On Jordan Triple Homomorphism and Generalized Jordan Triple Homomorphism of Gamma Rings

Fawaz Raad Jarulla¹ Kalyan Kumar Dey²

Department of Mathematics, college of Education, Al-Mustansirya University, Iraq¹ Department of Mathematics, Rajshahi University, Rajshahi, Bangladesh²

Abstract:

Let M and M' be two $\Gamma\text{-rings}$, in the present paper we introduced the concepts of Jordan

triple homomorphism , generalized Jordan triple homomorphism on Γ -rings and some Lemmas .

Mathematic subject classification : 16N60 ,16U80.

Key Words: Γ -ring , Jordan homomorphism , Jordan triple homomorphism .

1- Introduction:

Let M and Γ be two additive abelian groups, suppose that there is a mapping from M× Γ ×M \longrightarrow M (the image of (*a*, α ,*b*) being denoted by *a* α *b*, *a*, *b* \in M and $\alpha \in \Gamma$). Satisfying for all *a*, *b*, *c* \in M and α , $\beta \in \Gamma$:

(i) $(a+b)\alpha c = a\alpha c + b\alpha c$

 $a(\alpha + \beta)c = a\alpha c + a\beta c$

 $a\alpha (b+c) = a\alpha b + a\alpha c$

(ii)
$$(a\alpha b)\beta c = a\alpha(b\beta c)$$

Then M is called a Γ -ring. This definition is due to Barnes [1].

Let M be a Γ -ring, then M is called 2-torsion free if 2a = 0 implies that a = 0, for all $a \in M$. This definition is due to [2].

An additive mapping θ of a Γ -ring M into a Γ -ring M' is called homomorphism if

 $\theta(a\alpha b) = \theta(a)\alpha\theta(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$. This definition is due to [1].

An additive mapping θ of Γ -ring M into a Γ -ring M' is called Jordan homomorphism if $\theta(a\alpha b + b\alpha a) = \theta(a)\alpha\theta(b) + \theta(b)\alpha\theta(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$. This definition is due to [3].

Let F be an additive mapping of a Γ -ring M into a Γ -ring M'. F is called a generalized homomorphism if there exists a homomorphism θ from a Γ -ring M into a Γ -ring M', such that $F(a\alpha b) = F(a)\alpha\theta(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$, where θ is called the relating homomorphism. This definition is due to [3]. And F is called a generalized Jordan homomorphism if there exists a Jordan homomorphism θ from a Γ -ring M into a Γ -ring M', such that

 $F(a\alpha b + b\alpha a) = F(a)\alpha\theta(b) + F(b)\alpha\theta(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$, where θ is called the relating Jordan homomorphism. This definition is due to [3].

2- Jordan Triple Homomorphism of Γ-Rings :

Definition (2.1):

An additive mapping θ of Γ -ring M into a Γ -ring M' is called Jordan triple homomorphism if $\theta(a\alpha b\beta a) = \theta(a)\alpha\theta(b)\beta\theta(a)$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$.

Example (2.2):

Let R be a ring , let M = M_{1×2}(R), M' = M'_{1×2}(R) and $\Gamma = \left\{ \begin{pmatrix} n \\ 0 \end{pmatrix}, n \in Z \right\}$ then M and M' be

Γ-rings. Let θ be an additive mapping of a Γ-ring M into a Γ-ring M', such that $θ((a \ b)) = (a \ 0)$, for all $(a \ b) ∈ M$ we obtain θ is a Jordan triple homomorphism

Lemma (2.3):

Let θ be a Jordan triple homomorphism of a Γ -ring M into a Γ - ring M', then for all *a*, *b*, *c* \in M, α , $\beta \in \Gamma$ and $n \in N$

(i) θ ($a\alpha b\beta a + a\beta b\alpha a$)= θ (a) α θ (b) β θ (a) + θ (a) β θ (b) α θ (a)

(ii) θ ($a\alpha b\beta c + c\alpha b\beta a$)= $\theta(a)\alpha\theta(b)\beta\theta(c) + \theta(c)\alpha\theta(b)\beta\theta(a)$

(iii) In particular, if M, M' be two commutative Γ -rings and M' is a 2-torsion free Γ -ring , then

 $\theta(a\alpha b\beta c) = \theta(a)\alpha\theta(b)\beta\theta(c)$

(iv) $\theta(a\alpha b\alpha c + c\alpha b\alpha a) = \theta(a)\alpha\theta(b)\alpha\theta(c) + \theta(c)\alpha\theta(b)\alpha\theta(a)$

Proof:

(i) Replace $a\beta b + b\beta a$ for b in Definition Jordan homomorphism, we get : $\theta(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = \theta(a)\alpha\theta(a\beta b + b\beta a) + \theta(a\beta b + b\beta a)\alpha\theta(a)$ $= \theta(a)\alpha\theta(a)\beta\theta(b) + \theta(a)\alpha\theta(b)\beta\theta(a) + \theta(a)\beta\theta(b)\alpha\theta(a) + \theta(b)\beta\theta(a)\alpha\theta(a) \dots (1)$ On the other hand $\theta(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = \theta(a\alpha a\beta b + a\alpha b\beta a + a\beta b\alpha a + b\beta a\alpha a)$ $= \theta(a)\alpha\theta(a)\beta\theta(b) + \theta(b)\beta\theta(a)\alpha\theta(a) + \theta(a\alpha b\beta a + a\beta b\alpha a) \dots (2)$ Compare (1) and (2), we get: $\theta(a\alpha b\beta a + a\beta b\alpha a) = \theta(a)\alpha\theta(b)\beta\theta(a) + \theta(a)\beta\theta(b)\alpha\theta(a)$

- (ii) Replace a + c for a in Definition (2.1), we get: $\theta((a + c)\alpha b\beta(a + c)) = \theta(a + c)\alpha\theta(b)\beta\theta(a + c)$ $= \theta(a)\alpha\theta(b)\beta\theta(a) + \theta(a)\alpha\theta(b)\beta\theta(c) + \theta(c)\alpha\theta(b)\beta\theta(a) + \theta(c)\alpha\theta(b)\beta\theta(c) \dots$ (1) On the other hand $\theta((a + c)\alpha b\beta(a + c)) = \theta(a\alpha b\beta a + a\alpha b\beta c + c\alpha b\beta a + c\alpha b\beta c)$ $= \theta(a)\alpha\theta(b)\beta\theta(a) + \theta(c)\alpha\theta(b)\beta\theta(c) + \theta(a\alpha b\beta c + c\alpha b\beta a) \dots$ (2) Compare (1) and (2), we get: $\theta(a\alpha b\beta c + c\alpha b\beta a) = \theta(a)\alpha\theta(b)\beta\theta(c) + \theta(c)\alpha\theta(b)\beta\theta(a)$
- (iii) By (ii) and since M, M' be two commutative Γ -rings and M' is a 2-torsion free Γ -ring , then

 $\theta(a\alpha b\beta c + a\alpha b\beta c) = 2\theta(a\alpha b\beta c) = \theta(a)\alpha\theta(b)\beta\theta(c)$

(iv) Replace α for β in (ii), we get: $\theta(a\alpha b\alpha c + c\alpha b\alpha a) = \theta(a)\alpha \theta(b)\alpha \theta(c) + \theta(c)\alpha \theta(b)\alpha \theta(a)$

Definition (2.4):

Let θ be a Jordan homomorphism of a Γ -ring M into a Γ -ring M', then for all $a, b \in$ M and $\alpha \in \Gamma$, we define

 $\mathbf{G}(a,b,a)_{\boldsymbol{\alpha},\boldsymbol{\beta}}=\boldsymbol{\theta}(a\boldsymbol{\alpha} b\boldsymbol{\beta} a)-\boldsymbol{\theta}(a)\boldsymbol{\alpha} \boldsymbol{\theta}(b)\boldsymbol{\beta} \boldsymbol{\theta}(a).$

<u>Lemma (2.5):</u>

If θ be a Jordan triple homomorphism of a Γ -ring M into a Γ -ring M', then for all a,

```
b,c,d \in M \text{ and } \alpha, \beta \in \Gamma
(i) G((a + b),c,d)_{\alpha,\beta} = G(a,c,d)_{\alpha,\beta} + G(b,c,d)_{\alpha,\beta}
(ii) G(a,(b + c),d)_{\alpha,\beta} = G(a,b,d)_{\alpha,\beta} + G(a,c,d)_{\alpha,\beta}
(iii) G(a,b,(c+d))_{\alpha,\beta} = G(a,b,c)_{\alpha,\beta} + G(a,b,d)_{\alpha,\beta}
\underline{Proof:}
(i) G((a + b),c,d)_{\alpha,\beta} = \theta((a + b)\alpha c\beta d) - \theta(a + b)\alpha \theta(c)\beta \theta(d)
= \theta(a\alpha c\beta d) - \theta(a)\alpha \theta(c)\beta \theta(d) + \theta(b\alpha c\beta d) - \theta(b)\alpha \theta(c)\beta \theta(d)
= G(a,c,d)_{\alpha,\beta} + G(b,c,d)_{\alpha,\beta}
(ii) G(a,(b + c),d)_{\alpha,\beta} = \theta(a\alpha(b + c)\beta d) - \theta(a)\alpha \theta(b + c)\beta \theta(d)
= \theta(a\alpha b\beta d) - \theta(a)\alpha \theta(b)\beta \theta(d) + \theta(a\alpha c\beta d) - \theta(a)\alpha \theta(c)\beta \theta(d)
= G(a,b,d)_{\alpha,\beta} + G(a,c,d)_{\alpha,\beta}
```

(iii) $G(a,b,(c+d))_{\alpha,\beta} = \theta(a\alpha b\beta(c+d)) - \theta(a)\alpha\theta(b)\beta\theta(c+d)$

 $= \theta(a\alpha b\beta c) - \theta(a)\alpha\theta(b)\beta\theta(c) + \theta(a\alpha b\beta d) - \theta(a)\alpha\theta(b)\beta\theta(d)$ $= G(a,b,c)_{\alpha,\beta} + G(a,b,d)_{\alpha,\beta}$

Proposition (2.6):

Let θ be a Jordan homomorphism from a Γ -ring M into a 2-torsion free Γ -ring M', such that $a\alpha b\beta a = a\beta b\alpha a$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma, a'\alpha b'\beta a' = a'\beta b'\alpha a'$, for all $a', b' \in M'$ and α , $\beta \in \Gamma$. Then θ is Jordan triple homomorphism.

Proof:

Replace b by $a\beta b + b\beta a$ in Definition of Jordan homomorphism, we get :

$$\theta(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = \theta(a)\alpha\theta(a\beta b + b\beta a) + \theta(a\beta b + b\beta a)\alpha\theta(a)$$

$$= \theta(a)\alpha\theta(a)\beta\theta(b) + \theta(a)\alpha\theta(b)\beta\theta(a) + \theta(a)\beta\theta(b)\alpha\theta(a) + \theta(b)\beta\theta(a)\alpha\theta(a)$$

Since $a'\alpha b'\beta a' = a'\beta b'\alpha a'$, for all $a', b' \in M'$ and $\alpha, \beta \in \Gamma$, we get:

$$= \theta(a)\alpha\theta(a)\beta\theta(b) + 2\theta(a)\alpha\theta(b)\beta\theta(a) + \theta(b)\beta\theta(a)\alpha\theta(a) \qquad \dots (1)$$

On the other hand:

 $\theta(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = \theta(a\alpha a\beta b + a\alpha b\beta a + a\beta b\alpha a + b\beta a\alpha a)$

Since $a\alpha b\beta a = a\beta b\alpha a$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$, we get:

 $= \theta(a\alpha a\beta b + b\beta a\alpha a) + 2\theta(a\alpha b\beta a)$

$$= \theta(a)\alpha\theta(a)\beta\theta(b) + \theta(b)\beta\theta(a)\alpha\theta(a) + 2\theta(a\alpha b\beta a) \qquad \dots (2)$$

Compare (1) and (2), we get:

 $2\theta(a\alpha b\beta a) = 2\theta(a)\alpha\theta(b)\beta\theta(a).$

Since M' is 2-torsion free Γ -ring , we obtain that θ is Jordan triple homomorphism.

3- Generalized Jordan Triple Homomorphism of $\Gamma\text{-Rings}$:

Definition (3.1):

An additive mapping F of a Γ -ring M into a Γ -ring M' is called a generalized Jordan triple homomorphism if there exists a Jordan triple homomorphism θ from a Γ -ring M into a Γ -ring M' such that

 $F(a\alpha b\beta a) = F(a)\alpha \theta(b)\beta \theta(a)$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$.

Where θ is called the relating Jordan triple homomorphism.

Example (3.2):

Let R be a ring, let $M = M_{1\times 2}(R)$, $M' = M_{1\times 2}(R)$ and $\Gamma = \left\{ \begin{pmatrix} n \\ 0 \end{pmatrix}, n \in Z \right\}$. Then M and M' be Γ -

rings.Let F be an additive mapping of a Γ -ring M into a Γ -ring M', such that $F((a \ b)) = (-a \ 0)$, for all $(a \ b) \in M$, then there exists a homomorphism θ from a Γ -ring M into a Γ -ring M into a Γ -ring M', such that $\theta((a \ b)) = (a \ 0)$, for all $(a \ b) \in M$. Then F is a generalized Jordan triple homomorphism

Lemma (3.3):

Let θ be a generalized Jordan triple homomorphism of a Γ -ring M into a Γ - ring M', then for all $a, b, c \in M, \alpha, \beta \in \Gamma$ and $n \in N$

(i) $F(a\alpha b\beta a + a\beta b\alpha a) = F(a)\alpha\theta(b)\beta\theta(a) + F(a)\beta\theta(b)\alpha\theta(a)$

(ii) $F(a\alpha b\beta c + c\alpha b\beta a) = F(a)\alpha\theta(b)\beta\theta(c) + F(c)\alpha\theta(b)\beta\theta(a)$

(iii) In particular, if M, M' be two commutative Γ -rings and M' is a 2-torsion free Γ -ring, then

 $F(a\alpha b\beta c) = F(a)\alpha\theta(b)\beta\theta(c)$

(iv) $F(a\alpha b\alpha c + c\alpha b\alpha a) = F(a)\alpha\theta(b)\alpha\theta(c) + F(c)\alpha\theta(b)\alpha\theta(a)$

Proof:

(i) Replace $a\beta b + b\beta a$ for *b* in Definition generalized Jordan homomorphism , we get: $F(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = F(a)\alpha\theta(a\beta b + b\beta a) + F(a\beta b + b\beta a)\alpha\theta(a)$ $= F(a)\alpha\theta(a)\beta\theta(b) + F(a)\alpha\theta(b)\beta\theta(a)) + F(a)\beta\theta(b)\alpha\theta(a) + F(b)\beta\theta(a)\alpha\theta(a)$...(1) On the other hand $F(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = F(a\alpha a\beta b + a\alpha b\beta a + a\beta b\alpha a + b\beta a\alpha a)$ $= F(a)\alpha\theta(a)\beta\theta(b) + F(b)\beta\theta(a)\alpha\theta(a) + F(a\alpha b\beta a + a\beta b\alpha a)$...(2) Compare (1) and (2), we get: $F(a\alpha b\beta a + a\beta b\alpha a) = F(a)\alpha\theta(b)\beta\theta(a) + F(a)\beta\theta(b)\alpha\theta(a)$ (ii) Replace a + c for *a* in Definition (3.1) , we get: $F((a + c)\alpha b\beta(a + c)) = F(a + c)\alpha\theta(b)\beta\theta(a + c)$ $= F(a)\alpha\theta(b)\beta\theta(a) + F(a)\alpha\theta(b)\beta\theta(c) + F(c)\alpha\theta(b)\beta\theta(c) ...(1)$

On the other hand

 $F((a + c)\alpha b\beta(a + c)) = F(a\alpha b\beta a + a\alpha b\beta c + c\alpha b\beta a + c\alpha b\beta c)$

www.iiste.org

...(2)

 $=F(a)\alpha\theta(b)\beta\theta(a)+F(c)\alpha\theta(b)\beta\theta(c)+F(a\alpha b\beta c+c\alpha b\beta a)$

Compare (1) and (2), we get:

 $F(a\alpha b\beta c + c\alpha b\beta a) = F(a)\alpha\theta(b)\beta\theta(c) + F(c)\alpha\theta(b)\beta\theta(a)$

- (iii) By (ii) and since M, M' be two commutative Γ -rings and M' is a 2-torsion free Γ -ring $F(a\alpha b\beta c + a\alpha b\beta c) = 2F(a\alpha b\beta c) = F(a)\alpha \theta(b)\beta \theta(c)$
- (iv) Replace α for β in (ii), we get:

 $F(a\alpha b\alpha c + c\alpha b\alpha a) = F(a)\alpha\theta(b)\alpha\theta(c) + F(c)\alpha\theta(b)\alpha\theta(a)$

Definition (3.4):

Let F be a generalized Jordan homomorphism of a Γ -ring M into a Γ -ring M',then for all $a, b \in M$ and $\alpha \in \Gamma$, we define $\delta (a,b,a)_{\alpha,\beta} = F(a\alpha b\beta a) - F(a)\alpha \theta(b)\beta \theta(a).$

Lemma (3.5):

If F be a generalized Jordan triple homomorphism of a Γ -ring M into a Γ -ring M',then for all $a, b, c, d \in M$ and $\alpha, \beta \in \Gamma$

(i) $\delta ((a+b),c,d)_{\alpha,\beta} = \delta (a,c,d)_{\alpha,\beta} + \delta (b,c,d)_{\alpha,\beta}$

(ii) $\delta (a,(b+c),d)_{\alpha,\beta} = \delta (a,b,d)_{\alpha,\beta} + \delta (a,c,d)_{\alpha,\beta}$

(iii) $\delta (a,b,(c+d))_{\alpha,\beta} = \delta (a,b,c)_{\alpha,\beta} + \delta (a,b,d)_{\alpha,\beta}$

Proof:

```
(i) \delta ((a + b), c, d)_{\alpha, \beta} = F ((a + b)\alpha c\beta d) - F(a + b)\alpha \theta(c)\beta \theta(d)

= F(a\alpha c\beta d) - F(a)\alpha \theta(c)\beta \theta(d) + F(b\alpha c\beta d) - F(b)\alpha \theta(c)\beta \theta(d)
= \delta (a, c, d)_{\alpha, \beta} + \delta (b, c, d)_{\alpha, \beta}
(ii) \delta (a, (b + c), d)_{\alpha, \beta} = F(a\alpha (b + c)\beta d) - F(a)\alpha \theta(b + c)\beta \theta(d)

= F(a\alpha b\beta d) - F(a)\alpha \theta(b)\beta \theta(d) + F(a\alpha c\beta d) - F(a)\alpha \theta(c)\beta \theta(d)
= \delta (a, b, d)_{\alpha, \beta} + \delta (a, c, d)_{\alpha, \beta}
(iii) \delta (a, b, (c + d))_{\alpha, \beta} = F(a\alpha b\beta (c + d)) - F(a)\alpha \theta(b)\beta \theta(c + d)

= F(a\alpha b\beta c) - F(a)\alpha \theta(b)\beta \theta(c) + F(a\alpha b\beta d) - F(a)\alpha \theta(b)\beta \theta(d)
= \delta (a, b, c)_{\alpha, \beta} + \delta (a, b, d)_{\alpha, \beta}
```

Proposition (3.6):

Let F be a generalized Jordan homomorphism from a Γ -ring M into a 2-torsion free Γ ring M', such that $a\alpha b\beta a = a\beta b\alpha a$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$, $a'\alpha b'\beta a' = a'\beta b'\alpha a'$, for all $a', b' \in M'$ and $\alpha, \beta \in \Gamma$. Then F is a generalized Jordan triple homomorphism.

Proof:

Replace *b* by $a\beta b + b\beta a$ in Definition of generalized Jordan homomorphism , we get: $F(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = F(a)\alpha\theta(a\beta b + b\beta a) + F(a\beta b + b\beta a)\alpha\theta(a)$ $= F(a)\alpha\theta(a)\beta\theta(b) + F(a)\alpha\theta(b)\beta\theta(a) + F(a)\beta\theta(b)\alpha\theta(a) + F(b)\beta\theta(a)\alpha\theta(a)$ Since $a'\alpha b'\beta a' = a'\beta b'\alpha a'$, for all $a', b' \in M'$ and $\alpha, \beta \in \Gamma$, we get: $=F(a)\alpha\theta(a)\beta\theta(b) + 2F(a)\alpha\theta(b)\beta\theta(a) + F(b)\beta\theta(a)\alpha\theta(a) \dots(1)$ On the other hand: $F(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = F(a\alpha a\beta b + a\alpha b\beta a + a\beta b\alpha a + b\beta a\alpha a)$ Since $a\alpha b\beta a = a\beta b\alpha a$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$, we get: $= F(a)\alpha\theta(a)\beta\theta(b) + F(b)\beta\theta(a)\alpha\theta(a) + 2F(a\alpha b\beta a) \dots(2)$ Compare (1) and (2), we get: $2F(a\alpha b\beta a) = 2F(a)\alpha\theta(b)\beta\theta(a).$

Since M' is 2-torsion free Γ -ring , we get F is a generalized Jordan triple homomorphism.

References:

[1] W.E.Barnes, "On The Γ-Rings of Nobusawa", Pacific J.Math., Vol.18, No. 3, pp.411-422 ,1966.

[2] S . Chakraborty and A.C . Paul, "On Jordan K-Derivations of 2-Torsion Free Prime $\Gamma_{N^{-}}$

Rings", Journal of Mathematics, Vol.40, pp.97-101, 2008.

[3] R.C.Shaheen , "On Higher Homomorphisms of Completely Prime Gamma Rings", Journal of Al-Qadisiyah For Pure Science, Vol.13, No.2, pp. 1-9, 2008.