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Abstract 
In this paper .The Mahgoub Transform of partial derivatives is derived, and its applicability demonstrated using 
five different partial differential equations. In this paper we find the particular solutions of these equations. The 
result reveals that the proposed method is very efficient, simple and can be applied to linear and nonlinear 
problems. 
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Introduction 
The theory and application of partial differential equations (PDEs) play an important role in the mathematical 
modeling of many fields: physical phenomena, biological models, chemical kinetics and engineering sciences in 
which it is necessary to take into account the effect of the real world problems. therefore, there are so many 
different techniques In order to solve differential equations, several integral transforms were extensively used 
and applied in theory and application  such as the Laplace, Fourier, Mellin, Hankel , Sumudu transforms, Elzaki 
transform , and Aboodh Transform .  Recently, Mohand Mahgoub (2016) introduced a new integral transform, 
named the Mahgoub Transform, and further applied it to the solution of ordinary and partial differential 
equations. The definition, properties and applications of the Mahgoub transform to ordinary differential 
equations are described in [1] 

In this paper we derive the formulate for the Mahgoub transform of partial derivatives and apply them 
in Solving five types of initial value problems. Our purpose here is to show the applicability of this interesting 
new transform and its effecting in solving such problems. 
 
Definition and Derivations the Mahgoub Transform of Derivatives 
The Mahgoub transform of the function ����is defined as 
               ������� =  
��� = � � ����
������

�  .    � ≥ 0    ,   �� ≤ � ≤ ��                          (1) 
To obtain the Mahgoub transform of partial derivatives we use integration by parts as follows: 
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We assume that f is piecewise continuous and is of exponential order. 
Now 
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Also we can find: 
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We can easily extend this result to the nth partial derivative by using mathematical induction. 
 
Solution of Partial Differential Equations 
In this section we solve first order Partial differential Equations and the Second order partial differential 
equation, wave equation, heat equation Laplace's and Telegraphers equation which are known as four. 
Fundamental equations in mathematical physics and occur in many branches of physics, in applied mathematics 
as well as in engineering. 
Example 1: 
Find the solution of the first order initial value problem: 

                                         
4@
�3 = 2 �B

�� + y     ,    y�x ,0� = 6
�E3                                                     (6) 

And y is bounded for      x > 0,     t > 0. 
Let Y be the Mahgoub transform of  y. Then, taking the Mahgoub transform of (6) we have 

               
;G�3 ,��

;3 = 2��H�� , �� − �H�� , 0�� + H�� , ��  

             
;G�3 ,��

;3 − �2� + 1�H�� , �� = −12v
�E3 

This is the linear ordinary differential equation 
The integration factor is          p = 
� ����K��3 = 
���� K��3 
Therefore 

                             H�� , �� = L*
�K� 
�E3 + M
��� K��3

 

Since Y is bounded, c should be zero. Taking the inverse Mahgoub transform we have: 
                           N�� , �� = 6
����E3 = 6
���
�E3 
Example (2): 
Consider the Laplace equation: 
                             u33 + P�� = 0     ,    u�x ,0� = 0   ,   u��x ,0� = cos �                                       (7) 
Let H�v� be the Mahgoub transform of  u. Then, taking the Mahgoub transform of equation (7) we have: 
                                     ��
�� , �� − ��u �x ,0� − �u��x ,0� + 
??�� , �� = 0 
                                    
??�� , �� + ��
�� , �� = � cos � 
This is the second order differential equation have the particular, solution in the 
form 
                         
�� , �� = � TUV 3

W:K�: = �
�:�� cos �                                                                               (8) 

Where 

                                       X� = ;:

;3: 

If we take the inverse Mahgoub transform for Eq. (8), we obtain solution of Eq (7) 
in the form.                       P�� , �� = sinh � cos �       
Example (3): 
Solve the wave equation: 
                             u�� − 4P33 = 0     ,    u�x ,0� = sin \�   ,   u��x ,0� = 0     ,   x , t > 0 
Taking the Mahgoub transform for Eq (9) and making use of Conditions we obtain. 
                     ��
�� , �� − ��u �x ,0� − �u��x ,0� − 4
??�� , �� = 0 
                           ��
�� , �� − 4
??�� , �� = �� sin \� 
                        4
??�� , �� − ��
�� , �� = −�� sin \� 

                            
�� , �� = ��: V]^ _3
`W:��: = �:

�:K��_ �: sin \�                                                                 (9) 

Now we take the inverse Mahgoub transform to find the particular solution of (9) in the form 
                                   P�� , �� = cos 2\� sin \� 
Example (4): 
Consider the homogeneous heat equation in one dimension in a normalized form: 
                             4u� = P33     ,    u�x ,0� = sin _

� �     ,   x , t > 0                                                  (10) 

By using the Mahgoub transform for Eq (10) we can obtain 
               4�  
�� , �� − 4� u�x ,0� = 
??�� , �� 
                 
??�� , �� − 4�  
�� , �� = −4� sin _

� � 

Solve for 
�� , ��we find that the particular solution is 
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de
sin _

� �                                                           (11) 

And similarly if we take the inverse Mahgoub transform for Eq (11), we obtain the Solution of (10) in the form. 

                            P�� , �� = 
�a:
de� sin _

� � 

Example (5) 
Consider the telegraphers equation: 

                             
4:f
�3: = 4:f

�3: + 2 �g
�� + u     ,     0 < x < 1,       t > 0                                           (12) 

With the initial conditions: 
                                          u�x ,0� = e3   ,   u��x ,0� = −2e3                                                     (13) 
Solution: 
Take Mahgoub transform of Eq (12) we get: 

??�� , �� = ��
 �� , �� − ��u�x ,0� − �u��x ,0� + 2� 
�� , �� − 2� P�� ,0� + 
 �� , ��       (14)                                           
Substituting Eq (13) into Eq (14) we have: 
       
??�� , �� = ��
 �� , �� − ��e3 + 2�e3 + 2� 
�� , �� − 2� e3 + 
 �� , �� 
      
??�� , �� − ��� + 2� + 1� 
� � , �� = −��e3 

       
 �� , �� = ��:ij

W:���K��: = �:

��:K��� e3 = � 

�K� e3                                                                        (15) 

Which is the particular solution of (12). 
We take the inverse of Mahgoub transform for Eq (15) ,we find that 

             P�� , �� = 
 ��� = e3
�� � � 

�K� = e3
��� 

 
Conclusion 
In this paper , We studied to obtain solutions of many partial differential equations by Mahgoub Transform. This 
new approach applied began to be used in the a lot of different area. As a consequently, we showed that 
analytical solutions of partial differential equations by Mahgoub Transform. This technique is useful to solve 
linear and nonlinear differential equations 
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