for an R-module M.

- 1. M is F_1 - δ -lifting
- 2. Every fully invariant sub module A of M can be written as $A = B \bigoplus S$, where B is a direct summand of M and S<< $_{\delta}$ M.
- 3. Every fully invariant sub module A of M can be written as $A = B \bigoplus S$, where B is direct summand of M and S $\leq \leq_{\delta} M$.

Proof: $1 \rightarrow 2$) Let A be a fully invariant sub module of M, then by (1), $\exists B \leq M$ such that $A / B \ll_{\delta} M / B$, hence $\exists K \leq M$ such that $M = B \bigoplus K$. Then $A = A \cap B \bigoplus A \cap K$ = $B \bigoplus K \cap A$, take $S = K \cap A$.

Now let $M = K \cap A + K'$ with M / K' singular , Hence $M / B = (K \cap A + B) / B + K' / B = A / B + K' / B.$

M / B / K' / B \cong *M*/ K' singular, and A / B << $_{\delta}$ M / B then M = K'.

 $2 \rightarrow 3$) clear

 $3 \rightarrow 1$) Let A be a fully invariant sub module of M then by (3) A = B + S, where $B \leq_{\oplus} M$ and $S \ll_{\delta} M$. Let M = B \oplus C for C \leq M and let M / B = A / B + K / B, where (M / B) / (K / B)) \cong M / K singular then M= A + K = A + B + S = K + S. Since M / K singular and S $\ll_{\delta} M$, then M = K. hence A / B $\ll_{\delta} M$ / B.

Theorem(1.5): Let $M = M_1 \bigoplus M_2$ be a direct summand of F_1 - δ - lifting modules, then M is F_1 - δ - lifting.

Proof: Let A be a fully invariant sub module of M, then $A = A \cap M_1 \bigoplus A \cap M_2$, and $A \cap M_i$ is fully invariant $\forall i = 1, 2$, since M_i is F_1 - δ -lifting

,i=1,2, then by pro.(1.4) , A $\cap M_i = B_i \bigoplus S_i$, where B_i is a direct summand of M_i , $S_i \ll_{\delta} M_i$, $\forall i = 1,2...$

Let $B = B_1 \bigoplus B_2$, and $S = S_1 \bigoplus S_2$, then $A = B \bigoplus S$ where B is a direct summand of M and $S \ll_{\delta} M$.

Corollary(1.6): Let $M = M_1 \bigoplus M_2 \bigoplus ... \bigoplus M_n$ be a direct sum of $F_1 - \delta$ -lifting module, then M is $F_1-\delta$ - lifting.

Corollary (1.7): If M is a finite direct sum of δ - hollow modules, then M is F₁- δ -lifting.

Remark(1.8): It is clear that every lifting module $isF_1-\delta$ -lifting, but the convers in general is not true, for example, consider Z - module $M = Z / pZ \oplus Z / p^3Z$ each Z/ pZ, Z / p^3Z is hollow, hence $F_1-\delta$ - lifting therefore by theorem(1.5), M is $F_1-\delta$ -lifting, but not lifting,[2].

Recall that a pair(f,P) is called a projective δ - cover for an R- module M, if P is projective and f: P \rightarrow M is an epimorphisim with Kerf \ll_{δ} P, [7].

Proposition (1.9): Let P be a projective R-module ,if P is F_1 - δ -lifting, then P / A has a projective δ - cover. For every fully sub module A of B.

The convers holds, if for every fully invariant sub module A of P, P / A has a projective δ - cover . f: X \rightarrow P /A , such that X is uniform.

Proof: Let P be a projective F_1 - δ - lifting module and let A be a fully invariant sub module of P, then $\exists B \leq A, B \leq \bigoplus P$ such that $A = B \bigoplus S$, $S <<_{\delta} P$, hence $P = B \bigoplus C$, for $C \leq P$, then(B + S) / $B <<_{\delta} P$ / B, thus

 π : P / B \rightarrow P / (B + S) = P / A, P / B is projective, and Ker $\pi = \{ w \in P/B ; \pi(w) = A \} = \{ x \in B ; x + A = A \} = A / B$ then Ker $\pi = A / B <<_{\delta} P / B$.

(-)) Let A be a fully invariant sub module of P, let $f : X \to P / A$ be a projective δ -cover for P / A such that X is uniform. Consider the following diagram.

Since P is projective, then $\exists h : P \to X$, such that $f \circ h = \pi$. Let $x \in X$, then $f(x) \in P / A$. Since π is an epimorphisim, then $\exists y \in P$, such that $\pi(y) = f(x)$, thus f h(y) = f(x), hence $x - h(y) \in Kerf$, therefore X = Kerf + h(p). Since Kerf $\leq_{\delta} X$ and X is uniform, then by [7], Ker $f \leq X$. Hence h(P) = X, then $h: P \to X$ is an epimorphisim thus h splits, therefore $P = Ker h \oplus K$ for $K \leq P$, and $A = Ker h \oplus K \cap A$. where Ker $h \leq \oplus P$ and $K \cap A \leq_{\delta} P$.

2 Strongly **F**₁- δ – lifting modules.

In this section we introduce a strongly F_1 - δ - lifting .According to the definition that appeared in [5]. And we prove some results on this type of modules similar to results of strongly F_1 - δ - lifting module [5].

Definition(2.1): Let M be an R-module. We say that M is strongly F_1 - δ -lifting , if every fully invariant sub module A of M contains a fully direct summand B of M such that $B \leq_{Gce} A$.

Proposition(2.2): For any R- module M, then following are equivalent:

- 1. M is a strongly F_1 - δ -lifting module .
- 2. Every fully invariant sub module A of M can be written as $A = B \bigoplus S$, where B is fully invariant direct summand of M and $S \le \delta M$.
- 3. Every fully invariant sub module A of M can be written as A = B + S, where B is a fully invariant direct of M and S << $_{\delta}M$.

Proposition(2.3): Let M be an F_1 - δ -lifting module , if 0 is the only δ - small sub module of M, then every fully invariant sub module of M is strongly F_1 - δ – lifting module.

Proof: Let N be a fully invariant sub module of M and let A a fully invariant sub module of N, then A is fully invariant in M [1,Lemma 1.1].Since M is F_1 - δ -lifting, then A = B \oplus S, where $B \leq \oplus$ M and S << $_{\delta}$ M. hence S = 0, thus A $\leq \oplus$ M therefore N is strongly F_1 - δ -lifting module.

Theorem(2.4): A direct summand of a strongly F_1 - δ - lifting is again strongly F_1 - δ - strongly F_1 - δ - liftig.

Proof: Let $M=W \bigoplus V$, be a strongly F_1 - δ - lifting , suppose that A is a fully invariant sub module of W

then $\exists A_2$ a fully invariant sub module of V. Such that $A_1 \bigoplus A_2$ is fully invariant in M see[6]. since M is strongly F_1 - δ - lifting then $A_1 \bigoplus A_2 = B \bigoplus S$, where $B \leq \bigoplus M$, B isa fully invariant sub module of M and S $\ll_{\delta} M$, then $B = (B \cap W) \bigoplus (B \cap V)$ and $B \cap W$ is fully invariant in W also $B \cap W$ is a direct summand of M.

Let $\pi_1: M \to W$ and $\pi_2: M \to V$ then $A_1 = \pi_1(B) + \pi_1(S) = W \cap B + \pi_1(S)$ since $S \ll_{\delta} M$, $\pi_1(S) \ll_{\delta} W$ by [1], therefore W is F_1 - δ - lifting. **Proposition(2.5):**Let $M = \bigoplus_{i=1} M_i$, and let M_i be a fully invariant sub module of $M, \forall i = 1,...n$, then M is strongly F_1 - δ -lifting if and only if M_i is strongly F_1 - δ - lifting, $\forall i = 1,...n$.

Proof: \rightarrow) By prop(3.4)

←) Suppose that $M = \bigoplus_{i=1} M_i$ and M_i is fully invariant $\forall i = 1,...n$.

Let N be a fully invariant sub module of M then $N = \bigoplus_{i=1} (N \cap M_i)$ and $N \cap M_i$ is fully invariant, $\forall i = 1,...n$, since M_i is strongly F_1 - δ -lifting, then $N \cap M_i = B_i \bigoplus S_i$, where B_i is fully invariant direct summand of M_i and $S_i \ll_{\delta} M_i$, $\forall i = 1,...n$. Let B $= \bigoplus_{i=1} B_i$ and $S = \bigoplus_{i=1} S_i$ then B = B + S, where $B \le \bigoplus M$ and $S \ll_{\delta} M$.

REFERNCES

[1] G.F. Birknmeier, B. J. Muller and S. T. Rizvi, Modules in which every fully invariant sub module is essential in direct summand , Comm. Algebra Vol.30 (2002), 1395-1415.

[2] J. Clark, C. lomp, N. Vanaja and R. Wisbauer, lifting modules, Frontiers in Mathematics, Birkhauser,(2006).

[3] P.Fleury. Hollow modules and local Endomorphisim Rings, Pac. J. Math., 53(1974),pp.379-385.

[4] D. Keskin, On lifting modules. Comm. Algebra 28 (7)(2000), 3427-3440.

[5] Y. Talebi and Amoozegar ; strongly F_1 - δ - lifting modules, International Electronic Journal of Algebra, V3 (2003), 75-82.

[6] R. Wisbauer, Foundations of modules and Ring, Gordan and Breach Reading, 1991.

[7] Y.Zhou, Generalization of perfect semi perfect and semi-regular rings, Algebra Colloquim, 7(3) (2000),pp.305 – 318.