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Abstract 

The purpose of this research is to investigate into what factors influence the buying behaviour of consumers of 

sanitary pads in Takoradi Polytechnic. Consumer behaviour has been changed dramatically in the past decade. In 

today’s world of growing competition where there are numerous brands selling the same products, consumers is 

having an abundant number of choices and many other factors influence their buying behaviour. In order to 

accomplish this objective of the study, a sample of five hundred (500) consumers were sampled from both 

female (staff and student) of the Polytechnic community. A ten item questionnaire that employs a five-point 

differential scale ranging from ‘strongly disagree’ to ‘strongly agree’ was administered to the respondent. 

Among other things, the study result reveal that there are four dimensional factors informing the purchasing 

behaviour of consumers of sanitary pads, which accounted for 65.3% of variance in the original variables. Using 

factor analysis via principal component factoring with resulting data analysis done in SPSS (16), the dimensions 

adduced to be influencing buying behaviour of sanitary pads were: Health features (factor 1), Product features 

(factor 2), and Social influence (factor 3) and Economic factors( factor 4). This study is useful to the marketers 

as they can create various marketing programme that they believe will be of interest to the consumers. It can also 

boost their marketing strategy and also help other people who are working in other industries or in any private 

sector organization. 
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1. Introduction 

Consumers are individuals and households that buy the firms product for personal consumption (Kotler, 2001). It 

often used to describe two different kinds of consuming entities; the personal consumer and the organizational 

consumer. The activities, these consumers under take when obtaining, consuming and disposing of product and 

service is known as consumer behavior .Consumer behavior involves studying how people buy, what they buy, 

when they buy and why they buy. When a consumer wanted to make the purchase decision, they pass through 

recognition, search information, evaluation and purchase feedback (Blackwell, Minirad and Engel, 2006). At last 

the consumer will choose a product or brand to consume from various choices in the market. However, these 

factors affecting the buying behavior of consumers vary due to diverse environmental factors and individual 

determinants. Consumer buying behavior is influenced by two major factors; these factors are individual and 

environmental. The major categories of individual factors affecting consumer behavior are demographics, 

consumer knowledge, and perception, learning motivation, personality, beliefs and life styles. The second 

category of factors is environmental factors which include items outside of the individual that affect the 

consumers’ decision making process. These factors include cultural, social class, reference group, family and 

household. The above factors are the major determinants behind the decision of consumers to opt for a given 

good or service.  (Blackwell, Minirad and Engel, 2006). 
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2.  Review of Methods 

Factor analysis is a statistical method used to describe variability among observed, correlated variables in terms of 

a potentially lower number of unobserved variables called factors. Factor analysis (including common factor 

analysis and principal component analysis) is used to examine the interdependence among variables and to 

explain the underlying common dimensions (factors) that are responsible for the correlations among the 

variables. The procedure allows one to condense the information in a large set of variables into a smaller set of 

variables by identifying variables that are influenced by the same underlying dimensions. We can therefore look 

upon the underlying dimensions or factors, which are of primary interest but directly unobservable, as the new 

set of variables. Factor analysis facilitates the transformation from the original observable variables to the new 

variables (factors) with as little loss of information as possible (Everitt and Dunn, 2001; Johnson and Wichern, 

1992; Sharma, 1996). 

Given the latent factors 𝐹′ =  mFFF ...,,2,1
 and the observable (indicator) variables 

𝑋′ =  pXXX ,..., 21
, where 𝑚 ≪ 𝑝, the data model, in matrix notation, is given by 

  1 pX   =  111   pmmP FL   

Where mpL    is a mp matrix of coefficients 𝑙𝑖𝑗, 𝑖 = 1, 2… p;   𝑗= 1, 2.., 𝑚. 

The 𝑙𝑖𝑗s are referred to as the factor loadings. The entities 𝜀′ =  p ...,, ,21  are thought of as specific error 

terms or factors associated with 
PXXX ...,, ,21

 respectively. The mean corrected vector   1 pX  , where 

 =    ',21 ...,, PXE  is taken to be the response variable (Johnson and Wichern 1992).  For an orthogonal 

factor model, the analysis of the data is done under the assumption that, 

   1 mOFE                 `1 pOE            mmIFCOV   

  0, jiCOV                     0, jiFCOV   

Where 𝑂 is a matrix of zeros. It follows from the assumptions that: 

 The factors are independent, 

 The specific error terms are independent 

 The factors and specific error terms are independent. 

However, as mentioned above, the observable variables PXXX ,...,, 21  are correlated because they are 

influenced by some common underlying dimensions (factors). The correlation among the indicator variables 

facilitates the identification of the common latent factors as the indicator variables that are influenced by the 

same factor tend to ‘load’ highly on (have a high correlation coefficient with) that common factor and also 

amongst themselves (Everitt and Dunn 2001; Johnson and Wichern, 1992; Sharma, 1996). 
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In the orthogonal model, the coefficients (pattern loadings) mjpilij ,...,2,1;,...,2,1,   are the same as 

the simple correlations (structure loadings) between the indicator variables
iX and the factors jF , and the 

variance (communality) that Xi  shares with jF  is given by ijl 2
(Sharma, 1996). Thus the total 

communality of an indicator variable 𝑋𝑖 with all the 𝑚 common factors is given by 

                    .,..., 2
2

2
1

2
imii lll   

  

  2.1 Principal Component Factoring 

Factor analysis can be done using several techniques. One of such popular techniques is principal component 

factoring (PCF), which uses Principal Component Analysis (PCA) to extract the dimensions (factors) influencing 

the observed variables, by analyzing the correlation amongst them. In principal component analysis, new 

uncorrelated variables are formed which are a linear combination of the original (observable) variables, and the 

number of new variables is equal to the old variables. However, the new variables are formed such that the first 

principal component accounts for the highest variance in the data, the second accounts the highest remaining 

variance in the data, the third principal component accounts for the remaining variance not accounted for by the 

first and second components, and so on. (Everitt and Dunn 2001; Johnson and Wichern, 1992; Sharma, 1996). 

     Given the observed variables pXXX ,...,, 21  and the coefficients 

(weights) .,...,2,1.,...,2,1, pjpiwij  , the principal component pCCC ...,, ,21  are given by 
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To place a limit on the variance of the piCis ,...,2,1,    and to guarantee that the new axes representing the 

is
C are uncorrelated, the weights .,...,2,1,,...,2,1, pjpiwij   are estimated subject to the conditions 

given by Equations 1 and 2 respectively (Everitt and Dunn 2001; Johnson and Wichern, 1992; Sharma, 1996).                                 

 And  31  ii ww  

           40 jiallforww ji   

     Where   
ipiii wwww ,,, 21   

Given the mean 1 and the standard deviation ii  of the variable iX , the transformed variables 
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                                              piZ i ,...,2,1,  , given by 

 5
ii

ii
i

X
Z




  

This could be used to form the principal components (Johnson and Wichern, 1992). Expressed in matrix 

notation, the vector of standardized variables could be written as 
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Where  p ,,, 21   and 2
1

V is the standard deviation matrix given by 

                                                                               























pp

V















00

00

00

22

11

2
1  

                             

      












 1

2
1

1

2
1

cov,,1,1,0 VVZandpiZVarZE ii   

Where the variance-covariance matrix ∑ and the correlation matrix  of X are given by 
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,
1 

 is the covariance between variables ix  and jx , each of 

which has n observations. The p principal components  pCCCC ,,, 21    are then given by               

ZAC   

Where  pA  ,, 21   and the pisi ,,2,1,    are the eigenvectors of 


 are such that 

1,21  iip o   and .0 ji   
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And      iiiiCVar          i

p

ii

p

i ZVarCVar 11  

Thus the proportion of the variance in the data that is accounted for by the iC  is given by ./  j  

The correlations between a given PC, iC and a given standardized variable jZ  referred to as the loading of 

variable jZ  on iC , is given by               
2

1

, jijji ZCCorr   . 

The loading reflects the degree to which each jZ  influences each iC  given the effect of the other variables 

kjZ k ,   (Hair et al., 2006; Johnson and Wichern, 1992; Sharma, 1996). In Principal Component Factoring 

the initial communalities of the indicator variables are one.   

Source: Results from analysis of data, 2016 

Table 1 shows the correlation between the variables. It shows a moderately high correlation between V3 and V2 

(0.492), V7 and V6 (0.401) and a very low correlation between V1 and V2 (0.019). 

  

 

 

3. Results 

 

Table 1: Correlation Matrix 

Variables  V1 V2 V3 V4 V5 V6 V7 V8 V9  

 V1  . 

V2 .019  

V3 -.067 .492   

V4 .290 .144 .038  

V5 .049 .312 .345 .050   

V6 .323 .291 .170 .287 .079  

V7 .198 .255 .328 .123 .107 .401   

V8 .150 .202 .179 .175 .020 .290 .362  

V9 .142 .063 .050 .315 .064 .157 .132 .315   

V10 .169 -.030 -.134 .301 -.080 .222 .169 .281 .368  
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Table 2 : KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .724 

Bartlett's Test of Sphericity Approx. Chi-Square 871.871 

df 45 

Sig. 
.000 

Source: Results from analysis of data, 2016 

Table 2 shows that the adequacy of the sample as measured by KMO is 0.7(0.724). The sampling is adequate 

and sufficient if KMO value is larger than 0.5 (Field, 2000). According to Pallant (2013), the value of KMO 

should be 0.6 and above, Kaiser (1974) recommends a bare minimum of 0.5 and a value between 0.7 and 0.8 are 

good (Hutchen and Sofroniou, 1999). The KMO of 0.7 for this study is greater than the threshold of 0.5 (Kaiser, 

1974). The strength of relationship measured by Bartlett test of sphericity p value of 000.0  suggest the 

sample size is adequate  and that ,at least some of the variables are inter-correlated and therefore the data is 

suitable for factor analysis and also it checks the null hypothesis that the original correlation matrix is an identity 

matrix (Pallant,2013;Field,2000). 

 

Table 3:  Communalities 

 Initial Extraction 

V1 1.000 .725 

V2 1.000 .605 

V3 1.000 .698 

V4 1.000 .613 

V5 1.000 .645 

V6 1.000 .633 

V7 1.000 .668 

V8 1.000 .633 

V9 1.000 .703 

V10 1.000 .603 

Source: Results from analysis of data, 2016 

The communality is the proportion of common variance within a variable. Therefore before extraction, all of the 

variance associated with a variable assumed to be common variance. Principal Component Factoring work on 

the assumption that all the variance associated with a variable is supposed to be 1(one) before factor extraction. 

Thus the communality matrix gives information about how much of the variance in each item is explained. From 

table 3 all ten variables remained in the final factor solution and all the final communalities are at least 60% of 

the initial communalities of each variable were account 
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Table 4 :Total Variance Explained 

Factors 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation 

Sums of 

Squared 

Loadings 

Total % of Variance Cumulative % Total 

% of 

Variance 

Cumulative 

% Total 

1 2.705 27.052 27.052 2.705 27.052 27.052 1.784 

2 1.791 17.913 44.965 1.791 17.913 44.965 1.922 

3 1.028 10.280 55.245 1.028 10.280 55.245 1.617 

4 1.003 10.031 65.277 1.003 10.031 65.277 1.853 

5 .744 7.440 72.717     

6 .646 6.460 79.177     

7 .590 5.899 85.076     

8 .550 5.501 90.576     

9 .512 5.122 95.699     

10 .430 4.301 100.000     

Source: Results from analysis of data, 2016 

 

As shown in table 4, total variance of 65.3% is achieved for four factors. The first factor eigenvalue is equal to 

2.705 and explains 27.1% of the variance in the original data. The second factor eigenvalue is 1.791 and explains 

17.9% of the variance, the third factor eigenvalue is 1.028 and explains10.3% of the variance and the fourth 

factor eigenvalue is 1.003 which explains 10.0% of the variance. The first four factors explain 65.3% of the 

variance in the data more than the minimum 60% (Hair et al 2006); therefore, by eigenvalue criteria these four 

factors have been retained. 
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Figure 1: plot of eigenvalues against factor number. 

Source: Results from analysis of data, 2016 

To supplement the eigenvalue criteria as mentioned in table 4, a scree plot graph of the eigenvalues against all 

the factors (Catell, 1966) was obtained as shown in figure 1. The plot also shows that five factors should be 

retained as the plot curve begins to flatten between the 4
th

 and 5
th

 factors suggesting a fifth factor. However, the 

fifth factor has eigenvalue less than 1 as seen in table 4. Hence four factors have been retained. 

 

Table 5: Rotated Component Matrix 

 Component 

 1 2 3 4 

V5 .771    

V3 .743    

V2 .714    

V7  .779   

V8  .664   

V9   .829  

V10   .695  

V1    .840 

V6     

V4     

Extraction Method: Principal Component Analysis. Rotation Method: 

Varimax with Kaiser Normalization. 
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Table 5: Rotated Component Matrix 

 Component 

 1 2 3 4 

V5 .771    

V3 .743    

V2 .714    

V7  .779   

V8  .664   

V9   .829  

V10   .695  

V1    .840 

V6     

V4     

Extraction Method: Principal Component Analysis. Rotation Method: 

Varimax with Kaiser Normalization. 

Source: Results from analysis of data,2016  

Table 5 shows the extracted factors and the loadings of the various variables on the factors. A Varimax rotation 

method was used so that each variable load on only one factor. This is an orthogonal method which ensures that 

the factors are uncorrelated. Tabachnick and Fidell (2000), stated variables with factor loadings of 0.4 and above 

should be considered. However, a higher value of 0.5 was chosen in this study to ensure that only variables of 

practical significance are included in the final solution. After performing the Varimax Rotation Method with 

Kaiser Normalization, Factor 1 comprised of three items with factor loadings ranging from 0.71 to 0.77, the 

items are V5, V3 and V2.  Factor 2 comprised of two items with factor loadings ranging from0.66 to 0.78, the 

items are V7 and V8. Factor 3 comprised of two items with factor loadings ranging from 0.69 to 0.83, the items 

are V9 and V10. Factor 4 comprised of one item with factor loading 0.84 and has item V1. Four new factors 

were successfully constructed using factor analysis and assigned as the factors influencing the consumer' buying 

behaviour. 
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   Table 6: Naming of factors with factor loadings and the percentage of variance. 

NAME Factor Loading Percentage of 

variance 

FACTOR ONE: HEALTH FEATURES 

V5= I use it because it has higher absorption capacity. 

V3= I use it because I feel comfortable in it. 

V2= I use it because it does not give any side effect. 

 

.771 

.743 

.714 

 

 

27.1 

FACTOR TWO: PRODUCT FEATURE 

V7= I use it because of its fragrance. 

V8= I use it because its packaging is attractive. 

 

.779 

.664 

 

 

17.9 

FACTOR THREE: SOCIAL INFLUENCE 

V9=I use it because of family tradition. 

V10= I use it because I like their advert. 

 

.829 

.695 

 

10.3 

FACTOR FOUR: ECONOMIC FACTOR 

V1= I use it because it is less expensive. 

 

.840 

 

10.0 

Source: Results from analysis of data, 2016 

Table 6 shows the names of the new factors with factor loadings and percentage of variance explained. The first 

factor (health features) shows the highest percentage of variance explained (27.1%). The second factor (product 

features) explains 17.9% of the variance, the third factor (social influence) explains10.3% of the variance and the 

fourth factor (economic factor) explains 10.0% of the variance 
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Table 7: variables with their codes 

Variables (items) 

V1= I use it because it is less expensive. 

V2= I use it because it does not give any side effect 

V3= I use it because I feel comfortable in it. 

V4= I use it because my doctor prescribed it for me 

V5=  I use it because it has higher absorption capacity 

V6= I use it because of its quantity in the pack. 

V7= I use it because of its fragrance. 

V8= I use it because its packaging is attractive 

V9= I use it because of family tradition 

V10= I use it because like their advert 

 

4. Conclusion 

This study conducted a Principal Component Factoring with an orthogonal rotation (Varimax). The ten items 

related to consumer buying behaviour were reduced to four factors using a combination of three criteria to decide 

on the number of factors to retain for interpretation. The total variance of 65.3% is achieved for four factors. It 

can be seen that consumer’s buying behaviour is driven by a number of factors like; price, quality, family and 

friends recommendations, features, advertisements and packaging. In the light of this research findings, the 

consumers buying behavior on sanitary pads appears to be influenced by: Health features of the pad; consumers 

consider health issues when buying a brand of pad, that is in order to avoid any discomfort and boost their self 

confidence. They also prefer to use a brand that feels comfortable, does not give any side effects and has higher 

absorption capacity. This is the first factor realized from the study. Product features; it was deduced in the study 

that consumers purchase a particular brand of sanitary pad based on the attractiveness of the packaging and 

fragrance in the pad. Social influence; the third factor consider selecting a brand based on family tradition and 
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advertisement influence. The last factor considered before buying a brand is economic factor. Consumers prefer 

to use a brand that is economically convenient.  
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