www.iiste.org

Common Fixed Point Theorem for Weakly Compatible Maps in Intuitionistic Fuzzy Metric Spaces

Madhu Shrivastava¹ Dr.K.Qureshi² Dr.A.D.Singh³ 1.TIT Group of Institution,Bhopal 2.Ret.Additional Director,Bhopal 3.Govt.M.V.M.College,Bhopal

Abstract

In this paper, we prove some common fixed point theorem for weakly compatible maps in intuitionistic fuzzy metric space for two, four and six self mapping.

1. Introduction

The introduction of the concept of fuzzy sets by Zadeh [1] in1965.Many authors have introduced the concept of fuzzy metric in different ways. Atanassov [2] introduced and studied the concept of intuitionistic fuzzy sets. In 1997 Coker [3] introduced the concept of intuitionistic fuzzy topological spaces .Park [20] defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norm. Alaca et al. [4] using the idea of intuitionistic fuzzy sets, they defined the notion of intuitionistic fuzzy metric space. Turkoglu et al. [34] introduced the cocept of compatible maps and compatible maps of types (α) and (β) in intuitionistic fuzzy metric space and gave some relations between the concepts of compatible maps and compatible maps of types (α) and (β). Gregory et al. [12], Saadati et al [28],Singalotti et al [27], Sharma and Deshpande [30], Ciric etal [9], Jesic [13], Kutukcu [16] and many others studied the concept of intuitionistic fuzzy metric space and its applications. Sharma and Deshpandey [30] proved common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces. R.P. Pant [23] has initiated work using the concept of R-weakly commuting mappings in 1994.

2. Preliminaries

We begin by briefly recalling some definitions and notions from fixed point theory literature that we will use in the sequel.

Definition 2.1 [Schweizer st. al.1960] - A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norms if * satisfying conditions:

- (i) * is commutative and associative;
- (ii) * is continuous;
- (iii) $a * 1 = a \text{ for all } a \in [0,1];$

(iv) $a * b \le c * d$ wherever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0,1]$.

Example of t-norm are $a * b = \min\{a, b\}$ and a * b = a. b.

Definition 2.2[Schweizer st. al.1960] A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norms if \diamond satisfying conditions:

- (i) \Diamond is commutative and associative;
- (ii) ◊ is continuous;
- (iii) $a \diamond 0 = a$ for all $a \in [0,1]$;

(iv) $a \diamond b \leq c \diamond d$ wherever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0,1]$.

Example of t-norm are $a \diamond b = \max\{a, b\}$ and $a \diamond b = \min\{1, a + b\}$.

Definition 2.3 [Alaca, C. et. Al. 2006] A 5-tuple $(X, M, N, *, \diamond)$ is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, * is a continuous t -norm, \diamond is a continuous

t -norm and *M*, *N* are fuzzy sets on $X^2 \times (0, \infty)$ satisfying the following conditions:

- (i) $M(x, y, t) + N(x, y, t) \le 1$ for all $x, y \in X$ and t > 0;
- (ii) M(x, y, 0) = 0 for all $x, y \in X$;
- (iii) M(x, y, t) = 1 for all $x, y \in X$ and t > 0 if and only if x = y;
- (iv) M(x, y, t) = M(y, x, t) for all $x, y \in X$ and t > 0;
- (v) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$ for all $x, y, z \in X$ and s, t > 0;
- (vi) For all $x, y \in X, M(x, y, .): [0, \infty) \rightarrow [0,1]$ is left continuous ;
- (vii) $\lim_{t\to\infty} M(x, y, t) = 1$ for all $x, y \in X$ and t > 0;
- (viii) N(x, y, 0) = 1 for all $x, y \in X$;
- (ix) N(x, y, t) = 0 for all $x, y \in X$ and t > 0; if and only if x = y.
- (x) N(x, y, t) = N(y, x, t) for all $x, y \in X$ and t > 0;
- (xi) $N(x, y, t) \diamond N(y, z, s) \ge N(x, z, t + s)$ for all $x, y, z \in X$ and s, t > 0;

(xii) for all $x, y \in X, N(x, y, .): [0, \infty) \rightarrow [0,1]$ is right continuous;

 $\lim_{t\to\infty} N(x, y, t) = 0 \text{ for all } x, y \in X;$ (xiii)

(M, N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and N(x, y, t) denote the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.

Remark 2.4 [Alaca, C. et. Al. 2006]. An intuitionistic fuzzy metric spaces with continuous t-norm * and Continuous t -conorm \diamond defined by $a * a \ge a, a \in [0,1]$ and $(1-a) \diamond (1-a) \le (1-a)$ for all $a \in [0,1]$, Then for all $x, y \in X, M(x, y, *)$ is non-decreasing and, $N(x, y, \delta)$ is non-increasing.

Remark 2.5[Park, 2004]. Let (X, d) be a metric space .Define t-norm $a * b = \min\{a, b\}$ and t-conorma $\Diamond b =$ $\max\{a, b\}$ and for all, $x, y \in X$ and t > 0

$$M_d(x, y, t) = \frac{t}{t + d(x, y)}, \ N_d(x, y, t) = \frac{d(x, y)}{t + d(x, y)}$$

Then $(X, M, N, *, \delta)$ is an intuitionistic fuzzy metric space induced by the metric. It is obvious that N(x, y, t) =1 - M(x, y, t).

Alaca, Turkoglu and Yildiz [Alaca, C. et. Al. 2006] introduced the following notions: **Definition 2.6.** Let $(X, M, N, *, \delta)$ be an intuitionistic fuzzy metric space. Then

- a sequence $\{x_n\}$ is said to be Cauchy sequence if, for all t > 0 and p > 0 $\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1, N(x_{n+p}, x_n, t) = 0$ (i)
- a sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if for all t > 0. (ii) $\lim M(x_n, x, t) = 1, N(x_n, x, t) = 0$

Since * and \diamond are continuous, the limit is uniquely determined from (v) and (xi) of respectively.

Definition 2.7. An intuitionistic fuzzy metric space $(X, M, N, *, \delta)$ is said to be complete if and only if every Cauchy sequence in X is convergent.

Definition 2.8. A pair of self-mappings (f, g), of an intuitionistic fuzzy metric space $(X, M, N, *, \delta)$ is said to be compatible if $\lim_{n\to\infty} M(fgx_n, gfx_n, t) = 1$ and $\lim_{n\to\infty} N(fgx_n, gfx_n, t) = 0$ for every t > 0, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ for some $z \in X$.

Definition 2.9. A pair of self-mappings (f, g), of an intuitionistic fuzzy metric space $(X, M, N, *, \delta)$ is said to be non compatible if $\lim_{n\to\infty} M(fgx_n, gfx_n, t) \neq 1$ or nonexistence and $\lim_{n\to\infty} N(fgx_n, gfx_n, t) \neq 0$ or nonexistence for every t > 0,

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ for some $z \in X$.

In 1998, Jungck and Rhoades [Jungck et. al. 1998] introduced the concept of weakly compatible maps as follows:

Definition 2.10. Two self maps f and g are said to be weakly compatible if they commute at coincidence points. **Definition 2.11** [Alaca, C. et. Al. 2006]. Let $(X, M, N, *, \delta)$ be an intuitionistic fuzzy metric space then f, g:

 $X \rightarrow X$ are said to be weakly compatible if they commute at coincidence points.

Lemma 2.12 [Alaca, C. et. Al. 2006]. Let $(X, M, N, *, \delta)$ be an intuitionistic fuzzy metric space and $\{y_n\}$ be a sequence in X if there exist a number $k \in (0,1)$ such that,

- i) $M(y_{n+2}, y_{n+1}, kt) \ge M(y_{n+1}, y_n, t)$
- ii) $N(y_{n+2}, y_{n+1}, kt) \le N(y_{n+1}, y_n, t)$

for all t > 0 and $n = 1,2,3 \dots$... then $\{y_n\}$ is a cauchy sequence in X.

Lemma 2.13 Let $(X, M, N, *, \delta)$ be an IFM-space and for all $x, y \in X, t > 0$ and if for a number $k \in$ (0,1), $M(x, y, kt) \ge M(x, y, t)$, $N(x, y, kt) \le N(x, y, t)$ then x = y.

3. Main Results -

Theorem 3.1 – Let $(X, M, N, *, \delta)$ be an intuitionstic fuzzy metric space with continuous t-norm * and continuous t-norm \Diamond defined by $t * t \ge t$ and $(1-t) \Diamond (1-t) \le (1-t), \forall t \in [0,1]$. Let f and g be weakly compatible self mapping in X s.t.

a) $g(X) \subseteq f(X)$

b) $M(gx, gy, kt) \ge \varphi\{M(fx, fy, t) * M(gx, fy, t) * M(fx, gx, t)\}$

 $N(gx, gy, kt) \le \Psi\{N(fx, fy, t) \land N(gx, fy, t) \land N(fx, gx, t)\}$

Where , 0 < k < 1 and $\emptyset, \Psi: [0,1] \to [0,1]$ is continuous function s.t. $\emptyset(s) > s$ and $\Psi(s) < s$, for each 0 < s < 1 and $\varphi(1) = 1$, $\Psi(0) = 0$ with M(x, y, t) > 0.

If one of g(X) or f(X) is complete c)

Then *f* and *g* have a unique common fixed point.

Proof – Let $x_0 \in X$ be any arbitrary point. Since $g(X) \subseteq f(X)$, choose $x_1 \in X$

Such that $y_{2n} = f x_{2n+1} = g x_{2n}$. Then by (b),

 $M(gx_{2n}, gx_{2n+1}, kt) \ge \varphi \begin{cases} M(fx_{2n}, fx_{2n+1}, t) * M(gx_{2n}, fx_{2n+1}, t) \\ * M(fx_{2n}, gx_{2n}, t) \end{cases}$ $M(y_{2n}, y_{2n+1}, kt) \ge \varphi \begin{cases} M(y_{2n-1}, y_{2n}, t) * M(y_{2n}, y_{2n}, t) \\ * M(y_{2n-1}, y_{2n}, t) \end{cases}$ $M(y_{2n}, y_{2n+1}, kt) \ge \varphi\{M(y_{2n-1}, y_{2n}, t) * 1 * M(y_{2n-1}, y_{2n}, t)\}$ $M(y_{2n}, y_{2n+1}, kt) \ge \varphi\{M(y_{2n-1}, y_{2n}, t)\} > M(y_{2n-1}, y_{2n}, t)....(1)$ As $\varphi(s) > s$, for each 0 < s < 1. and
$$\begin{split} N(gx_{2n}, gx_{2n+1}, kt) &\leq \Psi \begin{cases} N(fx_{2n}, fx_{2n+1}, t) \diamond N(gx_{2n}, fx_{2n+1}, t) \\ \diamond N(fx_{2n}, gx_{2n}, t) \end{cases} \\ N(y_{2n}, y_{2n+1}, kt) &\leq \Psi \begin{cases} N(y_{2n-1}, y_{2n}, t) \diamond N(y_{2n}, y_{2n}, t) \\ \diamond N(y_{2n-1}, y_{2n}, t) \end{cases} \end{split}$$
 $N(y_{2n}, y_{2n+1}, kt) \le \Psi\{N(y_{2n-1}, y_{2n}, t) \land 0 \land N(y_{2n-1}, y_{2n}, t)\}$ $N(y_{2n}, y_{2n+1}, kt) \le \Psi\{N(y_{2n-1}, y_{2n}, t)\} < N(y_{2n-1}, y_{2n}, t)$ As $\Psi(s) < s$ for each 0 < s < 1. For all *n*. $M(y_{2n}, y_{2n+1}, kt) \ge M(y_{2n-1}, y_{2n}, t)$ and $N(y_{2n}, y_{2n+1}, kt) \le N(y_{2n-1}, y_{2n}, t)$ $M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n+1}, y_{2n}, t)$ and $N(y_{2n+1}, y_{2n+2}, kt) \le N(y_{2n+1}, y_{2n}, t)$, Hence by lemma (2.12), $\{y_{2n}\}$ is a Cauchy sequence in X. by completeness of X, $\{y_{2n}\} = \{f_{x_{2n}}\}$ is convergent, call z. Then $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ Now suppose f(X) is complete, so there exist a point p in X such that fp = zNow from (b), $M(gp, gx_n, kt) \ge \varphi\{M(fp, fx_n, t) * M(gp, fx_n, t) * M(fp, gp, t)\}$ As $n \to \infty$, $M(qp, z, kt) \ge \varphi\{M(z, z, t) * M(qp, z, t) * M(z, qp, t)\}$ $M(gp, z, kt) \ge \varphi\{1 * M(gp, z, t) * M(z, gp, t)\}$ $M(qp, z, kt) \ge \varphi\{M(qp, z, t)\} > M(qp, z, t) \dots (3)$ And $N(gp, gx_n, kt) \le \Psi\{N(fp, fx_n, t) \land N(gp, fx_n, t) \land N(fp, gp, t)\}$ As $n \to \infty$, $N(gp, z, kt) \le \Psi\{N(z, z, t) \land N(gp, z, t) \land N(z, gp, t)\}$ $N(gp, z, kt) \le \Psi\{0 \land N(gp, z, t) \land N(z, gp, t)\}$ $N(gp, z, kt) \le \Psi\{N(gp, z, t)\} < N(gp, z, t) \dots (4)$ From (3) and (4), we have gp = z = fpAs *f* and *g* are weakly compatible ,therefore fgp = gfp , *i*. *e*, fz = gzNow, we show that z is a fixed point of f and g. from (b), $M(qz, qx_n, kt) \ge \varphi\{M(fz, fx_n, t) * M(qz, fx_n, t) * M(fz, qz, t)\}$ As $n \to \infty$. $M(gz, z, kt) \ge \varphi\{M(gz, z, t) * M(gz, z, t) * M(gz, gz, t)\}$ $M(gz, z, kt) \ge \varphi\{M(gz, z, t) * M(gz, z, t) * 1\}$ and $N(gz, gx_n, kt) \le \Psi\{N(fz, fx_n, t) \land N(gz, fx_n, t) \land N(fz, gz, t)\}$ As $n \to \infty$. $N(gz, z, kt) \le \Psi\{N(gz, z, t) \land N(gz, z, t) \land N(gz, gz, t)\}$ $N(gz, z, kt) \le \Psi\{N(gz, z, t) \land N(gz, z, t) \land 0\}$ From (5) and (6), gz = z = fzHence z is common fixed point of f and g. **Uniqueness** – Let w be another fixed point of f and g, then by (b),

 $M(gz, gw, kt) \ge \varphi\{M(fz, fw, t) * M(gz, fw, t) * M(fz, gz, t)\}$

and

$$\begin{split} N(gz, gw, kt) &\leq \Psi\{N(fz, fw, t) \land N(gz, fw, t) \land N(fz, gz, t)\}\\ N(z, w, kt) &\leq \Psi\{N(z, w, t) \land N(z, w, t) \land N(z, z, t)\}\\ N(z, w, kt) &\leq \Psi\{N(z, w, t) \land N(z, w, t) \land 0\}\\ N(z, w, kt) &\leq \Psi\{N(z, w, t)\} < N(z, w, t) \quad \dots \dots \dots \dots \dots \dots (8) \end{split}$$

From (7) and (8),

z = w

Therefore z is unique common fixed point of f and g.

Theorem – **3.2** Let $(X, M, N, *, \diamond)$ be an intuitionstic fuzzy metric space with continuous t-norm * and continuous t-norm \diamond defined by $t * t \ge t$ and $(1 - t) \diamond (1 - t) \le (1 - t), \forall t \in [0, 1]$.Let A, B, S and T be self mappings in X s.t.

- a) $A(X) \subseteq S(X)$ and $B(X) \subseteq T(X)$.
- b) There exist a constant $k \in (0,1)$, s.t. $M(Ax, By, kt) \ge \varphi\{M(Tx, Sy, t) * M(Tx, Ax, t) * M(Ax, Sy, t)\}$ $N(Ax, By, kt) \le \Psi\{N(Tx, Sy, t) \land N(Tx, Ax, t) \land N(Ax, Sy, t)\}$ $\forall x, y \in X \text{ and } t > 0, 0 < k < 1. where <math>\varphi, \Psi: [0,1] \rightarrow [0,1]$ is continuous function s.t. $\varphi(s) > s$ $s \text{ and } \Psi(s) < s$, for each 0 < s < 1 and $\varphi(1) = 1$, $\Psi(0) = 0$ with M(x, y, t) > 0.

c) If one of the A(X), B(X), S(X) and T(X) is complete subspace of X, Then {A, T} and {B, S} have a coincidence point More over ,if the pair {A, T} and {B, S} are weakly compatible ,then A, B, S and T have a unique common fixed point.

Proof – Let x_0 be any arbitrary point since $A(X) \subseteq S(X)$, there is a point $x_1 \in X$ s. t. $Ax_0 = Sx_1$. Again since $B(X) \subseteq T(X)$ for this $x_2 \in X$ s. t. $Bx_1 = Tx_2$ and so on. Then we get a sequence $\{y_n\}$ s.t. $y_{2n} = Ax_{2n} = Sx_{2n-1}$ and $y_{2n+1} = Bx_{2n+2} = Tx_{2n+2}$, n = 0,1,2,...Putting $x = x_{2n}$, $y = x_{2n+1}$ in (b) we have,

$$\begin{split} M(Ax_{2n}, Bx_{2n+1}, kt) &\geq \varphi\{M(Tx_{2n}, Sx_{2n+1}, t) * M(Tx_{2n}, Ax_{2n}, t) * M(Ax_{2n}, Sx_{2n+1}, t)\}\\ M(y_{2n}, y_{2n+1}, kt) &\geq \varphi\{M(y_{2n-1}, y_{2n}, t) * M(y_{2n-1}, y_{2n}, t) * M(y_{2n}, y_{2n}, t)\}\\ M(y_{2n}, y_{2n+1}, kt) &\geq \varphi\{M(y_{2n-1}, y_{2n}, t) * 1\}\\ &\geq \varphi\{M(y_{2n-1}, y_{2n}, t)\} > M(y_{2n-1}, y_{2n}, t) \end{split}$$

As $\varphi(s) > s$ for each 0 < s < 1. and

$$\begin{split} &N(Ax_{2n}, Bx_{2n+1}, kt) \leq \Psi\{N(Tx_{2n}, Sx_{2n+1}, t) \diamond N(Tx_{2n}, Ax_{2n}, t) \diamond N(Ax_{2n}, Sx_{2n+1}, t)\} \\ &N(Ax_{2n}, Bx_{2n+1}, kt) \leq \Psi\{N(y_{2n-1}, y_{2n}, t) \diamond N(y_{2n-1}, y_{2n}, t) \diamond N(y_{2n}, y_{2n}, t)\} \\ &N(y_{2n}, y_{2n+1}, kt) \leq \Psi\{N(y_{2n-1}, y_{2n}, t) \diamond 0\} \\ &\leq \Psi\{N(y_{2n-1}, y_{2n}, t)\} < N(y_{2n-1}, y_{2n}, t) \\ \end{split}$$

As $\Psi(s) < s$ for each 0 < s < 1.

For all *n*,

$$\begin{split} & M(y_{2n}, y_{2n+1}, kt) \geq M(y_{2n-1}, y_{2n}, t) \text{ and } N(y_{2n}, y_{2n+1}, kt) \leq N(y_{2n-1}, y_{2n}, t) \\ & M(y_{2n+1}, y_{2n+2}, kt) \geq M(y_{2n+1}, y_{2n}, t) \text{ and } N(y_{2n}, y_{2n+1}, kt) \leq N(y_{2n-1}, y_{2n}, t) \\ & \text{Hence by lemma } (2.12), \{y_n\} \text{ is a Cauchy sequence in } X. \end{split}$$

Now suppose S(X) is a complete subspace of X.note that the sequence $\{y_{2n}\}$ is contained in S(X) and has a limit in S(X) say u. so we get Sw = u. we shall use the fact that subsequence $\{y_{2n+1}\}$ also convergence to u. now putting $x = x_{2n}$, y = w in (b) and taking $n \to \infty$

$$M(Ax_{2n}, Bw, kt) \ge \varphi\{M(Tx_{2n}, Sw, t) * M(Tx_{2n}, Ax_{2n}, t) * M(Ax_{2n}, Sw, t)\}$$

$$M(u, Bw, kt) \ge \varphi\{M(u, u, t) * M(u, u, t) * M(u, u, t)\}$$

$$= \varphi(1) = 1$$

i.e $M(u, Bw, kt) \ge 1$
(3)

Also,

$$N(Ax_{2n}, Bw, kt) \leq \Psi\{N(Tx_{2n}, Sw, t) \land N(Tx_{2n}, Ax_{2n}, t) \land N(Ax_{2n}, Sw, t)\}$$

$$N(u, Bw, kt) \leq \Psi\{N(u, u, t) \land N(u, u, t) \land N(u, u, t)\}$$

$$= \Psi(0) = 0$$

.....(4)

i.e, $N(u, Bw, kt) \leq 0$ from (3) and (4), u = Bw. Since Sw = Bw = u, *i. e w* is the coincidence point of *B* and *S*. As $B(X) \subseteq T(X)$, $u = Bw \Rightarrow u \in T(X)$.let $v \in T^{-1}u$ then Tv = uBy putting x = v, $y = x_{2n+1}$ in (b), we get, $M(Av, Bx_{2n+1}, kt) \ge \varphi\{M(Tv, Sx_{2n+1}, t) * M(Tv, Av, t) * M(Av, Sx_{2n+1}, t)\}$ As $n \to \infty$ $M(Av, u, kt) \ge \varphi\{M(u, u, t) * M(u, Av, t) * M(Av, u, t)\}$ $M(Av, u, kt) \ge \varphi\{M(u, Av, t) \ge \{M(u, Av, t)\} > \{M(u, Av, t)\}$ (5) and $N(Av, Bx_{2n+1}, kt) \le \Psi\{N(Tv, Sx_{2n+1}, t) \land N(Tv, Av, t) \land N(Av, Sx_{2n+1}, t)\}$ As $n \to \infty$ $N(Av, u, kt) \le \Psi\{N(u, u, t) \land N(u, Av, t) \land N(Av, u, t)\}$ $N(Av, u, kt) \le \Psi\{N(u, Av, t) \land 0\} = \Psi\{N(u, Av, t)\} < N(u, Av, t)$(6) From (5) and (6), we get, Av = uSince Tv = u, we have Av = Tv = u, thus v is the coincidence point of A and T. If one assume T(X) to be complete , then an analogous argument establish this claim. The remaining two cases pertain essentially to the previous cases. Indeed if B(X) is complete then $u \in B(X) \subset T(X)$ and if A(X) is complete then $u \in A(X) \subset S(X)$. Thus (c) is completely established. Since the pair $\{A, T\}$ and $\{B, S\}$ are weakly compatible, i.e. $B(Sw) = S(Bw) \Rightarrow Bu = Su \text{ and } A(Tv) = T(Av) \Rightarrow Au = Tu.$ Putting $x = u, y = x_{2n+1}$ in (b), we get $M(Au, Bx_{2n+1}, kt) \ge \varphi\{M(Tu, Sx_{2n+1}, t) * M(Tu, Au, t) * M(Au, Sx_{2n+1}, t)\}$ As $n \to \infty$ $M(Au, u, kt) \ge \varphi\{M(Au, u, t) * M(Au, Au, t) * M(Au, u, t)\}$ $M(Au, u, kt) \ge \varphi\{M(Au, u, t)\} > M(Au, u, t)$(7) and $N(Au, Bx_{2n+1}, kt) \le \Psi\{N(Tu, Sx_{2n+1}, t) \land N(Tu, Au, t) \land N(Au, Sx_{2n+1}, t)\}$ As $n \to \infty$ $N(Au, u, kt) \le \Psi\{N(Au, u, t) \land N(Au, Au, t) \land N(Au, u, t)\}$ $N(Au, u, kt) \le \Psi\{N(Au, u, t)\} < N(Au, u, t)$ (8) From (7) and (8), implies that $Au = u \Rightarrow Au = Tu = u$ Similarly by putting $x = x_{2n}$, y = u in (b) and as $n \to \infty$ We have u = Bu = Su. thus Au = Su = Tu = u. i.e *u* is a common fixed point of *A*, *B*, *S* and *T*. **Uniqueness-** let $w(w \neq u)$ be another common fixed point of *A*, *B*, *S* and *T*. Then by putting x = u, y = w in (b) $M(Au, Bw, kt) \ge \varphi\{M(Tu, Sw, t) * M(Tu, Au, t) * M(Au, Sw, t)\}$ $M(u, w, kt) \ge \varphi\{M(u, w, t) * M(u, u, t) * M(u, w, t)\}$ $M(u, w, kt) \ge \varphi\{M(u, w, t) * 1\} > M(u, w, t)$(9) and $N(Au, Bw, kt) \le \Psi\{N(Tu, Sw, t) \land N(Tu, Au, t) \land N(Au, Sw, t)\}$ $N(u, w, kt) \le \Psi\{N(u, w, t) \land N(u, u, t) \land N(u, w, t)\}$ $N(u, w, kt) \le \Psi\{N(u, w, t) \land 0\} < N(u, w, t) .$(10) From (9) and (10) u = w for all $x, y \in X$ and t > 0. Therefore *u* is the unique common fixed point of *A*, *B*, *S* and *T*. **Theorem – 3.3** Let $(X, M, N, *, \delta)$ be an intuitionstic fuzzy metric space with continuous t-norm * and continuous t-norm \diamond defined by $t * t \ge t$ and $(1 - t) \diamond (1 - t) \le (1 - t)$, $\forall t \in [0,1]$. Let A, B, S and T be self mappings in X s.t. a) $P(X) \subseteq ST(X)$ and $Q(X) \subseteq AB(X)$

b) There exist a constant $k \in (0,1)$ s.t.

$$M(Px, Qy, kt) \ge \varphi\{M(Px, ABx, t) * M(STy, ABx, t) * (Px, STy, t)\}$$

and

$$N(Px, Qy, kt) \le \Psi\{N(Px, ABx, t) \land N(STy, ABx, t) \land N(Px, STy, t)\}$$

 $\forall x, y \in X \text{ and } t > 0 \text{ where } \varphi, \Psi: [0,1] \rightarrow [0,1] \text{ is continuous function s.t.}$

 $\varphi(s) > s$ and $\Psi(s) < s$, for each 0 < s < 1 and $\varphi(1) = 1$, $\Psi(0) = 0$ with M(x, y, t) > 0.

- (c) If one of the P(X), Q(X), ST(X), and AB(X) is a complete subspace of X then {AB, P} and {Q, ST} have a coincidence point.
- (d) AB = BA, ST = TS, PB = BP and QT = TQMoreover if the pair $\{AB, P\}$ and $\{Q, ST\}$ are weakly compatible, then A, B, S, T, P, and Q have a unique common fixed point.

Proof – Let $x_0 \in X$ be an arbitrary point. since $P(X) \subseteq ST(X)$, there exist $x_1 \in X$ s.t. $Px_0 = STx_1 = y_0$ again since $Q(X) \subseteq AB(X)$ for this x_1 there is $x_2 \in X$ s.t.

 $Qx_1 = ABx_2 = y_1$ and so on. Inductively we get a sequence $\{x_n\}$ and $\{y_n\}$ in X s.t.

 $y_{2n} = Px_{2n} = STx_{2n+1}$ and $y_{2n+1} = Qx_{2n+1} = ABx_{2n+2}$, n = 0,1,2...

Putting
$$x = x_{2n}$$
, $y = x_{2n+1}$ in (b) we have,

 $M(Px_{2n}, Qx_{2n+1}, kt) \ge \varphi\{M(Px_{2n}, ABx_{2n}, t) * M(STx_{2n+1}, ABx_{2n}, t) * (Px_{2n}, STx_{2n+1}t)\}$ $M(y_{2n}, y_{2n+1}, kt) \ge \varphi\{M(y_{2n}, y_{2n-1}, t) * M(y_{2n}, y_{2n-1}, t) * M(y_{2n}, y_{2n}, t)\}$

and

$$\begin{split} N(Px_{2n}, Qx_{2n+1}, kt) &\leq \Psi\{N(Px_{2n}, ABx_{2n}, t) \diamond N(STx_{2n+1}, ABx_{2n}, t) \diamond N(Px_{2n}, STx_{2n+1}, t)\}\\ N(y_{2n}, y_{2n+1}, kt) &\leq \Psi\{N(y_{2n}, y_{2n-1}, t) \diamond N(y_{2n}, y_{2n-1}, t) \diamond N(y_{2n}, y_{2n}, t)\}\\ N(y_{2n}, y_{2n+1}, kt) &\leq \Psi\{N(y_{2n}, y_{2n-1}, t) \diamond N(y_{2n}, y_{2n-1}, t) \diamond N(y_{2n}, y_{2n}, t)\}\\ N(y_{2n}, y_{2n+1}, kt) &\leq \Psi\{N(y_{2n}, y_{2n-1}, t) \diamond 0\} < N(y_{2n}, y_{2n-1}, t) \dots (2)\\ \text{Hence we have from (1) and (2)} \end{split}$$

 $M(y_{2n}, y_{2n+1}, kt) \ge M(y_{2n}, y_{2n-1}, t)$ and $N(y_{2n}, y_{2n+1}, kt) \le N(y_{2n}, y_{2n-1}, t)$.

Similarly we also have

 $M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n+1}, y_{2n}, t)$ and $N(y_{2n+1}, y_{2n+2}, kt) \le N(y_{2n+1}, y_{2n}, t)$.

 $M(y_{2n}, y_{2n+1}, kt) \ge M(y_{2n-1}, y_{2n}, t)$ and $N(y_{2n}, y_{2n+1}, kt) \le N(y_{2n+1}, y_{2n}, t)$,

Hence by lemma (2.12), $\{y_n\}$ is a Cauchy sequence in X.

Now suppose AB(X) is a complete subspace of X note that the sequence $\{y_{2n+1}\}$ is contained in AB(X) and has a limit in AB(X) say z. so we get ABw = z. we shall use the fact that subsequence $\{y_{2n}\}$ also convergence to z. now putting x = w, $y = x_{2n+1}$ in (b)

and taking $n \to \infty$, we have

$$M(Pw, Qx_{2n+1}, kt) \ge \varphi \{ M(Pw, ABw, t) * M(STx_{2n+1}, ABw, t) * (Pw, STx_{2n+1}, t) \}$$

As $n \to \infty$

$$M(Pw, z, kt) \ge \varphi\{M(Pw, z, t) * M(z, z, t) * (Pw, z, t)\}$$

$$M(Pw, z, kt) \ge \varphi\{M(Pw, z, t) * 1\} > M(Pw, z, t).....(3)$$

and

$$N(Pw, Qx_{2n+1}, kt) \le \Psi\{N(Pw, ABw, t) \land N(STx_{2n+1}, ABw, t) \land N(Pw, STx_{2n+1}, t)\}$$

As $n \to \infty$

 $N(Pw, z, kt) \le \Psi\{N(Pw, z, t) \land N(z, z, t) \land N(Pw, z, t)\}$

From (3) and (4), Pw = z. Since ABw = z thus we have Pw = z = ABw that is w is coincidence point of P and *AB*. Since $P(X) \subset ST(X)$, Pw = z implies that $z \in ST(X)$. let $v \in ST^{-1}z$.then STv = z.

Putting $x = x_{2n}$ and y = v in (b), we have

 $M(Px_{2n}, Qv, kt) \ge \varphi \{ M(Px_{2n}, ABx_{2n}, t) * M(STv, ABx_{2n}, t) * (Px_{2n}, STv, t) \}$

As
$$n \to \infty$$

$$M(z, Qv, kt) \ge \varphi \{ M(z, z, t) * M(z, z, t) * (z, z, t) \}$$

$$M(z, Qv, kt) \ge \varphi \{1\} = 1$$

$$M(z, Qv, kt) \ge 1$$
(5)

and

$$N(Px_{2n}, Qv, kt) \le \Psi\{N(Px_{2n}, ABx_{2n}, t) \land N(STv, ABx_{2n}, t) \land N(Px_{2n}, STv, t)\}$$

$$N(z, Qv, kt) \le \Psi\{N(z, z, t) \land N(z, z, t) \land N(z, z, t)\}$$

$$N(z, Qv, kt) \le \Psi\{0\} = 0$$

$$N(z, Qv, kt) \le 0$$
......(6)

From (5) and (6), we have z = Qv.

Again Putting x = z and $y = x_{2n+1}$ in (b) and as $n \to \infty$

 $M(Pz, Qx_{2n+1}, kt) \ge \varphi \{ M(Pz, ABz, t) * M(STx_{2n+1}, ABz, t) * (Pz, STx_{2n+1}, t) \}$ $M(Pz, z, kt) \ge \varphi \{ M(Pz, Pz, t) * M(z, Pz, t) * (Pz, z, t) \}$

and $N(Pz, Qx_{2n+1}, kt) \leq \Psi\{N(Pz, ABz, t) \land N(STx_{2n+1}, ABz, t) \land N(Pz, STx_{2n+1}, t)\}$ $N(Pz, z, kt) \le \Psi\{N(Pz, Pz, t) \land N(z, Pz, t) \land N(Pz, z, t)\}$ $N(Pz, z, kt) \le \Psi\{N(Pz, z, t) \land 0\} < N(Pz, z, t)$ (8) From (7) and (8), Pz = z. So Pz = ABz = z. By putting $x = x_{2n}$, y = z in (b) and taking $n \to \infty$, Qz = z. hence Qz = STz = z. Now putting x = z, y = Tz in (b) and using (d), we have $M(z, Tz, kt) \ge 1$ and $N(z, Tz, kt) \le 0$.thus z = Tz. Since STz = z, therefore Sz = z. To prove, Bz = z, we put x = Bz, y = z in (b) and using (d), We have $M(z, Bz, kt) \ge 1$ and $M(z, Bz, kt) \le 0$. Thus z = Bz. Since ABz = z therefore Az = z. By combining the above result we have Az = Bz = Sz = Tz = Pz = Qz = z. that is z is a common fixed point of A, B, S, T, P and Q. **Uniqueness** – Let $w(w \neq z)$ be another common fixed point of A, B, S, T, P and Q then Aw = Bw = Sw =Tw = Pw = Qw = w.By putting x = z, y = w, we have $M(z, w, kt) \ge 1$ and $N(z, w, kt) \le 0$. Hence z = w for all $x, y \in X$ and t > 0. Therefore z is the unique common fixed point of A, B, S, T, P and Q. **References** -[1] Zadeh, L. A (1965), Fuzzy sets, Inform. and Control, 8, 338–353. [2] Atanassov K.(1986), Intuitionistic fuzzy sets, Fuzzy Sets and System, 20, 87-96. [3]Coker, D.(1997), An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and System, 88, 81-89. [4] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 29 (2006), 1073-1078. [5] C. Alaca, I. Altun and D. Turkoglu, On compatible mappings of type (I) and (II) in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc., 23(2008), 427-446. [6] C. Alaca, D. Turkoglu and C. Yildiz, Common fixed points of compatible maps in intuitionistic fuzzy metric spaces, Southeast Asian Bull. Math., 32(2008), 21-33. [7] M. Aamri and D. EI Moutawakil, Some new common fixed point theorems under strict contractive conditions, J.Math. Anal. Appl., 270(2002), 181-188. [8] S. Banach, Theoriles operations Linearies Manograie Mathematyezne, Warsaw, Poland, 1932. [9] L. Ciric, S. Jesic and J. Ume, The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 37(2008), 781–791. [10] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37(1962), 74-79. [11] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988), 385–389. [12] V. Gregory, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 28 (2006), 902-905. [13] S. Jesic, Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 41(2009), 292–301. [14] O. Karmosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326–334. [15] E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Pub. Trends in Logic 8, Dordrecht 2000. [16] S. Kutukcu, Weak Compatibility and common coincidence points in intuitionistic fuzzy metric spaces, Southeast Asian Bulletin of Mathematics, 32(2008), 1081–1089. [17] S. Kutukcu, C. Yildiz and D. Turkoglu, Fixed points of contractive mappings in intuitionistic fuzzy metric spaces, J. Comput. Anal. Appl., 9(2007), 181-193. [18] K. Menger, Statistical metrices, Proc. Nat. Acad. Sci., 28(1942), 535-537. [19] S. N. Mishra, N. Sharma and S. L. Singh, Common fixed points of maps on fuzzy metric spaces, Internat. J. Math. Math. Sci., 17(1994), 253-258. [20] J. H. Park, Intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 22(2004), 1039–1046. [21] R. P. Pant, Common fixed points of contractive maps, J. Math. Anal. Appl., 226(1998), 251–258.

- [22] R. P. Pant, Noncompatible mappings and common fixed points, Soochow J. Math., 26(2000), 29–35.
- [23] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188(1994), 436-440.
- [24] R. P. Pant, Common fixed points of Lipschitz type mapping Pairs, J. Math. Anal. Appl., 240(1999), 280–283.

[25] V. Pant, Some fixed point theorems in fuzzy metric space, Tamkang J. Math., 40(2009), 59-66.

[26] H. K. Pathak, Y. J. Cho and S. M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc., 34(1997), 247–257.

[27] LDJ Sigalottiand A. Mejias, OnEl Naschie's conjugate complex time, fractal $E(\infty)$ space-time and faster-thanlight particles, Int. J. Nonlinear Sci. Number Simul., 7, (2006), 467–472.

[28] R. Saadati, S. Sedghi and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos, Solitons & Fractals, 38(2008), 36–47.

[29] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal Math., 10(1960), 314-334.

[30] Sushil Sharma and B. Deshpande, Commonfixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 40(2009), 2242–2256.

[31] Sushil Sharma and B. Deshpande, Compatible mappings of type (I) and (II) on intuitionistic in consideration of common fixed point, Comm. Korean Math. Soc., 24(2009), 197–214.

[32] Sushil Sharmaand B. Deshpande, Discontinuity and weak compatibility in fixed point consideration on noncomplete fuzzy metric spaces, J. Fuzzy Math., 11(2003), 671–686.

[33] Sushil Sharma, S. Kutukcu and A. Pathak, Common fixed point theorems for weakly compatible mappings in intuitionistic fuzzy metric spaces, J. Fuzzy Math., 17(2009), 225–240.

[34] D. Turkoglu, C. Alaca and C. Yildiz, Compatible maps and compatible maps of types (α) and (β) in intuitionistic fuzzy metric spaces, Demonstratio Math., 39 (2006), 671–684.

[35] D. Turkoglu, C. Alaca, Y. J. Cho and C. Yildiz, Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. and Computing, 22 (2006), 411–424.

[36] R. Vasuki, Common fixed point for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math., 30(1999), 419–423.

[37] R. R. Yager, On a class of weak triangular norm operators, InformationSciences, 96(1997), 47-78.