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Abstract

In this paper, we present a special second order non symmetric fitted difference method for solving singular
perturbed two point boundary value problems having boundary layer at one end. We introduce a fitting factor in the
special second order non symmetric finite difference scheme which takes care of the rapid changes occur that in the
boundary layer. The value of this fitting factor is obtained from the theory of singular perturbations. The discrete
invariant imbedding algorithm is used to solve the tridiagonal system obtained by the method. We discuss the
existence and uniqueness of the discrete problem along with stability estimates and the convergence of the method.
We present the maximum absolute errors in numerical results to illustrate the proposed method.

Keywords: Singularly perturbed two-point boundary value problem, Boundary layer, Fitting factor, Maximum
absolute error

1. Introduction

During the last few years much progress has been made in the theory and in the computer implementation of the
numerical treatment of singular perturbation problems. Typically, these problems arise very frequently in fluid
mechanics, fluid dynamics, chemical reactor theory, elasticity, acro dynamics and other domains of the great world
of fluid motion. The solution of this type of problem has a narrow region in which the solution changes rapidly and
the outside solution changes smoothly. However, the area of singular perturbations is a field of increasing interest to
applied mathematicians. Much progress has been made recently in developing finite element methods for solving
singular perturbation problems. This type of problem was solved by Bellman (1964), Bender and Orszag (1978),
Eckhaus (1973), Kevorkian and Cole (1981), Nayfeh (1973), O’Malley (1974), Van Dyke (1974), and numerically
by Ascher and Weis (1984), Kadalbajoo, Reddy (1989) and Kadalbajoo and Patidar (2003), Lin and Su (1989), Roos
(1986), Vulanovic (1991). It is well known that standard discretization methods for solving singular perturbation
problems are unstable and fail to give accurate results when the perturbation parameter ¢ is small. Therefore, it is
important to develop suitable numerical methods for these problems, whose accuracy does not depend on parameter
¢ as presented in Doolan et al. (1980). The fitted technique is one such tool to reach these goals in an optimum way.
There are two possibilities to obtain small truncation error inside the boundary layer(s). The first is to choose a fine
mesh there, whereas the second one is to choose a difference formula reflecting the behaviour of the solution(s)
inside the boundary layer(s). Present work deals with the second approach. In this paper, we have presented a special
second order non symmetric fitted difference method for solving singularly perturbed problems. We introduce a
fitting factor in a special second order non symmetric finite difference scheme which takes care of the rapid changes
occur that in the boundary layer. This fitting factor is obtained from the theory of singular perturbations. The discrete
invariant imbedding algorithm is used to solve the tridiagonal system. The existence and uniqueness of the discrete
problem along with stability estimates are discussed. We have discussed the convergence of the method. Maximum
absolute errors in numerical results are presented to illustrate the proposed method.

2. Description of the method
2.1 Left-End Boundary Layer Problems
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Consider a linearly singularly perturbed two point boundary value problem of the form:
&"(x)+a(x)y'(x)+b(x)y(x) = f(x), xe[0,]] )]
with the boundary conditions  y(0) =« (2a)
and y(1)= 5 (2b)

where ¢ is a small positive parameter (0 < ¢ <<1) and «, f are given constants. We assume that a(x), b(x) and f(x)
are sufficiently smooth functions and such that (1) with (2) has a unique solution in [0, 1]. Further more, we assume
that b(x) <0, a(x) > M > 0 throughout the interval [0, 1], where M is some positive constant. This assumption implies
that boundary layer exists in the neighborhood of x = 0.

From the theory of singular perturbation s it is known that the solution of (1) - (2) is of the form

s

a(0) ol & a®

Y(x) =y, (x) + ——=(a = y,(0))e +0(¢) 3)
a(x)

where yg(x) is the solution of a(x)yy(x)+b(x)y,(x)= f(x), y,(D)=2 4)

By taking Taylor’s series expansion for a(x) and b(x) about the point ‘0’ and restricting to their first terms, (3)

becomes,

7[1‘(0)71;(0)])(
Y(@) = vy () + (@~ y,(0)e * © O +0(e) )
Now we divide the interval [0, 1] into N equal parts with constant mesh length h. Let 0=x_, x,,.......x,,=1 be the
mesh points. Then we have x; =ih:i=0,1,2,... ,N.

7(4«(0)717(0)},,1
From (5), we have y(ih) = y, (i) + (@ — y,(0))e * © “©
therefore

+0(¢&)

a? (0)-eb(0) "
a(0)

lim y(ih) = y,(0) + (& = y, (0))e [ (6)

where p = ﬁ
&

From finite differences, we have
" hz
Via =2Vt Vi = hz(yf +Ey,-“” J +O0(h®) @)

h 4
yro=2yl+yl =k y® +Eyi(6) F o

Substituting n? y§4) from the above equation in (7), we have
2

h " ” "
Vi =2Yi + Vi :E(yi—l+10yi+yi+l)+0(h6) (®)
Now from the equation (1), we have
i :_aiﬂy:! —bi Vi + fin

&/ =-a,y; by, +7, )

"o r*
& ==a Y, by, + [

. £ s . . . .
where we approximate y;,; and y;_; using non symmetric finite differences
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r* Yio _4yi +3yi+ "
yig =ty + O(h?)
2h
v Vi~ Via 2
=2 L L Ok 10
Vi o (h%) (10
. =3y 44y —p
yLLI — yt—l + yz y1+1 +hy;!+0(h2)

2h
Substituting (9) and (10) in (8) and simplifying we get

(8 s 2o ha j( Vit 22 Vi j+h (=3y., +4y, -y, )+10l(y,-+1 -y)

12 12 h* 24h 24h
A, b, 105, b, (fH +10f, + f[+1)
+ =4y +3y, )y, +—, + =
24h(y171 yl yz+1) 12 yl*l 12 yl 12 ywl 12

Now introducing the fitting factor o(p) in the above scheme

hai— ha[+ Vi —2y[ + Vi a;_ 10[1,-
[U(p)$+ - — lj[ : 1 +_1(_3y[—1+4yi_y[+1)+_(yi+l_y[—l)

2 12 > 24h 24k an
a,, b, 106, by, (f,0 10+ fi)
+ =4y, 3y )y, + =
ah (v =4y, +3v..1) SVt Vit Y >

The fitting factor o(p) is to be determined in such a way that the solution of (11) converges uniformly to the
solution of (1)-(2). Multiplying (11) by % and taking the limit as # — 0, and by using equation (6), we get
2

o 58O ol (2@ = eb0))o a2

2 2a(0)
which is a constant fitting factor.
The tridiagonal system of the equation (11) is given by
Ey, ,-Fy +Gy, =H, fori=12,.,N-1 (13)
where

ha,_, _ ha,, _3a, + b, _10aq, L din

E. ool
TRt 12 12 24h 12 24h 24k

ha,, ha,, ) 4a,, 10b; 4a;,
+ - +
24h 12 24h

2
F,.:— Elea —
Top? 12 12

1 ha,, ha.,\ a_ by 10a; 3a,
G, =—5|eo+—Tr——L0 |- T
h 12 12 24h 12 24h 24h

1
Hj :E(fm +10fi +fi+1)
where o is given by (12). We solve this tridiagonal system by the discrete invariant imbedding algorithm.

2.2 Right-end boundary layer problem

Finally, we discuss our method for singularly perturbed two point boundary value problems with right-end boundary
layer of the underlying interval. To be specific, we consider a class of singular perturbation problem of the form:

&"(x)+a(x)y'(x)+b(x)y(x) = f(x), x €[0, 1] (14)
with y(0)=a (15a)
and y(1)= (15b)

where ¢ is a small positive parameter (0 < ¢ <<1) and o, B are known constants. We assume that a(x), b(x) and f(x)
are sufficiently smooth functions in [0, 1]. We assume that a(x) < M < 0 throughout the interval [0, 1], where M is
some negative constant. This assumption merely implies that the boundary layer will be in the neighborhood of x =1.
From the theory of singular perturbations the solution of (14)-(15) is of the form
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a(x) b)),
a(l) J ( : am]d
Y=y, () +——(B-y,(D)e +0(¢) (16)
a(x)
where y,(x) is the solution of
a(x)yo (x) +b(x)y, (x) = f(x), y,(0)=a . (17)
By taking the Taylor’s series expansion for a(x) and b(x) about the point ‘1’ and restricting to their first terms, (16)
a(l) b(l)
— = |(l-x
becomes y(x) =y, (x) + (£ =y, (1)) e[ = +0(e) (18)

Now we divide the interval [0, 1] into N equal parts with constant mesh length h.
Let 0=y, xp,.......x;y =1 be the mesh points. Then we have x; =ih:i=0,1,2, ... ,N.
[@7@J 1-i
From (18), we have y(ik) = y, (ih) + (B - y,())e" © “© +0(¢).
a2 ()-eb(1) [l—pr
. . ay e
Therefore }m& y@ih)=y,(0)+(B-y,(D))e (19)

where p = ﬁ
£

2a(1)
which is a constant fitting factor. The tridiagonal system of the equation (11) is given by (13) where E;,F;,G; and

2
Proceeding as in the left-end boundary layer problem, we get the fitting factor as o = p a(20) coth[ (a @ gb(l))p J

H; are same as given in left-end boundary layer.

3. Stability and convergence analysis

Theorem 1. Under the assumptions & >0, a(x) > M >0 and b(x) <0, Vx €[0,1], the solution to the system of the
difference equations (13), together with the given boundary conditions exists, is unique and satisfies

IoA,... <207 11,., + (el +[1)

where |||| is the discrete [ —norm, given by ||x|| = max {|x|}
hoo ho  g<igN !

Proof. Let L,(.) denote the difference operator on left hand side of Eq. (13) and w, be any mesh function satisfying
L,(w) =1,

By rearranging the difference scheme (13) and using non-negativity of the coefficients

E,,F, and G,, we obtain F, |w,.|£|H[|+E[ |wH|+G,. |w

Now using the assumption & >0 and @, > M , the definition of / -norm and manipulating the above inequality, we

i+l

get
(IWM _2|W[|+|Wi—1|) M _|W[+1 +4|Wi|_3|wf*1| bi,y 106, b
. . M +—|wi71|+—|W,~|+ Win
h 12 2h 12 12 12
(20)
. 10M (Iw,.+1 —|w[1|)+ﬂ(3|w,-+1 _4|W[|+|Wil|J+|Hf|ZO
12 2h 12 2k

To prove the uniqueness and existence, let {u ; }, {v[} be two sets of solution of the difference equation (13) satisfying
boundary conditions. Then w, =u, —v, satisfies L, (w,) = f,where f; =0 and wy =wy =0.
Summing (20) overi=1,2, ...... , N-1, we obtain
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he 24h h, 24h 1 an
IOM 10M 3M
Zb| |+ 'H ”1 24h _m WN*2|_m| 1| 24h| N1|+ Z:‘|1—1|>O

Slnce >0, ||a||h ., 20,6, <0 and |w,.| >0 Vi, i=12,......, N —1, therefore for inequality (21) to hold, we must have

w,=0 Vi, i=12,..N-1.
This implies the uniqueness of the solution of the tridiagonal system of difference equations (13). For linear
equations, the existence is implied by uniqueness. Now to establish the estimate, let w, =y, —1/,,

where y, satisfies difference equations (13), the boundary conditions and /, = (1 —ih)a + (ih)ﬂ,
then w, =w, =0, and w,, i=12,..N-1
Ly(w;) =1,

b Sl =00 N.

Then summing (20) from i = n to N-1 and using the assumption on a(x) which gives

(Iwn _|anl|) |WN—1| M(3|WN1 w,| 3w, J l N
- o€ —-o¢ +— N 1|W, 1|+
12 2h l i=n

h? h?
10 N | | sz+1| z+1| 10M (|WN 1| 2}: - W’FI J (22)
M _|WN—1|_3|W/1|+ Wi s
+E( o J+ ’g]HJZO

Inequality (22), together with the condition on b(x) implies that

ho?
i.e., we have

w,[<2m 71, 23)

Also, we have y, =w, +1,

max {[vi] <[l +1,.

o, = max (24)
Now to complete the estimate, we have to find out the bound on /,

1. = max{Je] § < max {0 —in}[a] +|in [ A} < max{(1-in)la]+ (@A} ic.wehave

121, <led+15l (25)

From Egs. (23) — (25), we obtain the estimate ||y||hm <2M ’1||f||hm + (|a| + |ﬁ|)

This theorem implies that the solution to the system of the difference equations (18) are uniformly bounded,
independent of mesh size 4 and the perturbation parameter £ . Thus the scheme is stable for all step sizes.
Corollary 1. Under the conditions for theorem 1, the error ¢, = y(x,)—y, between the solution y(x) of the continues

problem and the solution y; of the discretized problem, with boundary conditions, satisfies the estimate

lel, . <20 e] _,where
h,o0 h,o0

oh’s’ ah’ 10k’ ah’
ol < X,._?zﬁi,.ﬂ{ny“’m} ' m{n“)} ' m{n“)} ' m{nyw}

Proof. Truncation error 7; in the difference scheme is given by
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Yin = YVi t Vi ol G [ 73y Ay =Yy P 10a; [ Yiy —Vi '
T, =ogq| —H ot Sty L +hy! =yl |+ R
i {( hz j yt} 12 ( Zh y: ytlj 12 2h yl

. =4y, +3y,
+at+1 (ytl yt yt+1 _hyl(r_y;H\J

12 2h

T.

| < max {O-};Z;Zy(‘”(x)}+ max {[;h;y(3)(x)}+ max {IOahz y(3)(x)}+ max {a;l;y(z)(x)} (26)

Xj_] SX<xj4] Xj_]SX<xj4] Xj_]<x<xj4] T X SX<xj4]
One can easily show that the error e;, satisfies
L,(e(x))=L,((:))-L,(v))=7,, i=12,..,N-1
And e, =e, =0.
Then Theorem 1 implies that
lel,... <23 [, 27)
The estimate (26) establishes the convergence of the difference scheme for the fixed values of the parameter ¢ .
Theorem 2. Under the assumptions ¢ > 0, a(x) <M <0and b(x)< 0,Vx €[0,1], the solution to the system of the
difference equations (13), together with the given boundary conditions exists, is unique and satisfies
IoA,... <28 7], + (e +18)-
The proof of estimate can be done on similar lines as we did in theorem 1.

4. Numerical Examples

To demonstrate the applicability of the method we have applied the method to three linear singular perturbation
problems with left-end boundary layer and two linear singular perturbation problems with right-end boundary layer.
These examples have been chosen because they have been widely discussed in literature and because approximate
solutions are available for comparison. The numerical solutions are compared with the exact solutions and maximum
absolute errors with and without fitting factor are presented to support the given method.

Example 1. Consider the following homogeneous singular perturbation problem from Bender and Orszag [4]
&"(x)+y'(x)— y(x) =0, xe[0,1] with (0) =1 and y(1) = 1.

Clearly this problem has a boundary layer at x = 0 i.e., at the left end of the underlying interval.
The exact solution is given by

[(emz _ l)emlx + (1 _ em] )emz)(]
[emz _ eml ]
The maximum absolute errors are presented in table 1 for different values of & with and without fitting factor.
Example 2. Now consider the following non-homogeneous singular perturbation problem from fluid dynamics for
fluid of small viscosity &"(x)+)'(x) =1+2x; xe[0,1] with »(0)=0 and y(1)=1. The exact solution is given by
e -1)(1-e'?%)
(1 _ e—l / 6‘)

of € with and without fitting factor.
Example 3. Finally we consider the following variable coefficient singular perturbation problem from Kevorkian

P(x) = where m, = (—1+~/1+4¢)/(2¢) and m, = (-1-+/1+4¢) /(2¢)

y(x)=x(x+1-2&)+ . The maximum absolute errors are presented in table 2 for different values

and Cole [3] 6y"+(1 —%jy’—%y =0, xe[0,1] with y(0)=0 and y(1)=1.

We have chosen to use uniformly valid approximation (which is obtained by the method given by Nayfeh [2] as our

‘exact’ solution: y(x)= o le ‘

2-x 2
The maximum absolute errors are presented in table 3 for different values of € with and without fitting factor.
Example 4. Consider the following singular perturbation problem &y"(x) — y'(x)=0; x €[0,1]

with y(0) = 1 and y(1) = 0. Clearly, this problem has a boundary layer at x=1. i.e., at the right end of the underlying
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The exact solution is given by y(x) = . The maximum absolute errors are presented in table 4 for

eV 1
different values of ¢ with and without fitting factor.
Example 5. Now we consider the following singular perturbation problem

&"(xX)—y'(x)—(1+&)y(x) =0, xe[0,1] with y(0) = 1+exp(-(1+¢g)/e) and y(1) =1+1/e.
The exact solution is given by y(x) = exp(l + g)(x - 1)/ &+ exp(—x)
The maximum absolute errors are presented in table 5 for different values of € with and without fitting factor.

5. Discussions and conclusions

We have described a special second order fitted difference method for solving singularly perturbed two point
boundary value problems. We have introduced a fitting factor in a special second order finite difference scheme
which takes care of the rapid changes occur that in the boundary layer. This fitting factor is obtained from the theory
of singular perturbations. Thomas algorithm is used to solve the tridiagonal system of the fitted method. The
existence and uniqueness of the discrete problem along with stability estimates are discussed. We have presented
maximum absolute errors for the standard examples chosen from the literature and also presented maximum absolute
errors for the some of the examples with and without fitting factor to show the efficiency of the method when ¢ << /.
The computational rate of convergence is also obtained by using the double mesh principle [4] defined below.

Let Z, = maxly;' — yj.'/2| ,j=0,1,2,....., N-1 where yi-‘ is the computed solution on the mesh {x/. }év at the nodal
e _ ;

2

point x; where x, =x,, +h, j=12,...N and yj’.’/ is the computed solution at the nodal point x; on the mesh

{xj }(Z)N where x; =x, , +h/2, j=1(1)2N . In the same way we can define Z,,, by replacing h by #/2 and N by

2N ie., Zy,, =m'<m|yﬁ’2 —y?/“|, j=0,1,2, ..., 2N-1.
; .
logZ, -logZ,,,

log(2)
for finding the computed order of convergence and results are shown in Table 6.

The computed order of convergence is defined as Order = We have taken 4 =27
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Table 1. The maximum absolute errors in solution of example 1

] =107 g=107"

with fitting factor without fitting factor with fitting factor  without fitting factor

1/8 2.0222e-002 T7.82212-001 205722002 2823300
1/16 1.0633e-002 6.38752-001 1.0993e-002 2.9905:-001
1/32 3.2691e-003 34804e001 3.6320e-003 2.9962e-001
1/64 2.4803e-003 4.8355=00 2.8438e-003 2.6571e-001
1/128 1.0641e-003 3.7260e-001 14269003 762932001

Table 2. The maximum absolute errors in solution of example 2

h g=10"" g=10""
with fitting factor without fitting factor with fitting factor without fitting factor
1/8 1.0762e-001 134146 1.0936e-001 1.362(+3)
1/16 36719002 40430 3.8575e002 300 49890
1/32 2.8336e-002 18208 3.0254e-002 076052
1/64 13412e-002 15446 15361002 24 4346
1/128 6.1757e-003 1.183%9 T.7316e-003 6.2991
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Table 3:

The maximum absolute errors in solution of example 3

h =107

with fitting factor

without fitting factor

with fitting factor

e=10"2

without fitting factor

1/8 39346002 23403 30346e-002 6.8742

1/16 21781e-002 7.1313e-001 217812002 6.8404

1/32 1.1552e-002 445135001 1.1332e-002 58527

1/64 30684e-003 3.8683e-001 30682e-003 34038
1/128 3.4448e-003 20952%e-001 3.0363e-003 0.6933e-001
Table 4. The maximum absolute errors in solution of example 4

h e=10"" e=10""

with fitting factor

without fitting factor

with fitting factor

without fitting factor

1/8 0 7.7130e+000 0 T.8113e+002
1/16 0 2.0235e+000 0 1.9525e+002
1/32 1.1102e-016 9.1132e-001 0 4.8203=+001
1/64 1.1102e-016  7.7303e-001 0 1.2217e+001
1/128 27867e-014 592762001 0 3.1496e+000
Table 3: The maximum absolute errors in solution of example 3
h e=10"" e=10""

with fitting factor without fitting factor with fitting factor without fitting factor
178 2.0279e-002 1.2380e+000 2.0605e-002 1.3968e+000
1/16 1.0633e-002 1.0426e+000 1.1002e-002 1.4239e+000
1/32 52770e-003 267302001 363440035 1.4232e+000
1/64 248352005 7653102001 284442003 1.3695e+000
1/12% 1.0631e-003 3.80702-001 1.4271e-003 1.2069e+000

25



Mathematical Theory and Modeling wWww.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) L al
Vol.2, No.11,2012 IS'E

Table 6. Numerical order of convergence for examples 1-3

h b2 Ty Order of convergence
Example1 273 24 1.4166e-003

R 6.8340e-004 1.0474
Example2 2% 27* 7.6904e-003

R 3.8452e-003 1.0000
Example3 2% 27 3.0871e-003

2=t 2 1.3966e-003 11444
Example4 3273 27 2.7645e-014

27t 2 2.53757e-014 1.0202e-001
Example5 2% 274 1.4187e-003

2=t 2 6.8606e-004 1.0481
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