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Abstract: This paper is the witness of the coupling of decomposition method with the 

efficient Sumudu transform known as Sumudu decomposition method to build up the exact 

solutions of the linear and nonlinear system of Pantograph model equations. Three 

mathematical models are tested to elucidate effectiveness of the method. The obtained 

numerical results re-confirm the potential of the proposed method. In nonlinear cases this 

method uses He’s Polynomials for solving the non-linear terms. It is observed that suggested 

scheme is highly reliable and may be extended to other highly nonlinear delay differential 

models. 
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1. INTRODUCTION 

Many physical phenomenons are mathematically modeled by differential equations which are 

ordinary and Delay Differential equations. Delay differential equations differ from ordinary 

differential equation in two ways i.e. solution and initial data. Both depend in delay 

differential equations at previous state of time. Pantograph equation is a kind of Delay 

Differential equations. In 1851, Taylor was the first who gave name to these equations. This 

type of equations have been studied due to various applications which arises in many fields of 

sciences like electric systems, population dynamics, environmental science, natural science 

and life science, electro-dynamics, number-theory, engineering and mathematics. Liu and Li 

solved multi-pantograph delay equation by Runge-Kutta methods [2]. Evans and Raslan 

solved the delay differential equation by ADM [3]. Keskin et al. got approximate solution by 

via method of differential-transform [4]. Sezer & Dascioglu established Taylor method and 

advanced case or retarded case of pantograph equations generalized type solved through this 

technique. Yu solved Multi-pantograph equation by VIM [6]. Sezer et al. get solution of 

multi-pantograph equation of approximate type by using coefficients variable [7]. Singular 

Perturbed Multi-Pantograph Equations were solved by S. P. Qian and F. Z. Geng, with 
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Method of Reprociding Kernel [8]. Cherruault, Adomian, Abbaoui, and Rach, controlled 

Convergence of Decomposition Method [9]. Delay dynamic system was studied by El-Safty 

et al. with the spline function of 3-h step for getting approximate solution [11]. 

Numerous schemes have been established for explaining advanced as well as retarded 

pantograph equations. First time Watugala introduced Sumudu transform in his effort of work 

(Watugala, 1993). Many people then further developed it and used it to get solution of many 

problems. Belgacem et al recognized its fundamentals properties in (2003, 2006). Its 

Properties are very different and valuable that can help in science and engineering for solving 

many complicated applications. 

On view of the above approaches we are intent to solve system of Pantograph equations by 

Sumudu Decomposition method, because this method yields an approximate solution in a 

small number of terms and is easy to compute. 

2. ANALYSIS OF THE METHOD 

Let A be a space of functions as follows 
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Now the well-defined Sumudu-transform of function is  
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To demonstrate basic idea of SDM for system of Multi-Pantograph equations 
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Where Cyii 0, and ih are functions of analytical type, .10  jq  

This method contains 1stly applying Sumudu transform 
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Using initial conditions 

  ,,..,2,1,0 0 niyy ii                                                                                             (5) 

Wherever iN  , iR and ih  are non-linear, linear operators and analytical functions respectively. 

By the Differentiating property & initial conditions, to become 
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The solution can be decomposed such as  
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By applying Sumudu Inverse transform, everywhere the terms )(tyij   calculate recursively. 

The non-linear term can be decomposed as  

  ,,..,2,1,),...,,(
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ijH  are He’s Polynomials. It can be computed by formula 
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3. NUMERICAL DEMONSTRATION 

3.1 Consider the system of Pantograph Equation 
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along with conditions 

.1)0(,1)0( 21  yy                                                                                     (11) 

By means of 1
st
 step of method, 
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Using differentiation property with initial condition, Eq.12 becomes 
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Moreover, 
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Applying Inverse transform of the method and solution can be decomposed as  
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It becomes 
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Consequently, 
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Fig.1: Zeroth coefficient solution 
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Fig.2: 1st coefficient solution 

By calculating other components and 1p , solution is 
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Fig.3: Exact solution 

3.2 Consider system of Pantograph equation 
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along with conditions 
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Taking the Sumudu transform of Eq. 18, 
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Using differentiation property with initial condition, Eq.20 becomes 
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Applying Inverse transform of the method and solution can be decomposed as  
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Eq. 21 gives 
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Consequently, 
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Fig.4: Zeroth coefficient solution 
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,  

By calculating other components and 1p , it gives exact solution 
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Fig.5: Exact solution of y (t) 

3.3 Consider system of Pantograph equations 
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By applying the 1
st
 step of Method 

 

 

 ,)()(

)2.0()1()(

)1()(

23

212

11

tyStyS

tytyStyS

tyStyS






 






 






 

                                                                               (27) 

Using differentiation property with initial condition, Eq. 27 becomes 
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Applying Inverse transform of the method and solution can be decomposed as  
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Eq.28 becomes 
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By comparing the co-efficient of p , we have 
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Fig.6: Zeroth solution 
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Fig.7:1
st
 coefficient solution 
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Fig.8: 2
nd

 coefficient solution 

 ,  

By calculating other components and 1p , then we have 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                            www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.10, 2016 

 

22 

 

,
2

1

2

1
)(

)(

)(

2

3

2

2

2/

1

t

t

t

ety

ety

ety







                                                                                                             (31) 

1.0 0.5 0.5 1.0
t

1

2

3

4

y t

solution

 

Fig.9: Exact solution 

4. CONCLUSION 

The applications of the Sumudu decomposition method (SDM) has been extended 

successfully for solving the linear and nonlinear system of multi-pantograph differential 

equations. The leading benefit of the SDM is the quick convergence of the solutions. 

Numerical and graphical representation of the determined results verifies the fully capable to 

cope with the nonlinearity of the physical problems. It is concluded that the SDM is powerful 

method to tackle such proposed mathematical models. 
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