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ABSTRACT 

The Hotelling’s T
2 

is a well-known statistic for detecting a shift in the mean vector of a 

multivariate normal distribution. Control charts based on T
2
 have been used in statistical 

process control for monitoring a multivariate process. Although it is a powerful tool, the T
2
 

statistic is deficient when the shift to be detected in the mean vector of a multivariate process 

is small and consistent. The Multivariate Exponentially Weighted Moving Average 

(MEWMA) control chart is one of the control statistics used to overcome the drawback of the 

Hotelling’s T
2
 statistic. In this paper, the distribution of the Average Run Length (ARL) of 

the (MEWMA) control chart when the quality characteristics exhibit substantial cross 

correlation and when the process is in control and out-of-control was derived using the 

Markov Chain algorithm. The derivation of the probability functions and the moments of the 

run length distributions were also obtained and they were consistent with some existing 

results for the in – control and out –of –control situation. By simulation process, the 

procedure identified a class of ARL for the MEWMA control chart when the process is in –

control and out- of – control. From our study it was observed that the MEWMA scheme is 

quite adequate for detecting a small shift and a good way to improve the quality of goods and 

services in a multivariate situation. It was also observed that as the in-control average run 

length ARL0 and the number of variables ( p) increases, the optimum value of the ARLopt 

increases asymptotically and as the magnitude of the shift 𝜎 increases, the optimal ARLopt 

decreases. Finally we use examples from the literature to illustrate our method and 

demonstrate its efficiency. 

 

Keywords:  Moments, Average Run Length, multivariate exponentially weighted moving 

average, Markov Chain, optimal smoothing parameter.  

 

1.0 Introduction 
In recent years, the importance of quality has become increasingly apparent. Stiffer 

competition, tougher environment and safer regulations and rapidly changing economic 

conditions have been key factors in tightening products and services quality. Thus to attain 

uniformity in the production of goods and services practitioner employed a technique called 

Statistical Process Control (SPC) to monitor, detect and eliminate the substandard goods and 

services. By monitoring various steps in the process using SPC methods, abnormal trends can 

be identified and problems solved before they get out of hand thereby reducing cost of 

production. The multivariate control charts are important tools of SPC for monitoring and 

improving the quality of products. Recently, the relevant of multivariate control charts has 

increased because more quality characteristics are measured in mass production than ever 

before. These quality characteristics often exhibit substantial cross correlation. In most 

production situations, it would be more efficient to monitor the quality of goods and services 

by a multivariate control chart than several univariate control charts because it is possible that 

individual control charts might not detect assignable causes when quality characteristics are 
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dependent. Several multivariate quality control charts have been proposed to monitor the 

mean vector of the quality characteristics. The three most common multivariate control charts 

are the multivariate Shewhart control chart otherwise known as the Hotelling’s 𝜒2 control 

chart proposed by Hotelling (1947),the multivariate cumulative sum (MCUSUM) control 

chart proposed by Woodall and Ncube (1985) and later by Crosier (1988), the multivariate 

EWMA proposed by Lowry et al (1992). When several quality characteristics are involved, 

the conventional multivariate Shewhart control chart loose efficiency with respect to shift 

detection (Montegomery, 2005), hence the MEWMA control charts was develop to take care 

of this deficiency of the multivariate  Shewhart control chart.  

For simplicity, suppose 𝑋𝑡 is P-dimensional random  vector distributed normally with a 

known variance – covariance matrix 𝜎0 and a known p–dimensional mean vector 𝜇0 , the 

multivariate version of the univarate EWMA control chart proposed by Lowry et al (1992) is 

therefore defined by  

𝑍𝑡 = 𝜆𝑋𝑡 + (1 − 𝜆)𝑧𝑡−1 ,0 < 𝜆 ≤ 1                                          (1.1) 

Z0= Op and 𝜆 is the smoothing parameter, the MEWMA control chart gives an out-of- 

control signal when  

𝑇𝑡
2 = 𝑍𝑡

1 𝑆𝑧𝑡
−1𝑍𝑡 > ℎ                                                          (1.2) 

Where 𝑆𝑧𝑡
 is the variance – covariance  matrix of Zt and it is given as  

𝑆𝑧𝑡
= (

𝜆

2−𝜆
) [1 − (1 − 𝜆)2𝑡]𝑆𝑧                                                (1.3)  

 

Where 𝑆𝑧 = 

[
 
 
 
 
 
𝜎11𝐶𝑜𝑟(1,2),… , 𝐶𝑜𝑟(1, 𝑃)

𝐶𝑜𝑟(2,1), 𝜎22, … , 𝐶𝑜𝑟(2, 𝑃)
.                                               
.                                               
.                                               

𝐶𝑜𝑟 (𝑃, 1)𝐶𝑜𝑟 (𝑃, 2)… 𝜎𝑝𝑝]
 
 
 
 
 

                            (1.4) 

See Edokpa et al. (2009). 

and h is a specific control limit obtained by simulation to achieve a specified in – Control 

ARL.  

Lowry et al (1992) asserted that the p-dimensional random vector Xt can therefore be 

transformed to have mean zero and identity covariance matrix.  Tt  in equation (1.2) can be 

written as  

   𝑇𝑡
2 = 𝑍𝑡  

′ [(
𝜆

2−𝜆
) 𝑆𝑧𝑡

]
−1

 𝑍𝑡                                       (1.5) 

                                              =      [
2−𝜆

𝜆
] 𝑍𝑡

′𝑆𝑧𝑡
−1𝑍𝑡                                                                             (1.6) 

                                               =          [
2−𝜆

𝜆
] ||𝑍𝑡||                                      (1.7) 

Then the out-of-control situation given in equation 2, 𝑇𝑡
2 > h implies∥ 𝑍𝑡 ∥> (

𝜆

2−𝜆
)

1

2
 . 

 

2.0 REVIEW OF THE ARL OF MEWMA CHART 

Control chart performance can be majorly measured by the ARL. The ARL is the average 

number of points that must be plotted before an out - of - control condition is indicted. When 

a process in control, it is expected that the ARL is large, when the process is out – of – 

control, the ARL should be small (Pham, 2006). Lowry et al 1992 studied the ARL of the 

MEWMA and stated that the performance of MEWMA procedures depends only on 𝜇0 and 

𝜎0 through the value of the noncentallity parameter. Rigdon (1995a, 1995b) respectively   
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gave an integral and a double integral equation for calculating the in-control and out –of –

control ARLs respectively. Bodden and Rigdon (1999) developed a computer program for 

approximating the in-control ARL of the MEWMA. Runger and Prabhu(1996) used a markov 

chain approximation to determine the run length performance of the MEWMA. 

The ARL of the MEWMA Scheme can be computed using the markov chain approach (see 

Runger and Prabhu (1996).  For the in-control, ARL analysis can be considered as a one-

dimensional markov chain, to approximate Kt   = ||Zt ||, the control limits region [0,UCL] is 

partitioned into m + 1 transient states such that m of them have the same length g and one of 

them has the length 𝑚 2⁄    , therefore  

                                           
𝑔

2
 + mg  =UCL                (2.1) 

                                           g =  [
2𝑈𝐶𝐿

2𝑚+1
] width                (2.2) 

When the process is in-control, that is, without loss of generality 𝜇 = 0, the in-control 

distance of  Kt = ||Zt ||, can be approximated by the markov chain  

 𝑃(𝑖. 𝑗)  =  𝑃(𝐾𝑡 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑗 |𝐾𝑡−1 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖)               (2.3) 

                        =  𝑃{(𝑗 −  0.5)𝑔 < ||𝜆𝑋𝑡  +  (1 − 𝜆 )𝑍𝑡−1|| < (𝑗 + 0.5)𝑔|𝑘𝑡−1 = 𝑔𝑖}     (2.4) 

                            =  𝑃 {
(𝑗−0.5)𝑔

𝜆
< ‖

𝑋𝑡+(1−𝜆)𝑖𝑔𝑢

𝜆
‖ <

(𝑗+0.5)𝑔

𝜆
}            (2.5) 

Since 𝑆(𝜆) is a P–dimensional  sphere of radius 𝜆 > 0 and 𝑍𝑡   has a spherical distribution, 

then the conditional distance of 𝑍𝑡   given ‖𝑍𝑡‖ is the same as ‖𝑍𝑡‖𝑈, where 𝑈 is uniform 

random variable  on the P- dimensional sphere with radius 1(Eaton, 1983). 

From equation (2.5), 𝑋𝑡  ~ 𝑁𝑝( 0,1) and 𝑈 is a spherical distributed with radius 1 and                  

‖𝑋𝑡 + (1 − 𝜆)𝑖𝑔𝑢|𝜆‖2 
 is chi–square distributed with parameters (𝑝, 𝑐) where c is the non-

centrality parameter defined as 

       𝑐 =  (
1−𝜆

𝜆
𝑖𝑔𝑢)

′

𝐼 (
1−𝜆

𝜆
𝑖𝑔𝑢) = (

1−𝜆

𝜆
𝑖𝑔)

2

𝜇′𝜇 = (
1−𝜆

𝜆
𝑖𝑔𝑢) ‖𝜇‖2 = (

(1−𝜆)

𝜆
𝑖𝑔)

2

        (2.6) 

Since 𝑈 is Spherical distributed with radius 1 and 𝑝 is the degree of freedom, equation (2.5) 

can therefore be written as  

𝑃(𝑖, 𝑗) = ∫ ⋯
 

𝑠(1) ∫ 𝑓(𝑢) 𝑃{(𝑗 − 0.5)2𝑔|𝜆2 < 𝜒2(𝑝, 𝑐) < (𝑗 + 0.5)2𝑔2|𝜆2}           (2.7) 

= 𝑃{(𝑗 − 0.5)2𝑔|𝜆2 < 𝜒2(𝑝, 𝑐) < (𝑗 + 0.5)2|𝜆2             (2.8) 

Since   ∫ ⋯
 

𝑠(1)
∫𝑓(𝑢) 𝑑𝑢 = 1 

Hence, for 𝑖 = 1,2, … . .𝑚, the transitional probability from 𝑖 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑗 is given as  

𝑃(𝑖 ∙ 𝑗) = {𝑝(𝑗 − 0.5)2𝑔2|𝜆2 < 𝜒2(𝑝, 𝑐) < (𝑗 + 0.5)2𝑔2|𝜆2} 𝑖𝑓 𝑗 ≠ 0,  

{𝑝(𝜒2(𝑝, 𝑐) < 0.52𝑔2|𝜆2} 𝑖𝑓 𝑗 = 0             (2.9) 

Where 𝜒2(𝑝, 𝑐) is a non-central chi- squared random variable with Probability density 

function p and 𝑐 = (1 − 𝜆)𝑖𝑔/𝜆 while  𝑔 =  2𝑢𝑐𝑙/(2𝑚 +  1). Hence from Runger and 
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Prabhu(1996), 𝜋0  is the (𝑚 +  1) × ( 𝑚 +  1) transition matrix and the in-control average 

rule length ARL is given by   

 ARLo  =  lim𝑀→∞ a′(1 − 𝜋0 )
−1 1             (2.10) 

Where 𝑎 is the starting probability vector and 1 denotes a vector of 1s of the 

dimension     𝑚 + 1. 

When the process is out of control, the region 𝑍𝑡 is divided into 𝑍𝑡1 and 𝑍𝑡2, 𝑍𝑡1 is one-

dimensional with mean 𝜇 ≠ 0 and 𝑍𝑡2 is 𝑝 − 1 dimensional. Hence 

𝑘𝑡 = ‖𝑍𝑡‖ = √𝑍𝑡1
2 + 𝑍𝑡2

′ 𝑍𝑡2            (2.11) 

Using the same procedure as in the in-control state, the transition probability of 𝑍𝑡1 from 

stated 𝑗 to 𝑖 denoted by 𝑝(𝑗. 𝑖) is given as 

𝑃(𝑗, 𝑖) = 𝑝(𝑍1𝑡  𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖|𝑍𝑡−1,1𝑖𝑠 𝑠𝑡𝑎𝑡𝑒 𝑗)           (2.12) 

           = 𝑝{(−𝑢𝑐𝐿 + (𝑖 − 1)𝑔1 < 𝜆𝜒𝑡1 + (1 − 𝜆)𝑍𝑡−1,1 < −𝑢𝑐𝐿 + 𝑖𝑔𝑖|𝑍𝑡−1,1 = 𝐶𝑗}    (2.13) 

where 𝐶𝑗 = −𝑢𝑐𝐿 + (𝑗 − 0.5)𝑔1 and the transition probability of 𝑍𝑡2 from 𝑗 to 𝑘 can be 

denoted by 𝑉(𝑗, 𝑘) 

𝑉(𝑗, 𝑘) = 𝑃 [
(𝑘−0.5)2𝑔2

2

𝜆2 − 𝜒2(𝑝 − 1, 𝑐) <
(𝑘+0.5)2𝑔2

2

𝜆2 ]          (2.14) 

when  𝐶 = ((1 − 𝜆)𝑖𝑔2|𝑟)
2
 and when k = 0 

𝑉(𝑗, 𝑘) = 𝑃 [𝜒2(𝑝 − 1, 𝑐) <
(0.5)2𝑔2

2

𝜆2 ]            (2.15) 

 The distribution of control chart for in-control and out –of – control situation in practical 

cases using the Markov chain model was studied in this paper, the process mean is assumed 

to be in-control until time t-1 with a transition matrix 𝜋0  and change at the transition time t 

with a new transition matrix 𝜋1 afterward.  

The moments of the MEWMA control charts and the procedure of identifying the optimal 

smoothing parameter values for the out – of – control situations were also given. 

 

3.0  USING AN EWMA CHART IN THE MONITORING OF MULTIVARIATE 

OBSERAVATIONS 

Given that 𝑋𝑡 follow an independent identically normally distributed multivariate random 

variable with mean 
0

  and variance 𝜎0 , Tracy el at (1992) showed that the statistic 

𝑇𝑡
2 = (𝑋𝑡 − 𝜇)′𝜎0

−1(𝑋𝑡 − 𝜇)                 (3.1)   

follows a chi-square distribution with p degrees of freedom. If the population parameters, 
0



and 𝜎0 are both unknown and are estimated from the sample, then the statistic 𝑇𝑡
2 is defined 

as  

 𝑇𝑡
2 = (𝑋𝑡 − �̅�𝑚)′𝑆𝑚

−1(𝑋𝑡 − �̅�𝑚)               (3.2) 

where the estimates 
m

X and 
m

S  are sample mean and the sample variance of the process 

respectively and its exact distribution is given as 
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   pmpt F
pmm

mmp
T 




 ,

2

)(

)1)(1(
                            (3.3) 

 m is the number of observations in a preliminary data set assumed to represent a stable  and 

present situation. 𝑋𝑡 are the p-dimensional vector of future observations on the p quality 

characteristics. 

Shiryayev (1963) proved that if 𝑇𝑡
2 statistic in equation (3.1) follows a chi-square distribution 

with p degrees of freedom, then )( 2

tp TH has a uniform distribution on the unit interval, where 

(.)
p

H is the chi-square distribution function with p degree of freedom. Secondly If (.)1

denotes the inverse of the standard normal distribution function, then 

      ,...,2,1,21   tTHV tpt     (3.4) 

are standard normal distributed random variables. Thus, for equation (3.2), where the 

parameters 
0

 and 𝜎0 are both unknown and are estimated from the sample, 

  ,...,2,1
)1)(1(

)( 2

,

1 



















 

 tT
mmp

pmm
FV tpmpt

     (3.5) 

are also standard normal distributed random variables and (.)
, pmp

F


represents the Snedecor 

F distribution function with ),( pmp  degree of freedom. 

 

The monitoring of a multivariate process using a EWMA chart can now be done easily since 

the 𝑉𝑡 statistics in equations (3.4) and (3.5) are all standard normal variables. Michael Khoo 

(2004) asserted that this procedure can be used to monitor the 𝑉𝑡  statistics for out-of-control 

signals since a shift in a multivariate mean vector from the target value, ,
0

 will cause the 

𝑉𝑡statistics to shift. In a multivariate process monitoring, the performance of the control 

charts such as the Hotelling or MEWMA charts is determined mainly by the distance of the 

off-target mean vector from the on-target mean vector and not by the particular direction of 

the shift. Here, the distance of the shift is measured by the square-root of the non-centrality 

parameter given below in equation (3.6). 

   𝛿2 = (𝜇0 − 𝜇1)
′𝜎0

−1(𝜇0 − 𝜇1)            (3.6) 

where 𝜇0and 1 represent the on-target and off-target mean vectors respectively, See Edokpa 

and Iduseri (2011). Due to the directional invariance property of the 𝑇𝑡
2 statistics in equations 

(3.1) and (3.2), the new EWMA chart has only an upper control limit since we are actually 

monitoring the significance of the magnitude of the shift from 𝜇0 to 1 . 

 
 

4.0  THE MOMENTS FOR IN – CONTROL AND OUT – OF –        CONTROL 

ARL OF MEWMA CHART. 

Let assume that E(x) = 𝜇0 (  In - control mean of the process with a transition matrix 𝜋0 and 

𝐸(𝑋) = 𝜇1 (out of control mean of the process with a transition matrix 𝜋1) where 𝜋0 and 𝜋1 

are defined as (𝑚1 + 1) × (𝑚1 + 1) transition matrix of the markov chain when the process 

is In-control and when the process is out–of–control respectively. Runger and Prabhu (1996) 

stated that the markov chain method for the MEWMA control chart lead to 

 𝑃(𝑋 > 𝑥) =   𝑎1
𝑀1→∞

𝐿𝑖𝑚 𝜋𝑜
𝑛1, 𝑥 = 0,1,2…                (4.1) 

 X is the run length (RL) of the scheme, a is the 𝑚1 × 1 starting probability vector with a one 

in the component that corresponds to the starting state and zero elsewhere, 𝜋0 is the                  
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(𝑚1 + 1) × (𝑚1 + 1) transition matrix for the markov chain and 1 is the vector of 1s of the 

dimension (𝑚1 + 1). The probability mass function (pmf) of the RL of X is given by  

𝑃(𝑋 = 𝑥) = 𝑃(𝑋 > 𝑥 − 1) − 𝑃(𝑋 > 𝑥)         (4.2) 

= 𝑎1 𝜋0
𝑛−11 − 𝑎1 𝜋0

𝑛1 

= 𝑎1 𝜋0
𝑛−1(1 − 𝜋0)1, 𝑥 = 1,2…                                (4.3) 

Where 𝜋0
0 = 𝐼 and I is the (𝑚1 + 1) × (𝑚1 + 1) identity matrix. The In-Control ARL0 of the 

MEWNA is given by 

ARL0  = E(X)  = ∑ 𝑥𝑓(𝑥) 

∞

𝑛=1

 

 = 1f(1) +2 f(2) + 3f(3) +… 

 = f(1) + (2) + f(3) + …] + f(2) + f(3) + f(4) + …] + f(3) + f(4) +… 

= ∑ 𝑓(𝑛) + ∑ 𝑓(𝑥) + ∑ 𝑓(𝑥)

∞

𝑥=1

∞

𝑥=2

∞

𝑥=1

 

= P(X ≥ 1) + P(X ≥ 2 + P(X ≥ 3) + ⋯              (4.4) 

Therefore   

∑ 𝑃 (𝑋 ≥ 𝑛) =∞
𝑥=1 ∑ 𝑓(𝑥)𝑎1∞

𝑥=1 𝜋0
𝑛−1              (4.5) 

= 𝑎1 (∑𝜋0

𝑛

𝑖=0

)1 

= 𝑎1(1 + 𝜋0 + 𝜋0
2 + ⋯)1 

= 𝑎1(1-𝜋0)
-1

1                (4.6) 

 

The variance of the run length (RL) when the process is running on target (In-control) 

denoted by VRLo is given as  

VRLo = Var(X) = EX
2
  - (𝐸𝑋)2             (4.7) 

 

But        EX
2
= 2a

1𝜋0(1 − 𝜋0)
−2𝑎1(1 − 𝜋)                    

(4.8) 

 

Hence, VRLo = 2𝑎1𝜋0 (1 − 𝜋0)1 + 𝑎1(1 − 𝜋0)
-1

 1[1-𝑎1(1 − 𝜋0)
-1

 1]            (4.9) 

 

The out-of-control case is when the process goes out –of – control from µ0 to µ1 at the time 

t=r and the changes is sustained. That is  

𝜇 = {
𝜇0,   𝑡 = 1,2… 𝑟 − 1

    𝜋1, 𝑡 = 𝑟, 𝑟 + 1, 𝑟 + 2
…..

               (4.10) 

and 𝑋𝑖~𝑁𝑝(𝜇0  ,   𝑆𝑧) for 𝑖 = 1,2,3, … 𝑟 − 1 and  𝑋𝑖~𝑁𝑝(𝜇1 ,𝑆𝑧) for 𝑖 = 𝑟 + 1, 𝑟 + 2,…(see 

Schaffer and Vandenhul, 2005) 

And the transition matrix 𝜋 changes accordingly to  

𝜋 = {
𝜋0,   𝑡 = 1,2, … , 𝑟 − 1

𝜋1, 𝑡 = 𝑟,   𝑟 + 1,… 
…..

             (4.11) 

In this case,  the survivor distribution of the RLX is given as  

𝑃(𝑋 > 𝑥) = {
 𝑎1   𝜋0

𝑛 1, 𝑥 = 1,2, … , 𝑟 − 1

𝑎1𝜋0
𝑟−1𝜋1

𝑥−𝑟+11, 𝑛 = 𝑟, 𝑟 + 1
           (4.12) 

then the general form of the pmf of the run length of X is given by 

𝑃(𝑋 > 𝑥) = {

 𝑎𝜋0
𝑛−1 (1 − 𝜋0 )1 𝑥 = 1,2, … , 𝑟 − 1

𝑎1𝜋0
𝑟−1(1 − 𝜋1)1, 𝑥 = 𝑟

𝑎1𝜋0
𝑛−1 (1 − 𝜋11, 𝑥 = 𝑟 + 1, 𝑟 + 2

          (4.13) 
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Proof   From equation (4.2), the pmf for X for x= 1,2,…r-1 is given as  

𝑃(𝑋 = 𝑥) = 𝑃(𝑋 > 𝑥 − 1) − 𝑃(𝑋 > 𝑥) 

= 𝑎1𝜋0
𝑛−11 − 𝑎1 𝜋0

𝑛 1 

= 𝑎1𝜋0
𝑛−1(1 − 𝜋0)1                       (4.14) 

For n=r 

𝑃(𝑋 = 𝑟) = 𝑃(𝑋 > 𝑟 − 1) − 𝑃(𝑋 > 𝑟) 

= 𝑎1𝜋0
𝑟−11,−𝑎1 𝜋0

𝑟−1 𝜋11 

= 𝑎1𝜋0
𝑟−1 (1 − 𝜋1)1                                            (4.15) 

For n= 𝑟 + 1, 𝑟 + 2… 

𝑃(𝑋 = 𝑥) = 𝑃(𝑋 > 𝑥 − 1) − 𝑃(𝑋 > 𝑥) 

= 𝑎1𝜋0
𝑟−1𝜋𝑛−𝑟 1,−𝑎1 𝜋0

𝑟−1  𝜋1
𝑟−𝑟+11 

= 𝑎1𝜋0
𝑟−1𝜋0

𝑛−𝑟 (1 − 𝜋1)1                                             (4.16) 

If 𝑟 = ∞, P(X = x) = 𝑎1𝜋0
𝑥−1(1 − 𝜋0)1                                   (4.17) 

and if 𝑟 = 1, P(X = x) = 𝑎1𝜋0
𝑥−1(1 − 𝜋1)1                                    (4.18) 

Equations (4.15) - (4.18) are consistent with problem of Runger and Prabhu (1996).  

It can be shown likewise that the out – of –control ARL1 for the MEWMA is given by.   

   {𝑎1(𝐼 − 𝜋0
𝑟−1)(𝐼 − 𝜋0) 1 + 𝜋0

𝑟−1 }1            (4.19) 

Proof   Using the law of total probability 

         𝐸(𝑋) =  𝐸[(𝑋|𝑋 < 𝑟). 𝑃(𝑋 < 𝑥) + 𝐸[(𝑋|𝑋 ≥ 𝑟). 𝑃(𝑋 ≥ 𝑥)           (4.20) 

But 𝑃(𝑋 ≥ 𝑟) = 𝑃(𝑋 > 𝑟 − 1) = 𝑎1𝜋0
𝑟−1            (4.21) 

  𝑎𝑛𝑑 𝑃(𝑋 < 𝑟) + 𝑃(𝑋 ≥ 𝑟) = 1             (4.22) 

𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑃(𝑋 < 𝑟) = 1 − 𝑎1𝜋0
𝑟−11              (4.23) 

𝑃(𝑋 = 𝑥|𝑋 < 𝑟 =  
𝑃(𝑋=𝑥)

𝑃(𝑋<𝑟)
 ,   𝑥 = 1,2, … 𝑟 − 1 if and only if 𝑃(𝑋 < 𝑟) 𝑖𝑠  𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

Therefore  𝑃(𝑋 = 𝑥|𝑋 < 𝑟) =  
𝑃(𝑋=𝑥)

𝑃(𝑋<𝑟)
 =   

𝑎1(𝐼+(𝑟−1)𝜋0
𝑟−𝑟𝜋0

𝑟−1)(1−𝜋0)1

1−𝑎1𝜋0
𝑟−1 1

                    (4.24) 

 

Hence E(X/X<r). P(X/r) = 𝑎1[𝐼 + (𝑟 − 1)𝜋0
𝑟 −  𝑟 𝜋0

𝑟−1](1 − 𝜋0)
−11                (4.25) 

 

VRL1  =  Var(N) = 𝐸[𝑁(𝑁 − 1)] − 𝐸(𝑁) − 𝐸(𝑁)2 

 

 = 2𝑎′𝜋1(1 − 𝜋1)
−21 + 𝑎′(1 − 𝜋1)

−11 − [𝑎′(1 − 𝜋1)
−11]2        (4.26) 

  

5.0 The Computation of the Optimal Average Run Length  

Lowry et. al (1992) asserted that when a shift has taken place in the process mean, it is very 

important to detect the occurrence of the change quickly. Hence in the MEWMA control 

charts, smaller values of 𝜆 are more effective in detecting small shifts in the mean. In this 

work, the optimal smoothing parameter 𝜆 is the minimum smoothing parameter associated 

with ARL for a given ARL0. This smoothing parameter which corresponding to the minimum 

ARL1 for a given ARL0 was obtained by the modified markov chain algorithm and was 

compared on with the lck  and Aguilera  (2010) for selected values of ARL0. In this study, we 

obtained the mid point CLmid between the Lower Control Limit LCL and the Upper Control 

Limit UCL of the MEWMA control chart such that for a given ARL0, 𝐴𝑅𝐿𝐿𝐶𝐿 ≤ 𝐴𝑅𝐿0 and 

𝐴𝑅𝐿𝑈𝐶𝐿 ≥ 𝐴𝑅𝐿0. The ARL of the MEWMA chart can therefore be calculated using the 

Markov Chain algorithms. Once CLmid, the mid-point of the two control limits is obtained. If 

the absolute difference between ARL0 and the ARLmid is sticky less than 0.001, the procedure 

terminates and ARLmid is considered as the optimal otherwise the procedure continue until a 

sought pair is found. The values of the ARLmid can be calculated for a given magnitude of the 

shift 𝜎, the smoothing parameter 𝜆. Table 1 shows the optimal ARL when p = 2, 
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with the correlation coefficient  𝜌 = 0.5 and the number of states 𝑚1 = 𝑚2 = 25, Table 2 

shows the optimal ARL when p =4, with the correlation coefficient 𝜌 = 0.5 and the number 

of states 𝑚1 = 𝑚2 = 25 and Table 3 shows the optimal ARL when p =10, with the 

correlation coefficient 𝜌 = 0.5 and the number of states 𝑚1 = 𝑚2 = 25. 
Table 1: Optimal ARL when p = 2 and the number of states  𝒎𝟏 = 𝒎𝟐 = 𝟐𝟓, 𝝆 = 𝟎. 𝟓 

𝝈 ARL0 200 500 700 900 

0.5 𝜆 
h 

ARL 

ARLopt 

0.05 

7.38 

26.75 

26.65 

0.04 

9.24 

35.07 

34.95 

0.04 

10.08 

38.24 

27.25 

0.04 

10.70 

40.79 

40.55 

1.0  𝜆 

h 

ARL 

ARLopt 

6.14 

9.16 

9.99 

9.91 

0.12 

11.05 

12.17 

11.95 

0.11 

11.70 

12.99 

12.55 

0.11 

12.27 

13.61 

13.06 

1.5 𝜆 

h 

ARL 

ARLopt 

0.25 

9.88 

5.44 

5.31 

0.22 

11.75 

6.43 

6.41 

0.20 

12.39 

6.79 

6.72 

0.20 

12.93 

7.07 

6.95 

2.0 𝜆 
h 

ARL 

ARLopt 

0.38 

10.25 

3.53 

3.33 

0.32 

12.06 

4.09 

3.93 

0.31 

12.75 

4.29 

4.12 

0.30 

12.25 

4.45 

4.15 

2.5 𝜆 

h 

ARL 

ARLopt 

0.53 

10.43 

2.52 

2.26 

0.45 

12.25 

2.89 

2.67 

0.43 

12.92 

3.03 

2.95 

0.41 

13.42 

3.13 

3.10 

3.0 𝜆 

h 

ARL 

ARLopt 

0.68 

10.52 

1.88 

1.72 

0.61 

12.34 

2.17 

2.10 

0.58 

13.01 

2.27 

2.14 

0.56 

13.51 

2.35 

2.26 

 

Table 2: Optimal ARL when p = 4 and the number of states 𝒎𝟐 = 𝒎𝟐 = 𝟐𝟓, 𝝆 = 𝟎. 𝟓 

𝝈 ARL0 200 500 800 900 

0.5 𝜆 

h 

ARL 

ARLopt 

0.05 

11.27 

32.44 

32.30 

0.04 

13.50 

42.63 

41.96 

0.03 

14.26 

48.16 

47.93 

0.03 

14.60 

49.48 

49.27 

1.0  𝜆 
h 

ARL 

ARLopt 

0.13 

13.20 

12.06 

11.92 

0.11 

15.36 

14.64 

14.32 

0.10 

16.43 

15.96 

15.86 

0.09 

16.58 

16.29 

16.02 

1.5 𝜆 

h 

ARL 

ARLopt 

0.22 

13.97 

6.51 

6.42 

0.19 

16.09 

7.64 

7.59 

0.18 

17.18 

8.23 

8.01 

0.17 

17.40 

8.37 

8.21 

2.0 𝜆 

h 

ARL 

ARLopt 

0.33 

14.39 

4.18 

4.12 

0.29 

16.49 

4.82 

4.73 

0.27 

17.54 

5.14 

4.97 

0.26 

17.82 

5.23 

5.01 

2.5 𝜆 
H 

ARL 

ARLopt 

0.45 

14.61 

2.97 

2.92 

0.39 

16.68 

3.38 

3.19 

0.37 

17.74 

3.59 

3.49 

0.37 

18.01 

3.64 

3.59 

3.0 𝜆 

h 

ARL 

ARLopt 

0.61 

14.74 

2.23 

2.13 

0.52 

16.79 

2.56 

2.51 

0.49 

17.84 

2.70 

2.59 

0.48 

18.10 

2.73 

2.62 
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Table 3: Optimal ARL when p = 10 and the number of states 𝒎𝟐 = 𝒎𝟐 = 𝟐𝟓, 𝝆 = 𝟎. 𝟓 

𝝈 ARL0 200 500 800 900 

0.5 𝜆 
h 

ARL 

ARLopt 

0.04 

20.09 

42.62 

42.40 

0.03 

22.98 

56.65 

56.46 

0.03 

24.80 

64.23 

63.90 

0.03 

25.24 

66.15 

65.54 

1.0  𝜆 

h 

ARL 

ARLopt 

0.11 

22.88 

15.95 

15.45 

0.09 

25.59 

19.34 

19.04 

0.08 

26.90 

21.04 

20.82 

0.08 

27.28 

21.47 

21.07 

1.5 𝜆 

h 

ARL 

ARLopt 

0.19 

23.92 

8.54 

8.10 

0.16 

26.55 

9.99 

9.50 

0.15 

27.89 

10.72 

10,40 

0.14 

28.15 

10.90 

10,50 

2.0 𝜆 
h 

ARL 

ARLopt 

0.28 

24.45 

5.43 

5.10 

0.24 

27.04 

6.23 

5.92 

0.23 

28.37 

6.63 

6.20 

0.22 

28.67 

6.73 

6.30 

2.5 𝜆 

H 

ARL 

ARLopt 

0.28 

24.75 

3.82 

3.52 

0.33 

27.31 

4.33 

4.19 

0.31 

28.60 

4.58 

4.30 

0.31 

28.93 

4.65 

4.49 

3.0 𝜆 

h 

ARL 

ARLopt 

0.48 

24.90 

2.88 

2.63 

0.42 

27.45 

3.23 

2.91 

0.40 

28.74 

3.40 

3.19 

0.40 

29.05 

3.44 

3.32 

 

 

CONCLUSION 

From our study, it was observed that the MEWMA scheme is quite adequate for detecting a 

small shift and a good way to improve the quality of goods and services in a multivariate 

situation. The derivation of the moments for the optimal run length distribution was obtained 

and the moments were consistent with the Runger and Prabhu (1996) for the in-control and 

out-of-control situation. The optimums ARL for the MEWMA control charts were obtained 

using simulated data. It was observed that as the in-control average run length ARL0 or the 

number of variables (p) increases, the optimum value of the ARL0pt   increases slowly. Lastly 

as the magnitude of the shift 𝜎 increases, the optimum average run length ARLopt  decreases 
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