P, P-L. compact topological ring

Afraa R. sadek

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq Abstract

In this paper, we introduced some new definitions on P-compact topological ring and PL-compact topological ring for the compactification in topological space and rings, we obtain some results related to P-compact and P-L compact topological ring.

Keywords: rings, ideals, topological ring, D-cover groups, isomorphism, direct product, D-compact group.

Introduction

A topological ring is a ring R which is also a topological space such that both the addition and the multiplication are continuous as maps

 $R \times R \to R$ where $R \times R$ carries the product topology. A topological ring $(R,*, .., \tau)$ is said to be compact, if a topological space (R, τ) is compact space, for details see [1]. In [2] D.G. Salih gave the concept of D-cover groups and D-compact groups. In this paper, we shall generalize this concept to topological rings so we investigated the P-compact and the P-L. compact topological rings, in particular case we deal with the proper ideals of a topological rings, so we introduce the PI-compact and PI-L. compact topological rings, we obtain some good results related these concepts above. We mean throughout this paper a topological rings is just ring as a set with topology.

2. Definitions and examples .

Definition 1

Let $(R, *, ., \tau)$ be a topological ring and I be an index set, we say that

1. The family $\{Ri \in \tau; (R_i, *, .) is a \text{ proper subrings of } (R, *.), \forall i \in I\}$ is a P-cover topological rings of $(R, *, ., \tau)$ if $R = \bigcup_{i \in I} R_i$

Definition 2

Let $(R, *, ., \tau)$ be a topological ring we say that;

- 1- $(R,*,.,\tau)$ is weakly P-compact topological ring if there is a finite P- cover topological rings of $(R,*,.,\tau)$.
- 2- $(R,*,.,\tau)$ is P-compact topological ring if for any P–cover topological rings of $(R,*,.,\tau)$, there is a finite sub P–cover topological rings of $(R,*,.,\tau)$.
- 3- $(R,*,.,\tau)$ is weakly P–L. compact topological ring if there exists a countable P–cover topological rings of $(R,*,.,\tau)$.
- 4- (R,*,.,τ) is P-L. compact topological ring if for any P-cover topological ring of (R,*,.,τ), there is a countable sub P-cover topological rings of (R,*,.,τ).

Definition 3

Let $(R,*,.,\tau)$ be a topological ring and (H,*,.) be a subring of (R,*,.). The topological subring $(H,*,.,\tau_H)$ $[\tau_H = \tau \cap H]$ is said to be:

P-compact topological subring (weakly P-compact topological subring, P-L. compact topological subring, weakly P.L. compact topological subring) if $(H,*,.,\tau_H)$ is P-compact (weakly P-compact, P-L. compact and weakly P-L. compact) topological ring respectively.

Definition 4

1- Let $(R, *, .., \tau)$ and $(\overline{R}, \overline{*}, \overline{.}, \overline{\tau})$ be two topological rings then,

- (i) f: (R,*,.,τ) → (R̄, ̄, ̄, ̄, ̄) is a homomorphism topological rings if
 f: (R,τ) → (R̄, ̄) is continuous such that f(x * y) = f(x) ̄ f(y) and
 f(x,y) = f(x).̄ f(y) for each pair of elements x, y ∈ R
- (ii) f: (R,*,.,τ) → (R̄, ̄, ̄, ̄, ̄) is a topological isomorphism if it is topological homeomorphism and ring isomorphism.
- 2- Suppose that Λ is a non-empty set and $(R_{\lambda}, *_{\lambda}, \cdot_{\lambda}, \tau_{\lambda})$ is a topological rings for each $\lambda \in \Lambda$, their product is $\pi_{\lambda \in \Lambda} R_{\lambda}$ equipped with the usual product

topology $\tau_{\pi_{\lambda \in \Lambda}} R_{\lambda}$ and with multiplication given by $(x \otimes y) = x_{\lambda} \otimes y_{\lambda}$ for each $x_{\lambda}, y_{\lambda} \in R_{\lambda}$ and $\lambda \in \Lambda$.

3- If $R_{\lambda} = R$ and $\tau_{\lambda} = \tau$, $\forall \lambda \epsilon \wedge$ then we denoted that

$$R^{\wedge} = \pi_{\lambda \in \wedge} R_{\lambda}$$
 and $\tau^{\wedge} = \pi_{\lambda \in \Lambda} \tau_{\lambda}$

Example 1.

Let $X = \{a, b, c, d\}$ and P(X) the power set of X i.e.

 $P(X) = \{ \emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\} \}$

One can show easily that $R = (P(X), \Delta, \bigcap)$ where $(A \triangle B = A \cup B - A \cap B)$, is a ring

Let τ be the discrete topology defined on P(X) and let P_i , $1 \le i \le 12$ be the following sets :

$$P_{1} = \{\emptyset, X\}$$

$$P_{2} = \{\emptyset, \{a\}\}$$

$$p_{3} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

$$P_{4} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

$$P_{5} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

$$P_{6} = \{\emptyset, \{d\}, \{a\}, \{a, d\}\}$$

$$P_{7} = \{\emptyset, \{d\}, \{a\}, \{c\}, \{a, d\}, \{a, c\}, \{d, c\}, \{a, d, c\}\}$$

$$P_{8} = \{\emptyset, \{c\}, \{a, b\}, \{a, b, c\}\}$$

$$P_{9} = \{\emptyset, \{b\}, \{a, d\}, \{a, c, d\}\}$$

$$P_{10} = \{\emptyset, \{a\}, \{c, d\}, \{a, c, d\}\}$$

$$P_{11} = \{\emptyset, \{d\}, \{b, c\}, \{b, c\}\}$$

It is clear that the family $\{P_i \in \tau; (P_i, \Delta, \cap)\}$ is a P-cover topological rings of $(P(X), \Delta)$, which has a finite sub P-cover $\{p_8, p_9, p_{10}, p_{11}, p_{12}\}$ so $(P(X), \Delta, \cap)$ is weakly P-compact in fact it is P-compact.

Recall that see[3], a sub ring I of the ring R is said to be a two side ideal of R if and only if $r \in R$ and $a \in I$ imply both $ra \in I$ and $ar \in I$.

For rings with identity 1, it is clear that if $1 \in I$ then $I \equiv R$, so we give the following modification for the preceding definitions.

Definition 5.

Let $(R, *, ., \tau)$ be a topological rings and let Λ be an index we say that the family $\{I_i \in \tau; (I_i, *, .)\}$ is a proper ideal of $\{(R, *, .), \forall i \in A\} \cup \{1\}$ is PI-cover topological ideals of $(R, *, ., \tau)$, if $R = \bigcup_{i \in \Lambda} I_i \cup \{1\}$

Definition 6.

Let $(R, *, ., \tau)$ be a topological ring, we say that

- 1- $(R,*,.,\tau)$ is weakly PI compact topological ring if there exists a finite PI cover topological ideals of $(R,*,.,\tau)$
- 2- $(R,*,.,\tau)$ is PI-compact topological ring if for any PI-cover topological ideals of $(R,*,.,\tau)$, there is a finite sub PI-cover topological ideals of $(R,*,.,\tau)$
- 3- $(R,*,.,\tau)$ is weakly PI–L. compact topological ring if ther exists a countable PI cover topological of $(R,*,.,\tau)$
- 4- (R,*,.,τ) is PI-L. compact topological ring if for any PI- cover topological ideals of (R,*,.,τ), there is a countable sub PI- cover topological rings of (R,*,.,τ).

Example2.

Let *R* be the ring $(Z, +, ., \tau)$ where τ is the discrete topology defined on *Z*. Note that the following:

$$2Z = \{0, \pm 2, \pm 4, \dots\}$$
$$3Z = \{0, \pm 3, \pm 6, \dots\}$$

 $4Z = \{0, \mp 4, \mp 6, ...\}$ $5Z = \{0, \mp 5, \mp 10, ...\}$ $6Z = \{0, \mp 6, \mp 12, ...\}$ etc. are all proper ideals of $(Z, +, ., \tau)$. Now it is easy to show that $I = \{kZ / k \in Z^+\} \cup \{1\}$ is a countable PI – cover topological ideals of $(Z, +, ., \tau)$, that's mean $Z = \bigcup_{k \in Z^+} I_k$

Which has been a countable sub PI-cover since for example $4Z \subseteq 2Z$ and $6Z \subseteq 3Z$, etc. Hence $(Z, +, .., \tau)$ is PI-L. compact which is not PI-compact because the prime numbers are infinite see [4].

Main results .

It is easy to prove direct from definitions the following Lemmas

Lemma 1.

- 1. Any P-compact topological ring is weakly P-compact.
- 2. Any P compact topological ring is P-L. compact .

Lemma 2.

- 1. Any PI compact topological ring is weakly PI–compact .
- 2. Any PI compact topological ring is PI-L. compact .

Also we can prove directly by Lemma (1), the following theorem

Theorem 1.

Let $(R, *, ., \tau)$ be a topological ring such that R is finite set, then the following are equivalents :

- 1. (R , * , . , τ) is P–compact topological ring .
- 2. (R, *, .., τ) is P–L. compact topological ring .

If we replace P-(P-L.) compact topological with PI-(PI-L.) compact topological ring respectively, the result is true.

Example 3.

Let $R = Z_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ and

 $\tau = \left\{ \{\overline{0}\}, \{\overline{0}, \overline{3}\}, \{\overline{0}, \overline{2}, \overline{4}\}, \{\overline{1}, \overline{5}\}, \{\overline{2}, \overline{3}, \overline{4}\}, \{\overline{0}, \overline{1}, \overline{3}, \overline{5}\}, \emptyset, R \right\}$

Although (R, +, ., τ) is finite topological ring but it is not P-compact and not PI-compact since $\{\overline{0}\}, \{\overline{0}, \overline{3}\}, \{\overline{0}, \overline{2}, \overline{4}\}$ are the only proper sub rings which are not cover (R, +, ., $\overline{\tau}$).

Recall that a ring (R , * , .) is said to be a field provided that the set R/{0} is commutative group under the multiplication of R. It is known that if R is a field then R has no non trivial ideals see [3], so we have the following theorem .

Theorem 2.

Any infinite ring (not field) can be PI-compact.

Proof.

Suppose first $(\mathbb{R}, *, ., \tau)$ is a ring without identity. Let I be a set (finite or infinite) defined $\tau = \{A_i \subseteq \mathbb{R}, A_i^C \text{ is finite set}, (A_i, *, .) \text{ proper ideal } \forall_i \in I \text{ and } A_{i_1} \subseteq A_{i_2} \text{ for } i_1 \leq i_2\} \cup \{\emptyset\}.$

Now since any arbitrary set { na / a $\in R$, $n \in Z^+$ } is ideal see [3] hence $Z \in \emptyset$. Clear that (R, *, ., τ) is topological ring since .

- (1) $\emptyset \in \tau$ and $R^c = \emptyset$ is finite i.e. $R \in \tau$.
- (2) Let A_1 , $A_2 \in \tau$, so A_1^c , A_2^c are finite but $(A_1 \cap A_2)^c = A_1^c \cup A_2^c$ implies $(A_1 \cap A_2)^c$ is finite and since $(A_1 \cap A_2, *, .)$ is ideal see[3] hence $A_1 \cap A_2 \in \tau$.
- (3) Let Λ be any index and let A_s ∈ τ , ∀_s ∈ Λ, hence A^c_s is finite for each s ∈ Λ which leads to ∩_{S∈Λ}A^c_s is finite. Now since (U_{s∈Λ}A_s)^c = ∩_{S∈Λ}A^c_s, but U_{s∈Λ}A_s = A_t, for each s ∈ Λ. So (U_{s∈Λ}, A_i, *,.) is an ideal, hence (R, *,., τ) is topological ring.

Now let $\{A_{\lambda} \in \tau, \lambda \in \Lambda\}$ be any PI–cover topological rings of $(R, *, ., \tau)$, that is $R = \bigcup_{\lambda \in \Lambda} A_{\lambda}$.

Let $A_0 \in \{A_\lambda\}_{\lambda \in \Lambda}$ implies $(A_0, *, .)$ is an ideal and A_0^c is finite set. Suppose that $A_0^c = \{a_1, a_2, ..., a_n\}$ where $a_j \in \mathbb{R}$ for each $1 \le j \le n$, but $\{A_\lambda \in \tau, \lambda \in \Lambda\}$ is

PI-cover of $(\mathbb{R}, *, ., \tau)$ so there is $A_{\lambda_j} \in \{A_\lambda \in \tau, \lambda \in \Lambda\}$ such that $a_j \in A_{\lambda_j}$ for each j implies $A_0^c \subseteq \bigcup_{i=1}^n A_{\lambda_i}$.

Thus $R \subseteq \bigcup_{j=1}^{n} A_{\lambda_j} \cup A_0$ (of course $R = A_0 \cup A_0^c$) that means there is a finite sub PI – cover topological rings $\{A_0, A_{\lambda_1}, \dots, A_{\lambda_n}\}$ each of which is ideal, therefore $(R, *, .., \tau)$ is PI–compact topological ring. If $(R, *, .., \tau)$ is a ring with identity we take $\hat{\tau} = \tau \cup \{1\}$ and the prove is similar

Corollary 1.

Any infinite ring (not field) can be a weakly PI-compact .

For product P – compact rings we have the following two theorems .

Theorem 3.

Let $(R, *, ., \tau)$ and $(\overline{R}, \overline{*}, \overline{.}, \overline{\tau})$ be two topological rings if $(\overline{R}, \overline{*}, \overline{.}, \overline{\tau})$ is a P-compact topological ring. Then $(R \times \overline{R}, \otimes, \odot, \tau \times \overline{\tau})$ is P-compact topological ring.

Proof.

Let $\{(R \times \bar{R}_i, \otimes, \odot); \bar{R}_i \in \bar{\tau} \text{ and } (\bar{R}_i, \bar{*}, \bar{\cdot}) \text{ rings } \forall i \in I\}$ be any Pcover topological rings of $R \times \bar{R}$, i.e. $R \times \bar{R} = \bigcup_{i \in I} (R \times \bar{R}_i) = R \times (\bigcup_{i \in I} \bar{R}_i)$ implies $\bar{R} = \bigcup_{i \in I} \bar{R}_i$, but $(\bar{R}, \bar{*}, \bar{\cdot}, \bar{\tau})$ is P-compact topological ring so there is finite subset $J \subseteq I$ such that $\bar{R} = \bigcup_{j \in J} \bar{R}_j \implies R \times \bar{R} = R \times (\bigcup_{j \in J} \bar{R}_j) = \bigcup_{j \in J} (R \times \bar{R}_j)$, where $(R \times \bar{R}_j, \otimes, \odot)$ is a ring for each $j \in J$. Therefore $(R \times \bar{R}, \otimes, \odot, \tau \times \bar{\tau})$ is P-compact topological ring.

Theorem 4.

Let $(R, *, ., \tau)$ and $(\overline{R}, \overline{*}, \overline{.}, \overline{\tau})$ be two P-compact topological rings then $(R \times \overline{R}, \otimes, \odot, \tau \times \overline{\tau})$ is P-compact topological ring.

Proof.

Let $(\mathbb{R}, *, ., \tau)$ and $(\overline{R}, \overline{\otimes}, \overline{\odot}, \overline{\tau})$ be any two P-compact topological rings. Then there exists a P-cover topological rings $\{R_a\}_{a \in A}$ and $\{R_b\}_{b \in B}$ of \mathbb{R} and \overline{R} respectively (A, B any index), that's mean $\mathbf{R} \times \bar{\mathbf{R}} = (\bigcup_{a \in A} R_a) \times (\bigcup_{b \in B} \bar{\mathbf{R}}_b) = \bigcup_{a \in A, b \in B} (R_a \times \bar{\mathbf{R}}_b)$ implies $\{R_a \times R_b\}$ \overline{R}_b }_{*a* \in *A*, *b* \in *B*} is a P-cover topological rings of (R × \overline{R} , \otimes , \odot , $\tau \times \overline{\tau}$). Let $\{W_i\}_{i \in \Lambda}$ be any P – cover topological rings of $(\mathbb{R} \times \overline{R}, \bigotimes, \odot, \tau \times \overline{\tau})$ then $\mathbb{R} \times \overline{R}$ $\overline{R} = \bigcup_{i \in \Lambda} W_i$ such that $W_i = U_i \times V_i$, where $U_i \in \tau$ and $V_i \in \overline{\tau}$ for each $i \in \Lambda$. But (R, *, ., τ) is P-compact ring, so there is a finite sub set $J \subseteq \Lambda$ such that $\mathbf{R} = \bigcup_{j \in J} U_j$ and $(U_j, *, .)$ is a ring for each $j \in J$. Let $U_{j_1} \in \{U_j\}_{j \in J}$ implies $\{U_{j_1} \times V_i\}_{i \in \Lambda}$ is a P-cover topological rings of $(U_{j_1} \times \overline{R}, \otimes, \odot)$ hence $U_{j_1} \times \overline{R} = \bigcup_{i \in \Lambda} (U_{j_1} \times V_i)$, but $(U_{j_1} \times \overline{R}, \otimes, \odot)$ is P-compact topological ring since $(U_{j_1}, *, .)$ is a ring and $(\overline{R}, \overline{*}, .)$ is Pcompact topological ring (theorem 3) so there is a finite set $S \subset \Lambda$ such that $\{U_{j_1} \times V_s\}_{s \in S}$ is a ring, $\forall s \in S$. Now $U_{j_1} \times \overline{R} = \bigcup_{s \in S} (U_{j_1} \times V_s)$ hence $U_{j_1} \times \overline{R}$ $=U_{i_1} \times (U_{s \in S} V_s)$ [see5] and hence $\mathbb{R} \times \overline{\mathbb{R}} = \left(\bigcup_{i \in I} U_i \right) \times \left(\bigcup_{s \in S} V_s \right) = \bigcup_{i \in I, s \in S} \left(\bigcup_{i \in I} V_s \right), \text{ where }$ $(U_j \times V_s, \otimes, \odot)$ are rings for each $j \in J$, $s \in S$. Therefore $(\mathbb{R} \times \overline{R}, \otimes, \odot, \tau \times \overline{\tau})$ is P-compact topological rings.

If we replace P-compact topological ring with PI-compact in theorems 3,4 the result is true since the product of ideals is also ideal (for instance see [3]).

Theorem 5 . [1]

Let $\{R_i, i \in I\}$ be a family of topological rings. Then the direct product $R = \prod_{i \in I} R_i$, equipped with the product topology is topological rings.

From theorem 4 and theorem 5, respectively, and by induction we can prove the following theorem

Theorem 6

The product of any finite collection of P-compact topological rings is P-compact topological ring.

If we replace P–compact topological ring with P–L. compact topological ring , the result is true .

Corollary 2.

If $(R, *, ., \tau)$ is a P – compact topological ring . Then $(R^n, \otimes, \odot, \tau^n)$ is P – compact topological ring , where

$$R^n = \frac{R \times R \times \dots \times R}{n-time}$$
 and $\tau^n = \frac{\tau \times \tau \times \dots \times \tau}{n-time}$

Theorem 7.

Let (R, *, ., τ) and (\overline{R} , $\overline{*}$, $\overline{\cdot}$, $\overline{\tau}$) be two topological rings, and let

f: (R, *, ., τ) \rightarrow (\overline{R} , $\overline{*}$, $\overline{\cdot}$, $\overline{\tau}$) be a homomorphism. Then

- 1. If S is a P-compact topological subring in (R , * , . , τ), then f(S) is P-compact topological subring in (\overline{R} , $\overline{*}$, . , $\overline{\tau}$).
- If T is a P compact topological subring in (R
 , *, ., τ) and f is an isomorphism then f⁻¹(T) is P-compact topological subring in (R, *, ., τ).

Proof.

Let $\{\bar{R}_i\}_{i \in I}$ be any P- cover topological rings of f(S) in $(\bar{R}, \bar{*}, \bar{.}, \bar{\tau})$ that is $f(S) = \bigcup_{i \in I} \bar{R}_i$. Now since $S \subseteq f^{-1}(f(S))$ see [6], implies S $\subseteq f^{-1}(\bigcup_{i \in I} \bar{R}_i)$ but $f^{-1}(\bigcup_{i \in I} \bar{R}_i) = \bigcup_{i \in I} f^{-1}(\bar{R}_i)$, see also [6], hence S $\subseteq \bigcup_{i \in I} f^{-1}(\bar{R}_i)$ on the other hand $f^{-1}(R_i)$ for each $i \in I$ is a sub ring in R for enstance see [3, p. 186], and since S is P-compact and f continuous hence there exists a finite set $J \subset I$, such that

 $S = \bigcup_{j \in J} f^{-1}(R_j) = f^{-1}(\bigcup_{j \in J} R_j) \text{ implies } f(S) = f(f^{-1}(\bigcup_{j \in J} R_j)). \text{ But}$ $f(f^{-1}(\bigcup_{j \in J} R_j)) \subseteq \bigcup_{j \in J} R_j \text{ see } [6] \text{ , i.e. } f(S) \subseteq U_{j \in J} R_j. \text{Thus } f(S) \text{ is P-compact topological sub ring in } (\overline{R}, \overline{*}, \overline{\cdot}, \overline{\tau})$

2- Let $\{R_i\}_{i \in I}$ be any P-cover topological rings of $f^{-1}(T)$ in $(\mathbb{R}, *, ., \tau)$ that is $f^{-1}(T) = \bigcup_{j \in I} R_i$, $R_i \in \tau$, $\forall i \in I$ implies $T = f(\bigcup_{i \in I} R_i) = f(\bigcup_{i \in I} R_i)$. It is clear that $f(R_i) \in \overline{\tau}$, $\forall i \in I$ since f is isomorphism (definition 4), but T is a P-compact topological subring of $(\overline{R}, \overline{*}, \overline{.}, \overline{\tau})$, so there is a finite subset $J \subseteq I$ such that $T = \bigcup_{j \in J} f(R_j)$ where $(f(R_j), \overline{*}, \overline{.})$ is a ring, $\forall j \in J$ see [3, p. 186]. Thus $T = f(\bigcup_{j \in J} R_j)$ hence $f^{-1}(T) = H_{i} \circ R_i$ and hence $f^{-1}(T)$ is P-compact topological subring of

 $f^{-1}(T) = U_{j \in J} R_j$ and hence $f^{-1}(T)$ is P-compact topological subring of $(\mathbb{R}, *, ., \tau)$.

For PI-compact ring we have the following theorem.

Theorem 8

Let $(\mathbf{R}, *, .., \tau) \rightarrow (\overline{R}, \overline{*}, \overline{.}, \overline{\tau})$ be an isomorphism, then

- 1. If S is a PI-compact topological ideal in (R ,* ,. , τ), then f (S) is PI-compact topological ideal in (\overline{R} , $\overline{*}$, $\overline{-}$, $\overline{\tau}$).
- If T is a PI-compact topological ideal in (R
 , *, -, τ
), then f⁻¹ (T) is PI-compact topological ideal in (R, *, ., τ).

Proof.

Let $\{I_i\}_{i \in \Lambda}$ be any PI-cover topological ideal of f(S) in $(\overline{R}, \overline{*}, \overline{\cdot}, \overline{\tau})$, that is $f(S) = \bigcup_{i \in \Lambda} I_i \cup \{1\}$, hence $S = f^{-1}(\bigcup_{i \in \Lambda} I_i) \cup \{1\}$, of course $f^{-1}(I_i)$, $\forall i$ are ideals see [3].

Also $f^{-1}(I_i) \in \tau$, $\forall i$ since f is isomorphism. Now S is PI compact ideal in (R, *, ., τ), hence there exists a finite set J $\subseteq \land$ such that

$$S = \bigcup_{j \in J} f^{-1}(I_j) \cup \{1\} \text{ implies } f(S) = f(f^{-1} \cup_{j \in J} I_j) \cup f\{1\}, \text{ hence}$$
$$f(S) = \bigcup_{j \in J} I_j \cup \{1\}, \text{ that means } f(S) \text{ is PI- compact ideal in } (\overline{R}, \overline{*}, \overline{\cdot}, \overline{\tau}).$$

2. Let
$$\{I_i\}_{i \in \wedge} \cup \{1\}$$
 be any PI-cover topological ideal of $f^{-1}(T)$ that is
 $f^{-1}(T) = (\bigcup_{i \in \wedge} I_i) \cup \{1\}, \{I_i \in \tau, \forall i \in \wedge\}$ implies
 $T = f(\bigcup_{i \in \wedge} I_i) \cup \{1\}$
 $= \bigcup_{i \in \wedge} (f(I_i)) \cup \{1\}$

It is clear that $f(I_i) \in \overline{\tau}$, $\forall i \in \wedge$ since f is an isomorphism (definition 4), but T is PI-compact topological ideal in $(\overline{R}, \overline{*}, \overline{\cdot}, \overline{\tau})$, so there is a finite subset $J \subseteq \wedge$ such that $T = \bigcup_{j \in J} f(I_j) \cup \{1\}$ where $(f(I_j), \overline{*}, \overline{\cdot})$ are ideals for each $j \in J$ see [3, p.198]. Now $T = f(\bigcup_{j \in J} I_j) \cup \{1\}$, hence $f^{-1}(T) = U_{j \in J} I_j U\{1\}$ means $f^{-1}(T)$ is PI-compact topological ideal and we have done.

The following theorem show that the P-compact is topological property.

Theorem 9.

Let $(\mathbf{R}, *, .., \tau)$ and $(\overline{R}, \overline{*}, \overline{.}, \overline{\tau})$ be two topological rings and

f: (R, *, ., τ) \rightarrow (\overline{R} , $\overline{*}$, $\overline{.}$, $\overline{\tau}$) be an isomorphism, then the following are equivalents:

- 1- (R, *, . , τ) is P-compact topological ring.
- 2- $(\overline{R}, \overline{*}, \overline{.}, \overline{\tau})$ is P-compact topological ring.

Proof.

(⇒) suppose that (R, *, ., τ) is P-compact topological ring, let $\{R_i\}_{i \in I}$ be any P-cover topological rings of (\overline{R} , $\overline{*}$, $\overline{\cdot}$, $\overline{\tau}$), that is $\overline{R} = \bigcup_{i \in \Lambda} \overline{R_i}$ gives

$$R = f^{-1}(\bar{R}) = f^{-1}(\bigcup_{i \in \Lambda} \bar{R}_i) = \bigcup_{i \in \Lambda} f^{-1}(\bar{R}_i). \text{ But } (R, *, ., \tau) \text{ is } P$$

compact topological ring, so there is a finite subset $J \in \Lambda$, such that $R = \bigcup_{j \in J} f^{-1}(\bar{R}_j)$. Clear that $(f^{-1}(\bar{R}_j), *, .)$ is subring $\forall j \in J$, hence $R = f^{-1}(\bigcup_{j \in J} \bar{R}_j)$ implies $\bar{R} = f(R) = f(f^{-1}(\bigcup_{j \in J} \bar{R}_j)) = \bigcup_{j \in J} \bar{R}_j$

therefore $(\overline{R}, \overline{*}, \overline{\cdot}, \overline{\tau})$ is P-compact topological ring.

(\Leftarrow) suppose that $(\overline{R}, \overline{*}, \overline{-}, \overline{\tau})$ is a P-compact topological ring, let $\{R_i\}_{i \in \Lambda}$ be any P-cover topological rings of $(\mathbb{R}, *, .., \tau)$, i.e. $R = \bigcup_{i \in \Lambda} R_i$.

Clear that $\overline{R} = f(R) = f(\bigcup_{i \in \Lambda} R_i) = \bigcup_{i \in \Lambda} f(R_i)$ where $(f(R_i), \overline{*}, \overline{\cdot})$ is a ring $\forall i \in \Lambda$ see [3, p. 198], and since f is isomorphism (definition 4) implies $f(R_i) \in \overline{\tau}, \forall i \in \Lambda$. But $(\overline{R}, \overline{*}, \overline{\cdot}, \overline{\tau})$ is P-compact so there is a finite subset $J \subseteq \Lambda$ such that $\overline{R} = \bigcup_{j \in J} f(R_j)$.

Now

$$R = f^{-1}(\bar{R}) = f^{-1}\left(\bigcup_{j \in J} f(R_j)\right) = f^{-1}\left(f\left(\bigcup_{j \in J} R_j\right)\right) = \bigcup_{j \in J} R_j.$$

Thus (R , \ast , . , $\tau)$ is P-compact which complete the proof.

We can prove by the similar way the following theorem.

Theorem 10.

Let $(R, *, .., \tau)$ and $(\overline{R}, \overline{*}, \overline{.}, \overline{\tau})$ be two topological rings and

f : (R , * , . , τ) \rightarrow (\overline{R} , $\overline{*}$, $\overline{\cdot}$, $\overline{\tau}$) be an isomorphism. Then the following are equivalents

- 1- (R, $*, .., \tau$) is PI-compact topological ring.
- 2- $(\overline{R}, \overline{*}, \overline{\cdot}, \overline{\tau})$ is PI-compact topological ring.

References

- [1] Warner, S. **1993**. Topological rings, department of Mathematics , Duke university, science publisher Amsterdam North-HOLLAND.
- [2] Salih, D.G., X., **2012**. On D-compact groups, American journal of scientific research, 60, pp;5-14.
- [3] Burton, D.M., **1972**. "Abstract and linear algebra", Addison-Wesley publishing company, Inc.
- [4] Burton, D.m., **1980**. "Elementry number theory", Allyn and Bacon, Inc. Boston. London. Sydney. Toronto.
- [5] Schapira, P. 2010-2011. General topology, course at Paris university (V.3), p.8, p.43.
- [6] Wilder R.L., **1965.** "The Foundation of Mathematics", John Wiley sons, INC. New York. London. Sydney.