On Jordan Triple Homomorphism and Generalized Jordan Triple Homomorphism of Gamma Rings

Fawaz Raad Jarulla ${ }^{1}$ Kalyan Kumar Dey ${ }^{2}$
Department of Mathematics, college of Education, Al-Mustansirya University, Iraq^{1}
Department of Mathematics, Rajshahi University, Rajshahi, Bangladesh ${ }^{2}$

Abstract

: Let M and M^{\prime} be two Γ-rings, in the present paper we introduced the concepts of Jordan triple homomorphism, generalized Jordan triple homomorphism on Γ-rings and some Lemmas .

Mathematic subject classification : 16N60, 16U80 .
Key Words: Γ - ring, Jordan homomorphism, Jordan triple homomorphism .

1- Introduction:

Let M and Γ be two additive abelian groups, suppose that there is a mapping from $\mathrm{M} \times \Gamma \times \mathrm{M}$
$\longrightarrow \mathrm{M}$ (the image of (a, α, b) being denoted by $a \alpha b, a, b \in \mathrm{M}$ and $\alpha \in \Gamma$). Satisfying for all $a, b, c \in \mathrm{M}$ and $\alpha, \beta \in \Gamma:$
(i) $(a+b) \alpha c=a \alpha c+b \alpha c$

$$
\begin{aligned}
& a(\alpha+\beta) c=a \alpha c+a \beta c \\
& a \alpha(b+c)=a \alpha b+a \alpha c
\end{aligned}
$$

(ii) $(a \alpha b) \beta c=a \alpha(b \beta c)$

Then M is called a Γ-ring. This definition is due to Barnes [1].
Let M be a Γ-ring, then M is called 2-torsion free if $2 a=0$ implies that $a=0$, for all $a \in \mathrm{M}$.
This definition is due to [2].
An additive mapping θ of a Γ-ring M into a Γ-ring M^{\prime} is called homomorphism if $\theta(a \alpha b)=\theta(a) \alpha \theta(b)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$. This definition is due to [1].

An additive mapping θ of Γ-ring M into a Γ-ring M^{\prime} is called Jordan homomorphism if $\theta(a \alpha b$ $+b \alpha a)=\theta(a) \alpha \theta(b)+\theta(b) \alpha \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$. This definition is due to [3].

Let F be an additive mapping of a Γ-ring M into a Γ-ring $\mathrm{M}^{\prime} . \mathrm{F}$ is called a generalized homomorphism if there exists a homomorphism θ from a Γ-ring M into a Γ-ring M^{\prime}, such that $\mathrm{F}(a \alpha b)=\mathrm{F}(a) \alpha \theta(b)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$, where θ is called the relating homomorphism. This definition is due to [3].

And F is called a generalized Jordan homomorphism if there exists a Jordan homomorphism θ from a Γ-ring M into a Γ-ring M^{\prime}, such that
$\mathrm{F}(a \alpha b+b \alpha a)=\mathrm{F}(a) \alpha \theta(b)+\mathrm{F}(b) \alpha \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$, where θ is called the relating Jordan homomorphism. This definition is due to [3].

2- Jordan Triple Homomorphism of $Г$-Rings :

Definition (2.1):

An additive mapping θ of Γ-ring M into a Γ-ring M^{\prime} is called Jordan triple homomorphism if $\theta(a \alpha b \beta a)=\theta(a) \alpha \theta(b) \beta \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.

Example (2.2):

Let R be a ring, let $M=M_{1 \times 2}(R), M^{\prime}=M^{\prime}{ }_{1 \times 2}(R)$ and $\Gamma=\left\{\binom{n}{0}, n \in Z\right\}$ then M and M^{\prime} be Γ-rings. Let θ be an additive mapping of a Γ-ring M into a Γ-ring M^{\prime}, such that $\theta((a \quad b))=$ (a $\left.\begin{array}{l}a\end{array}\right)$, for all $\left(\begin{array}{ll}a & b\end{array}\right) \in \mathrm{M}$ we obtain θ is a Jordan triple homomorphism

Lemma (2.3):

Let θ be a Jordan triple homomorphism of a Γ-ring M into a Γ - ring M^{\prime}, then for all a, $b, c \in \mathrm{M}, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$
(i) $\theta(a \alpha b \beta a+a \beta b \alpha a)=\theta(a) \alpha \theta(b) \beta \theta(a)+\theta(a) \beta \theta(b) \alpha \theta(a)$
(ii) $\theta(a \alpha b \beta c+c \alpha b \beta a)=\theta(a) \alpha \theta(b) \beta \theta(c)+\theta(c) \alpha \theta(b) \beta \theta(a)$
(iii) In particular, if M, M^{\prime} be two commutative Γ-rings and M^{\prime} is a 2 -torsion free Γ-ring, then

$$
\theta(a \alpha b \beta c)=\theta(a) \alpha \theta(b) \beta \theta(c)
$$

(iv) $\theta(a \alpha b \alpha c+c \alpha b \alpha a)=\theta(a) \alpha \theta(b) \alpha \theta(c)+\theta(c) \alpha \theta(b) \alpha \theta(a)$

Proof:

(i) Replace $a \beta b+b \beta a$ for b in Definition Jordan homomorphism, we get :
$\theta(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\theta(a) \alpha \theta(a \beta b+b \beta a)+\theta(a \beta b+b \beta a) \alpha \theta(a)$
$=\theta(a) \alpha \theta(a) \beta \theta(b)+\theta(a) \alpha \theta(b) \beta \theta(a)+\theta(a) \beta \theta(b) \alpha \theta(a)+\theta(b) \beta \theta(a) \alpha \theta(a)$
On the other hand
$\theta(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\theta(a \alpha a \beta b+a \alpha b \beta a+a \beta b \alpha a+b \beta a \alpha a)$
$=\theta(a) \alpha \theta(a) \beta \theta(b)+\theta(b) \beta \theta(a) \alpha \theta(a)+\theta(a \alpha b \beta a+a \beta b \alpha a)$
Compare (1) and (2), we get:
$\theta(a \alpha b \beta a+a \beta b \alpha a)=\theta(a) \alpha \theta(b) \beta \theta(a)+\theta(a) \beta \theta(b) \alpha \theta(a)$
(ii) Replace $a+c$ for a in Definition (2.1), we get:
$\theta((a+c) \alpha b \beta(a+c))=\theta(a+c) \alpha \theta(b) \beta \theta(a+c)$
$=\theta(a) \alpha \theta(b) \beta \theta(a)+\theta(a) \alpha \theta(b) \beta \theta(c)+\theta(c) \alpha \theta(b) \beta \theta(a)+\theta(c) \alpha \theta(b) \beta \theta(c) \ldots$
On the other hand
$\theta((a+c) \alpha b \beta(a+c))=\theta(a \alpha b \beta a+a \alpha b \beta c+c \alpha b \beta a+c \alpha b \beta c)$
$=\theta(a) \alpha \theta(b) \beta \theta(a)+\theta(c) \alpha \theta(b) \beta \theta(c)+\theta(a \alpha b \beta c+c \alpha b \beta a)$
Compare (1) and (2), we get:
$\theta(a \alpha b \beta c+c \alpha b \beta a)=\theta(a) \alpha \theta(b) \beta \theta(c)+\theta(c) \alpha \theta(b) \beta \theta(a)$
(iii) By (ii) and since $\mathrm{M}, \mathrm{M}^{\prime}$ be two commutative Γ-rings and M^{\prime} is a 2 -torsion free Γ-ring, then
$\theta(a \alpha b \beta c+a \alpha b \beta c)=2 \theta(a \alpha b \beta c)=\theta(a) \alpha \theta(b) \beta \theta(c)$
(iv) Replace α for β in (ii), we get:
$\theta(a \alpha b \alpha c+c \alpha b \alpha a)=\theta(a) \alpha \theta(b) \alpha \theta(c)+\theta(c) \alpha \theta(b) \alpha \theta(a)$

Definition (2.4):

Let θ be a Jordan homomorphism of a Γ-ring M into a Γ-ring M^{\prime},then for all $a, b \in$ M and $\alpha \in \Gamma$, we define
$\mathrm{G}(a, b, a)_{\alpha, \beta}=\theta(a \alpha b \beta a)-\theta(a) \alpha \theta(b) \beta \theta(a)$.

Lemma (2.5):

If θ be a Jordan triple homomorphism of a Γ-ring M into a Γ-ring M^{\prime},then for all a,
$b, \mathrm{c}, \mathrm{d} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
(i) $\mathrm{G}((a+b), c, \mathrm{~d})_{\alpha, \beta}=\mathrm{G}(a, c, \mathrm{~d})_{\alpha, \beta}+\mathrm{G}(b, c, \mathrm{~d})_{\alpha, \beta}$
(ii) $\mathrm{G}(a,(b+c), \mathrm{d})_{\alpha, \beta}=\mathrm{G}(a, \mathrm{~b}, \mathrm{~d})_{\alpha, \beta}+\mathrm{G}(a, c, \mathrm{~d})_{\alpha, \beta}$
(iii) $\mathrm{G}(a, b,(c+\mathrm{d}))_{\alpha, \beta}=\mathrm{G}(a, \mathrm{~b}, \mathrm{c})_{\alpha, \beta}+\mathrm{G}(a, \mathrm{~b}, \mathrm{~d})_{\alpha, \beta}$

Proof:

(i) $\mathrm{G}((a+b), c, \mathrm{~d})_{\alpha, \beta}=\theta((a+b) \alpha c \beta \mathrm{~d})-\theta(a+b) \alpha \theta(c) \beta \theta(\mathrm{d})$

$$
\begin{aligned}
& =\theta(a \alpha c \beta \mathrm{~d})-\theta(a) \alpha \theta(c) \beta \theta(\mathrm{d})+\theta(\mathrm{b} \alpha c \beta \mathrm{~d})-\theta(b) \alpha \theta(c) \beta \theta(\mathrm{d}) \\
& =\mathrm{G}(a, c, \mathrm{~d})_{\alpha, \beta}+\mathrm{G}(b, c, \mathrm{~d})_{\alpha, \beta}
\end{aligned}
$$

(ii) $\mathrm{G}(a,(b+c), \mathrm{d})_{\alpha, \beta}=\theta(a \alpha(b+c) \beta \mathrm{d})-\theta(a) \alpha \theta(b+c) \beta \theta(\mathrm{d})$

$$
\begin{aligned}
& =\theta(a \alpha b \beta \mathrm{~d})-\theta(a) \alpha \theta(b) \beta \theta(\mathrm{d})+\theta(a \alpha \mathrm{c} \beta \mathrm{~d})-\theta(a) \alpha \theta(c) \beta \theta(\mathrm{d}) \\
& =\mathrm{G}(a, \mathrm{~b}, \mathrm{~d})_{\alpha, \beta}+\mathrm{G}(a, c, \mathrm{~d})_{\alpha, \beta}
\end{aligned}
$$

(iii) $\mathrm{G}(a, b,(c+\mathrm{d}))_{\alpha, \beta}=\theta(a \alpha b \beta(\mathrm{c}+\mathrm{d}))-\theta(a) \alpha \theta(b) \beta \theta(\mathrm{c}+\mathrm{d})$

$$
\begin{aligned}
& =\theta(a \alpha b \beta \mathrm{c})-\theta(a) \alpha \theta(b) \beta \theta(\mathrm{c})+\theta(a \alpha \mathrm{~b} \beta \mathrm{~d})-\theta(a) \alpha \theta(\mathrm{b}) \beta \theta(\mathrm{d}) \\
& =\mathrm{G}(a, \mathrm{~b}, \mathrm{c})_{\alpha, \beta}+\mathrm{G}(a, \mathrm{~b}, \mathrm{~d})_{\alpha, \beta}
\end{aligned}
$$

Proposition (2.6):

Let θ be a Jordan homomorphism from a Γ-ring M into a 2 -torsion free Γ-ring M^{\prime}, such that $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma, a^{\prime} \alpha b^{\prime} \beta a^{\prime}=a^{\prime} \beta b^{\prime} \alpha a^{\prime}$, for all $a^{\prime}, b^{\prime} \in \mathrm{M}^{\prime}$ and α, $\beta \in \Gamma$.Then θ is Jordan triple homomorphism.

Proof:

Replace b by $a \beta b+b \beta a$ in Definition of Jordan homomorphism, we get :
$\theta(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\theta(a) \alpha \theta(a \beta b+b \beta a)+\theta(a \beta b+b \beta a) \alpha \theta(a)$
$=\theta(a) \alpha \theta(a) \beta \theta(b)+\theta(a) \alpha \theta(b) \beta \theta(a)+\theta(a) \beta \theta(b) \alpha \theta(a)+\theta(b) \beta \theta(a) \alpha \theta(a)$
Since $a^{\prime} \alpha b^{\prime} \beta a^{\prime}=a^{\prime} \beta b^{\prime} \alpha a^{\prime}$, for all $a^{\prime}, b^{\prime} \in \mathrm{M}^{\prime}$ and $\alpha, \beta \in \Gamma$, we get:
$=\theta(a) \alpha \theta(a) \beta \theta(b)+2 \theta(a) \alpha \theta(b) \beta \theta(a)+\theta(b) \beta \theta(a) \alpha \theta(a)$
On the other hand:
$\theta(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\theta(a \alpha a \beta b+a \alpha b \beta a+a \beta b \alpha a+b \beta a \alpha a)$
Since $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, we get:
$=\theta(a \alpha a \beta b+b \beta a \alpha a)+2 \theta(a \alpha b \beta a)$
$=\theta(a) \alpha \theta(a) \beta \theta(b)+\theta(b) \beta \theta(a) \alpha \theta(a)+2 \theta(a \alpha b \beta a)$
Compare (1) and (2), we get:
$2 \theta(a \alpha b \beta a)=2 \theta(a) \alpha \theta(b) \beta \theta(a)$.
Since \mathbf{M}^{\prime} is 2-torsion free Γ-ring, we obtain that θ is Jordan triple homomorphism.

3- Generalized Jordan Triple Homomorphism of Γ-Rings :

Definition (3.1):

An additive mapping F of a Γ-ring M into a Γ-ring M^{\prime} is called a generalized Jordan triple homomorphism if there exists a Jordan triple homomorphism θ from a Γ-ring M into a Γ-ring M' such that
$\mathrm{F}(a \alpha b \beta a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.
Where θ is called the relating Jordan triple homomorphism.

Example (3.2):

Let R be a ring, let $M=M_{1 \times 2}(R), M^{\prime}=M_{1 \times 2}(R)$ and $\Gamma=\left\{\binom{n}{0}, n \in Z\right\}$. Then M and M^{\prime} be Γ rings.Let F be an additive mapping of a Γ-ring M into a Γ-ring M^{\prime}, such that $\mathrm{F}\left(\left(\begin{array}{ll}a & b\end{array}\right)\right)=(-a$ $0)$, for all $\left(\begin{array}{ll}a & b\end{array}\right) \in \mathrm{M}$,then there exists a homomorphism θ from \quad a Γ-ring M into a Γ-ring M^{\prime}, such that $\theta\left(\left(\begin{array}{ll}a & b\end{array}\right)\right)=\left(\begin{array}{ll}a & 0\end{array}\right)$, for all $\left(\begin{array}{ll}a & b\end{array}\right) \in \mathrm{M}$. Then F is a generalized Jordan triple homomorphism

Lemma (3.3):

Let θ be a generalized Jordan triple homomorphism of a Γ-ring M into a Γ - ring M^{\prime}, then for all $a, b, c \in \mathrm{M}, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$
(i) $\mathrm{F}(a \alpha b \beta a+a \beta b \alpha a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \beta \theta(b) \alpha \theta(a)$
(ii) $\mathrm{F}(a \alpha b \beta c+c \alpha b \beta a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(a)$
(iii) In particular, if $\mathrm{M}, \mathrm{M}^{\prime}$ be two commutative Γ-rings and M^{\prime} is a 2-torsion free Γ-ring, then

$$
\mathrm{F}(a \alpha \mathrm{~b} \beta \mathrm{c})=\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)
$$

(iv) $\mathrm{F}(a \alpha b \alpha c+c \alpha b \alpha a)=\mathrm{F}(a) \alpha \theta(b) \alpha \theta(c)+\mathrm{F}(c) \alpha \theta(b) \alpha \theta(a)$

Proof:

(i) Replace $a \beta b+b \beta a$ for b in Definition generalized Jordan homomorphism, we get:
$\mathrm{F}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\mathrm{F}(a) \alpha \theta(a \beta b+b \beta a)+\mathrm{F}(a \beta b+b \beta a) \alpha \theta(a)$
$=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b))+\mathrm{F}(a) \alpha \theta(b) \beta \theta(a))+\mathrm{F}(a) \beta \theta(b) \alpha \theta(a)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)$
$=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \beta \theta(b) \alpha \theta(a)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)$
On the other hand
$\mathrm{F}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\mathrm{F}(a \alpha a \beta b+a \alpha b \beta a+a \beta b \alpha a+b \beta a \alpha a)$
$=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)+\mathrm{F}(a \alpha b \beta a+a \beta b \alpha a)$
Compare (1) and (2), we get:
$\mathrm{F}(a \alpha b \beta a+a \beta b \alpha a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \beta \theta(b) \alpha \theta(a)$
(ii) Replace $a+c$ for a in Definition (3.1), we get:

$$
\begin{align*}
& \mathrm{F}((a+c) \alpha b \beta(a+c))=\mathrm{F}(a+c) \alpha \theta(b) \beta \theta(a+c) \\
& =\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(c) \tag{1}
\end{align*}
$$

On the other hand
$\mathrm{F}((a+c) \alpha b \beta(a+c))=\mathrm{F}(a \alpha b \beta a+a \alpha b \beta c+c \alpha b \beta a+c \alpha b \beta c)$
$=\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(c)+\mathrm{F}(a \alpha b \beta c+c \alpha b \beta a)$
Compare (1) and (2), we get:
$\mathrm{F}(a \alpha b \beta c+c \alpha b \beta a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(a)$
(iii) By (ii) and since M, M^{\prime} be two commutative Γ-rings and M^{\prime} is a 2-torsion free Γ-ring

$$
\mathrm{F}(a \alpha \mathrm{~b} \beta \mathrm{c}+a \alpha \mathrm{~b} \beta \mathrm{c})=2 \mathrm{~F}(a \alpha \mathrm{~b} \beta \mathrm{c})=\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)
$$

(iv) Replace α for β in (ii), we get:

$$
\mathrm{F}(a \alpha b \alpha c+c \alpha b \alpha a)=\mathrm{F}(a) \alpha \theta(b) \alpha \theta(c)+\mathrm{F}(c) \alpha \theta(b) \alpha \theta(a)
$$

Definition (3.4):

Let F be a generalized Jordan homomorphism of a Γ-ring M into a Γ-ring M^{\prime},then for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$, we define
$\delta(a, b, a)_{\alpha, \beta}=\mathrm{F}(a \alpha b \beta a)-\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)$.

Lemma (3.5):

If F be a generalized Jordan triple homomorphism of a Γ-ring M into a Γ-ring M^{\prime},then for all $a, b, \mathrm{c}, \mathrm{d} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
(i) $\delta((a+b), c, \mathrm{~d})_{\alpha, \beta}=\delta(a, c, \mathrm{~d})_{\alpha, \beta}+\delta(b, c, \mathrm{~d})_{\alpha, \beta}$
(ii) $\delta(a,(b+c), \mathrm{d})_{\alpha, \beta}=\delta(a, \mathrm{~b}, \mathrm{~d})_{\alpha, \beta}+\delta(a, c, \mathrm{~d})_{\alpha, \beta}$
(iii) $\delta(a, b,(c+\mathrm{d}))_{\alpha, \beta}=\delta(a, \mathrm{~b}, \mathrm{c})_{\alpha, \beta}+\delta(a, \mathrm{~b}, \mathrm{~d})_{\alpha, \beta}$

Proof:

(i) $\delta((a+b), c, \mathrm{~d})_{\alpha, \beta}=\mathrm{F}((a+b) \alpha c \beta \mathrm{~d})-\mathrm{F}(a+b) \alpha \theta(c) \beta \theta(\mathrm{d})$

$$
\begin{aligned}
= & \mathrm{F}(a \alpha c \beta \mathrm{~d})-\mathrm{F}(a) \alpha \theta(c) \beta \theta(\mathrm{d})+\mathrm{F}(\mathrm{~b} \alpha c \beta \mathrm{~d})-\mathrm{F}(b) \alpha \theta(c) \beta \theta(\mathrm{d}) \\
& =\delta(a, c, \mathrm{~d})_{\alpha, \beta}+\delta(b, c, \mathrm{~d})_{\alpha, \beta}
\end{aligned}
$$

(ii) $\delta(a,(b+c), \mathrm{d})_{\alpha, \beta}=\mathrm{F}(a \alpha(b+c) \beta \mathrm{d})-\mathrm{F}(a) \alpha \theta(b+c) \beta \theta(\mathrm{d})$

$$
\begin{aligned}
& =\mathrm{F}(a \alpha b \beta \mathrm{~d})-\mathrm{F}(a) \alpha \theta(b) \beta \theta(\mathrm{d})+\mathrm{F}(a \alpha \mathrm{c} \beta \mathrm{~d})-\mathrm{F}(a) \alpha \theta(c) \beta \theta(\mathrm{d}) \\
& =\delta(a, \mathrm{~b}, \mathrm{~d})_{\alpha, \beta}+\delta(a, c, \mathrm{~d})_{\alpha, \beta}
\end{aligned}
$$

(iii) $\delta(a, b,(c+\mathrm{d}))_{\alpha, \beta}=\mathrm{F}(a \alpha b \beta(\mathrm{c}+\mathrm{d}))-\mathrm{F}(a) \alpha \theta(b) \beta \theta(\mathrm{c}+\mathrm{d})$

$$
\begin{aligned}
& =\mathrm{F}(a \alpha b \beta \mathrm{c})-\mathrm{F}(a) \alpha \theta(b) \beta \theta(\mathrm{c})+\mathrm{F}(a \alpha \mathrm{~b} \beta \mathrm{~d})-\mathrm{F}(a) \alpha \theta(\mathrm{b}) \beta \theta(\mathrm{d}) \\
& =\delta(a, \mathrm{~b}, \mathrm{c})_{\alpha, \beta}+\delta(a, \mathrm{~b}, \mathrm{~d})_{\alpha, \beta}
\end{aligned}
$$

Proposition (3.6):

Let F be a generalized Jordan homomorphism from a Γ-ring M into a 2-torsion free Γ ring M^{\prime}, such that $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$,
$a^{\prime} \alpha b^{\prime} \beta a^{\prime}=a^{\prime} \beta b^{\prime} \alpha a^{\prime}$, for all $a^{\prime}, b^{\prime} \in \mathrm{M}^{\prime}$ and $\alpha, \beta \in \Gamma$.Then F is a generalized Jordan triple homomorphism.

Proof:

Replace b by $a \beta b+b \beta a$ in Definition of generalized Jordan homomorphism, we get:
$\mathrm{F}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\mathrm{F}(a) \alpha \theta(a \beta b+b \beta a)+\mathrm{F}(a \beta b+b \beta a) \alpha \theta(a)$
$=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \beta \theta(b) \alpha \theta(a)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)$
Since $a^{\prime} \alpha b^{\prime} \beta a^{\prime}=a^{\prime} \beta b^{\prime} \alpha a^{\prime}$, for all $a^{\prime}, b^{\prime} \in \mathrm{M}^{\prime}$ and $\alpha, \beta \in \Gamma$, we get:
$=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+2 \mathrm{~F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)$
On the other hand:
$\mathrm{F}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\mathrm{F}(a \alpha a \beta b+a \alpha b \beta a+a \beta b \alpha a+b \beta a \alpha a)$
Since $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, we get:
$=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)+2 \mathrm{~F}(a \alpha b \beta a)$
Compare (1) and (2), we get:
$2 \mathrm{~F}(a \alpha b \beta a)=2 \mathrm{~F}(a) \alpha \theta(\mathrm{b}) \beta \theta(a)$.
Since M^{\prime} is 2-torsion free Γ-ring, we get F is a generalized Jordan triple homomorphism.

References:

[1] W.E.Barnes, "On The Г-Rings of Nobusawa", Pacific J.Math., Vol.18, No. 3, pp.411-422 ,1966.
[2] S .Chakraborty and A.C .Paul, "On Jordan K-Derivations of 2-Torsion Free Prime $\Gamma_{\mathrm{N}^{-}}$ Rings", Journal of Mathematics, Vol.40, pp.97-101, 2008.
[3] R.C.Shaheen , "On Higher Homomorphisms of Completely Prime Gamma Rings", Journal of Al-Qadisiyah For Pure Science, Vol.13, No.2,pp. 1-9, 2008.

