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Keywords: Fixed Point, Fixed Point Theorem, Metric Space, Fuzzy Metric Space, Expansive 

Mappings. 

AMS Subject Classification [2000]: 47H10, 54H25, 46J10, 46J15. 
__________________________________________________________________________________________

___ 

 

1. INTRODUCTION AND PRELIMINARIES  

 

In 1965, Prof. Lofty Zadeh [4] introduced the concept to fuzzy sets as a new way to represent 

vagueness in our everyday life. However, when the uncertainty is due to fuzziness rather than 

randomness, as sometimes in the measurement of an ordinary length, it seems that the concept 

of a fuzzy metric space is more suitable, we can divide the into following two groups. The first 

group involves those results in which a fuzzy metric on a set 𝑋 is treated as a map where 𝑋 

represents the totality of all fuzzy points of a set and satisfy some axioms which are analogous 

to the ordinary metric axioms. Thus, in such an approach numerical distances are set up 

between fuzzy objects. On the other hand in second group, we keep those results in which the 

distance between objects is fuzzy and the objects themselves may or may not be fuzzy. 

 

Fuzzy metric spaces have been introduced by Kramosil and Michalek [7], George and 

Veersamani [1] modified the notion of fuzzy metric with help of continuous t-norms. Recently 

many have proved fixed point theorems involving fuzzy sets [1, 8, 9, 10-13].  

The purpose of this paper is to prove fixed point theorem in fuzzy metric spaces for using 

expansive mapping in fuzzy metric space. 
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To prove of our results we need some definitions which are as follows: 

Definition 1.1: A fuzzy set A in X is a function with domain X and values in [0, 1]. 

Definition 1.2: A triangular norm ∗ (shortly t− norm) is a binary operation on the unit 

interval [0, 1]such that for all 𝑎, 𝑏, 𝑐, 𝑑 ∈  [0, 1]the following conditions are satisfied: 

1.2 (a) ∗ is commutative and associative; 

1.2 (b) ∗ is continuous; 

1.2 (c)  𝑎 ∗ 1 =  𝑎,          ∀  𝑎  ∈  [0,1]; 

1.2 (d) 𝑎 ∗  𝑏 ≤  𝑐 ∗  𝑑 whenever 𝑎 ≤  𝑐 and 𝑏 ≤  𝑑. 

Two typical examples of continuous t-norm 𝑎𝑟𝑒 𝑎 ∗ 𝑏 = 𝑎𝑏 𝑎𝑛𝑑𝑎 ∗ 𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏}. 

Definition 1.3: A 3-tuple (𝑋, 𝑀,∗)is said to be a fuzzy metric space, if 𝑋 is an arbitrary set, ∗ 

is a continuous t-norm and M is a fuzzy set on 𝑋2 × (0, ∞) satisfying the following conditions, 

 for all 𝑥, 𝑦, 𝑧 ∈  𝑋and 𝑠, 𝑡 > 0:  

1.3 (a) 𝑀(𝑥, 𝑦, 0) > 0; 

1.3 (b) 𝑀(𝑥, 𝑦, 𝑡) = 1, ∀ 𝑡 > 0, if and only if  𝑥 = 𝑦; 

1.3 (c) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡); 

1.3 (d) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠); 

1.3 (e) 𝑀(𝑥, 𝑦,∗): (0, ∞) → (0,1] is continuous. 

Where 𝑀(𝑥, 𝑦, 𝑡) denote the degree of nearness between 𝑥 and 𝑦 with respect to 𝑡. Then 𝑀 is 

called a fuzzy metric on 𝑋. 

Definition 1.4: Let (𝑋, 𝑀,∗)be a fuzzy metric space. Then 

1.4 (a)   A sequence {𝑥𝑛}in 𝑋 is said to converges to 𝑥 in 𝑋 if for each 𝜀 > 0 and each 𝑡 > 0,  

there exists𝑛0 ∈ 𝑁 such that 

 𝑀(𝑥𝑛, 𝑥, 𝑡) > 1 − 𝜀 ∀ 𝑛 ≥ 𝑛0. 

1.4 (b) A sequence {𝑥𝑛}in 𝑋 is said to Cauchy if for each 𝜀 > 0and each 𝑡 > 0,there exists 

𝑛0 ∈ 𝑁such that 

                                                    𝑀(𝑥𝑛, 𝑥𝑚, 𝑡) > 1 − 𝜀 ∀ 𝑚 > 𝑛 and 𝑚, 𝑛 ≥ 𝑛0. 

1.4 (c) A fuzzy metric space in which every Cauchy sequence is convergent is said to be 

complete.    

Definition 1.5: Two mappings𝑓 and 𝑔 of a fuzzy metric space (𝑋, 𝑀,∗)  into itself are said to 

be weakly commuting if 

𝑀(𝑓𝑔𝑥, 𝑔𝑓𝑥, 𝑡) ≥ 𝑀(𝑓𝑥, 𝑔𝑥, 𝑡), ∀ 𝑥 ∈ 𝑋, and 𝑡 > 0. 
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Definition 1.6: Two mappings𝑓 𝑎𝑛𝑑 𝑔 of a fuzzy metric space (𝑋, 𝑀,∗)  into itself are 𝑅- 

weakly commuting provided there exists some positive real number 𝑅 such that 

  𝑀(𝑓𝑔𝑥, 𝑔𝑓𝑥, 𝑡) ≥ 𝑀 (𝑓𝑥, 𝑔𝑥,
𝑡

𝑅
) , ∀ 𝑥 ∈ 𝑋, 𝑅 > 0,  and 𝑡 > 0. 

Definition 1.7: Two self maps𝑓 and 𝑔 of a fuzzy metric space (𝑋, 𝑀,∗)  are called 

reciprocally continuous on 𝑋, 

                                          if  𝑙𝑖𝑚𝑛→∞ 𝑓𝑔𝑥𝑛 = 𝑓𝑥  and 𝑙𝑖𝑚𝑛→∞ 𝑔𝑓𝑥𝑛 = 𝑔𝑥,  

whenever {𝑥𝑛} is a sequence 𝑖𝑛 𝑋 such that 

                                                      𝑙𝑖𝑚𝑛→∞ 𝑓𝑥𝑛 =  𝑙𝑖𝑚𝑛→∞ 𝑔𝑥𝑛 = 𝑥,  

for some 𝑥 in 𝑋. 

Definition 1.8: Two self mappings𝑓 and 𝑔 of a fuzzy metric space (𝑋, 𝑀,∗) are called 

compatible, 

                                                   if  𝑙𝑖𝑚𝑛→∞ 𝑀(𝑓𝑔𝑥𝑛 , 𝑔𝑓𝑥𝑛, 𝑡) = 1.  

whenever {𝑥𝑛} is a sequence in 𝑋 such that  

𝑙𝑖𝑚𝑛→∞ 𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛→∞ 𝑔𝑥𝑛 = 𝑥,  

for some 𝑥 in 𝑋. 

Definition 1.9: Two self maps𝑓 and 𝑔 of a fuzzy metric space (𝑋, 𝑀,∗)  are called 

reciprocally continuous on 𝑋,  if 

    𝑙𝑖𝑚𝑛→∞ 𝑓𝑔𝑥𝑛 = 𝑓𝑥 and 𝑙𝑖𝑚𝑛→∞ 𝑔𝑓𝑥𝑛 = 𝑔𝑥, 

whenever {𝑥𝑛} is a sequence 𝑖𝑛 𝑋 such that, 

                                                 𝑙𝑖𝑚𝑛→∞ 𝑓𝑥𝑛 =  𝑙𝑖𝑚𝑛→∞ 𝑔𝑥𝑛 = 𝑥,  

 for some 𝑥 in 𝑋. 

Definition 1.10: Let(𝑋, 𝑀,∗)be a fuzzy metric space. If there exists  𝑞 ∈ (0,1),  such that 

𝑀(𝑥, 𝑦, 𝑞𝑡) ≥ 𝑀(𝑥, 𝑦, 𝑡) 

for all 𝑥, 𝑦 ∈ 𝑋 𝑎𝑛𝑑 𝑡 > 0.  

Definition 1.11:  Let 𝑋 be a set, 𝑓, 𝑔  self maps of 𝑋. A point 𝑥 in 𝑋 is called coincidence 

point of  𝑓and 𝑔 ,  if 𝑓𝑥 = 𝑔𝑥. 

 We say 𝑤 = 𝑓𝑥 = 𝑔𝑥, a point of coincidence of 𝑓 and 𝑔. 

Definition 1.12: Two self maps 𝐴 and 𝐵 of a fuzzy metric space (𝑋, 𝑀,∗) are called weak-

compatible (or coincidentally commuting) if they commute at their coincidence point, i.e., if 

𝐴𝑥 = 𝐵𝑥 then 𝐴𝐵𝑥 = 𝐵𝐴𝑥   for some 𝑥 ∈ 𝑋. 

Lemma 1.13: Let 𝑋 be a set, 𝑓, 𝑔  owc self maps of 𝑋. If 𝑓 and 𝑔  have a unique point of 

coincidence, 𝑤 = 𝑓𝑥 = 𝑔𝑥,  then 𝑤  is the unique common fixed point of 𝑓 and 𝑔. 
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Lemma 1.14: Let (𝑋, 𝑀,∗) be a fuzzy metric space, then for all 𝑥, 𝑦 in 𝑋, 𝑀(𝑥, 𝑦, . ) is non-

decreasing. 

Lemma 1.15: Let(𝑋, 𝑀,∗) be a fuzzy metric space. If there exists 𝑞 ∈ (0,1) such that 

𝑀(𝑥, 𝑦, 𝑞𝑡) ≥ 𝑀(𝑥, 𝑦,
𝑡

𝑞𝑛) for positive integer 𝑛. Taking limit as 𝑛 → ∞, 𝑀(𝑥, 𝑦, 𝑡) ≥ 1 and 

hence 𝑥 = 𝑦. 

Lemma 1.16: Let(𝑋, 𝑀,∗) be a fuzzy metric space and let 𝐴 and 𝑆 be continuous mappings of 

𝑋, then 𝐴 and 𝑆 are compatible if and only if they are compatible of type (𝑃). 

Lemma 1.17: Let(𝑋, 𝑀,∗) be a fuzzy metric space and let 𝐴 and 𝑆 be compatible mappings of 

type (𝑃) and 𝐴𝑧 = 𝑆𝑧 for some 𝑧 ∈ 𝑋, Then 

𝐴𝐴𝑧 = 𝐴𝑆𝑧 = 𝑆𝐴𝑧 = 𝑆𝑆𝑧.  

 

2. MAIN RESULT 

In this section we prove some common fixed point theorem for expansive mapping in fuzzy 

metric spaces.  

Theorem 2.1: Let (𝑋, 𝑀,∗) be a complete fuzzy metric space and let 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇 be self-

mappings of X satisfying the following conditions: 

2.1(a) 𝐴(𝑋) ⊂  𝑇(𝑋), 𝐵(𝑋)  ⊂  𝑆(𝑋); 

2.1(b) 𝑆 and 𝑇 are continuous, 

2.1(c) The pair {𝐴, 𝑆} and {𝐵, 𝑇} are expansive mappings of type (𝑃)on 𝑋.  

2.1(d) There exists 𝑞 >  1 such that for every 𝑥, 𝑦 ∈ 𝑋  and 𝑡 > 0, 

                 𝑀(𝐴𝑥, 𝐵𝑦, 𝑞𝑡) ≤ 𝑀(𝑆𝑥, 𝑇𝑦, 𝑡) ∗ 𝑀(𝐴𝑥, 𝑆𝑥, 𝑡) ∗ 𝑀(𝐵𝑦, 𝑇𝑦, 𝑡) ∗ 𝑀(𝐴𝑥, 𝑇𝑦, 𝑡).  

Then 𝐴, 𝐵, 𝑆 and 𝑇 have a unique common fixed point in 𝑋. 

Proof: Since 𝐴(𝑋) ⊂  𝑇(𝑋) and  𝐵(𝑋)  ⊂  𝑆(𝑋), for any 𝑥0 ∈ 𝑋, there exists 𝑥1 ∈ 𝑋 such that 

𝐴𝑥0 = 𝑇𝑥1 and for this 𝑥1 ∈ 𝑋, there exists 𝑥2 ∈ 𝑋 such that 𝐵𝑥1 = 𝑆𝑥2. Inductively, we 

define a sequence {𝑦𝑛} in X, such that  

                                 𝑦2𝑛−1 = 𝑇𝑥2𝑛−1 = 𝐴𝑥2𝑛−1and𝑦2𝑛 = 𝑆𝑥2𝑛 = 𝐵𝑥2𝑛−1,  

for all 𝑛 = 0,1,2, … … .. 

from 2.1(d), 

𝑀(𝑦2𝑛+1, 𝑦2𝑛+2, 𝑞𝑡) = 𝑀(𝐴𝑥2𝑛, 𝐵𝑥2𝑛+1, 𝑞𝑡). 

≤ 𝑀(𝑆𝑥2𝑛, 𝑇𝑥2𝑛+1, 𝑡) ∗ 𝑀(𝐴𝑥2𝑛, 𝑆𝑥2𝑛, 𝑡) ∗ 𝑀(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1, 𝑡) ∗ 𝑀(𝐴𝑥2𝑛, 𝑇𝑥2𝑛, 𝑡) 

=𝑀(𝑦2𝑛, 𝑦2𝑛+1, 𝑡) ∗ 𝑀(𝑦2𝑛+1, 𝑦2𝑛, 𝑡) ∗ 𝑀(𝑦2𝑛+2, 𝑦2𝑛+1, 𝑡) ∗ 𝑀(𝑦2𝑛+1, 𝑦2𝑛+1, 𝑡) 

≤ 𝑀(𝑦2𝑛, 𝑦2𝑛+1, 𝑡) ∗ 𝑀(𝑦2𝑛+1, 𝑦2𝑛+2, 𝑡). 
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From (lemma 1.14) and (lemma 1.16), we have  

𝑀(𝑦2𝑛+1, 𝑦2𝑛+2, 𝑞𝑡) ≤ 𝑀(𝑦2𝑛, 𝑦2𝑛+1, 𝑡).                                           2.1(i) 

Similarly, we have  

𝑀(𝑦2𝑛+2, 𝑦2𝑛+3, 𝑞𝑡) ≤ 𝑀(𝑦2𝑛+1, 𝑦2𝑛+2, 𝑡).                                          2.1(ii) 

From 2.1(i) and 2.1(ii), we have 

𝑀(𝑦𝑛+1, 𝑦𝑛+2, 𝑞𝑡) ≤ 𝑀(𝑦𝑛, 𝑦𝑛+1, 𝑡).                                                                              2.1(iii) 

From 2.1(iii), we have 

𝑀(𝑦𝑛, 𝑦𝑛+1, 𝑡) ≤ 𝑀 (𝑦𝑛, 𝑦𝑛−1,
𝑡

𝑞
) 

                                          ≤ 𝑀 (𝑦𝑛−2, 𝑦𝑛−1,
𝑡

𝑞2) ≤ ⋯ … . . ≤ 𝑀 (𝑦1,𝑦2,
𝑡

𝑞𝑛) → 1, 

as 𝑛 → ∞. 

So, 𝑀(𝑦𝑛, 𝑦𝑛+1, 𝑡) → 1 as 𝑛 → ∞ for any 𝑡 > 0. 

 For each 𝜀 > 0 and 𝑡 > 0,  

we can choose 𝑛0 ∈ ℕ such that 

𝑀(𝑦𝑛, 𝑦𝑛+1, 𝑡) < 1 − 𝜀 for all 𝑛 > 𝑛0. 

For 𝑚, 𝑛 ∈ ℕ we suppose 𝑚 ≥ 𝑛.  

Then we have that  

𝑀(𝑦𝑛, 𝑦𝑚, 𝑡) ≤ 𝑀 (𝑦𝑛, 𝑦𝑛+1,
𝑡

𝑚 − 𝑛
) 

                                                                    ∗ 𝑀 (𝑦𝑛+1, 𝑦𝑛+2,
𝑡

𝑚−𝑛
) ∗ … … ∗ 𝑀 (𝑦𝑚−1, 𝑦𝑚,

𝑡

𝑚−𝑛
) 

                                                                    ≤ (1 − 𝜀) ∗ (1 − 𝜀) ∗ … … (𝑚 − 𝑛) times. 

≤ (1 − 𝜀). 

And hence {𝑦𝑛} is a Cauchy sequence in X. 
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Since (𝑋, 𝑀,∗) is complete, {𝑦𝑛} converges to some point 𝑧 ∈ 𝑋, and so {𝐴𝑥2𝑛−2}, {𝑆𝑥2𝑛}, 

{𝐵𝑥2𝑛−1} and {𝑇𝑥2𝑛−1} also converges to 𝑧. 

From (lemma 1.16)  and (lemma 1.17), we have 

𝐴𝐴𝑥2𝑛−2 → 𝑆𝑧 and 𝑆𝑆𝑥2𝑛 → 𝐴𝑧                                      2.1  (iv) 

𝐵𝐵𝑥2𝑛−1 → 𝑇𝑧 and  𝑇𝑇𝑥2𝑛−1 → 𝐵𝑧.                                       2.1(v) 

From 2.1(d), we get  

𝑀(𝐴𝐴𝑥2𝑛−2, 𝐵𝐵𝑥2𝑛−1, 𝑞𝑡) ≤ 

𝑀(𝑆𝐴𝑥2𝑛−2,𝑇𝐵𝑥2𝑛−1, 𝑡) ∗ 𝑀(𝐴𝐴𝑥2𝑛−2,𝑆𝐴𝑥2𝑛−2, 𝑡) ∗ 𝑀(𝐵𝐵𝑥2𝑛−1,𝑇𝐵𝑥2𝑛−1, 𝑡) 

∗ 𝑀(𝐴𝐴𝑥2𝑛−2,𝑇𝐵𝑥2𝑛−1, 𝑡). 

Taking limit as 𝑛 → ∞ and using 2.1(iv) and 2.1(v), we have 

𝑀(𝑆𝑧, 𝑇𝑧, 𝑞𝑡) ≤  𝑀(𝑆𝑧, 𝑇𝑧, 𝑡) ∗ 𝑀(𝑆𝑧, 𝑆𝑧, 𝑡) ∗ 𝑀(𝑇𝑧, 𝑇𝑧, 𝑡) ∗ 𝑀(𝑆𝑧, 𝑇𝑧, 𝑡) 

≤ 𝑀(𝑆𝑧, 𝑇𝑧, 𝑡) ∗ 1 ∗ 1 ∗ 𝑀(𝑆𝑧, 𝑇𝑧, 𝑡) 

 ≤ 𝑀(𝑆𝑧, 𝑇𝑧, 𝑡). 

It follows that 𝑆𝑧 = 𝑇𝑧.                                                                                          2.1(vi) 

Now, from 2.1(d), 

𝑀(𝐴𝑧, 𝐵𝑇𝑥2𝑛−1, 𝑞𝑡) ≤ 

𝑀(𝑆𝑧, 𝑇𝑇𝑥2𝑛−1, 𝑡) ∗ 𝑀(𝐴𝑧, 𝑆𝑧, 𝑡) ∗ 𝑀(𝐵𝑇𝑥2𝑛−1,𝑇𝑇𝑥2𝑛−1, 𝑡) 

∗ 𝑀(𝐴𝑧, 𝑇𝑇𝑥2𝑛−1, 𝑡) 

Again taking limit as 𝑛 → ∞ and using 2.1(v) and 2.1(vi), we have 

𝑀(𝐴𝑧, 𝑇𝑧, 𝑞𝑡) ≤  𝑀(𝑆𝑧, 𝑆𝑧, 𝑡) ∗ 𝑀(𝐴𝑧, 𝑇𝑧, 𝑡) ∗ 𝑀(𝑇𝑧, 𝑇𝑧, 𝑡) ∗ 𝑀(𝐴𝑧, 𝑇𝑧, 𝑡) 

 ≤ 𝑀(𝐴𝑧, 𝑇𝑧, 𝑡). 

And hence 𝐴𝑧 = 𝑇𝑧.                                                                                             2.1(vii) 

From 2.1(d), 2.1(vi) and 2.1(vii), 

𝑀(𝐴𝑧, 𝐵𝑧, 𝑞𝑡) ≤  𝑀(𝑆𝑧, 𝑇𝑧, 𝑡) ∗ 𝑀(𝐴𝑧, 𝑆𝑧, 𝑡) ∗ 𝑀(𝐵𝑧, 𝑇𝑧, 𝑡) ∗ 𝑀(𝐴𝑧, 𝑇𝑧, 𝑡) 

=  𝑀(𝐴𝑧, 𝐴𝑧, 𝑡) ∗ 𝑀(𝐴𝑧, 𝐴𝑧, 𝑡) ∗ 𝑀(𝐵𝑧, 𝐴𝑧, 𝑡) ∗ 𝑀(𝐴𝑧, 𝐴𝑧, 𝑡) 

≤ 𝑀(𝐴𝑧, 𝐵𝑧, 𝑡). 

And hence 𝐴𝑧 = 𝐵𝑧.                                                                                            2.1(viii) 
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From 2.1(vi), 2.1(vii) and 2.1(viii), we have 

𝐴𝑧 = 𝐵𝑧 = 𝑇𝑧 = 𝑆𝑧.                                                                                            2.1(ix) 

Now, we show that 𝐵𝑧 = 𝑧. 

From 2.1(d), 

𝑀(𝐴𝑥2𝑛, 𝐵𝑧, 𝑞𝑡) ≤  𝑀(𝑆𝑥2𝑛, 𝑇𝑧, 𝑡) 

∗ 𝑀(𝐴𝑥2𝑛, 𝑆𝑥2𝑛, 𝑡) ∗ 𝑀(𝐵𝑧, 𝑇𝑧, 𝑡) ∗ 𝑀(𝐴𝑥2𝑛, 𝑇𝑧, 𝑡) 

And taking limit as 𝑛 → ∞ and using 2.1(vi) and 2.1(vii), we have 

𝑀(𝑧, 𝐵𝑧, 𝑞𝑡) ≤  𝑀(𝑧, 𝑇𝑧, 𝑡) ∗ 𝑀(𝑧, 𝑧, 𝑡) ∗ 𝑀(𝐵𝑧, 𝑇𝑧, 𝑡) ∗ 𝑀(𝑧, 𝑇𝑧, 𝑡) 

= 𝑀(𝑧, 𝐵𝑧, 𝑞𝑡) ∗ 1 ∗ 𝑀(𝐴𝑧, 𝐴𝑧, 𝑡) ∗ 𝑀(𝑧, 𝐵𝑧, 𝑡) 

≤  𝑀(𝑧, 𝐵𝑧, 𝑡). 

And hence 𝐵𝑧 = 𝑧. Thus from 2.1(ix), 𝑧 = 𝐴𝑧 = 𝐵𝑧 = 𝑇𝑧 = 𝑆𝑧 and 𝑧 is a common fixed point 

of 𝐴, 𝐵, 𝑆 and 𝑇. 

In order to prove the uniqueness of fixed point, let 𝑤 be another common fixed point of 𝐴, 𝐵, 𝑆 

and 𝑇. Then  

𝑀(𝑧, 𝑤, 𝑞𝑡) = 𝑀(𝐴𝑧, 𝐵𝑤, 𝑞𝑡) 

≤ 𝑀(𝑆𝑧, 𝑇𝑤, 𝑡) ∗ 𝑀(𝐴𝑧, 𝑆𝑧, 𝑡) ∗ 𝑀(𝐵𝑤, 𝑇𝑤, 𝑡) ∗ 𝑀(𝐴𝑧, 𝑇𝑤, 𝑡) 

≤ 𝑀(𝑧, 𝑤, 𝑡). 

From Lemma 1.15, 𝑧 = 𝑤. 

This completes the proof of theorem. 

 

Conclusion 

In this present article, we prove fixed point and common fixed point theorem satisfying 

expansive mapping in fuzzy metric space. In fact our main result is more general then other 

previous known results. 
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