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1. Introduction: 

 In 2000, Semi-𝛼-open set was presented by Navalagi [7]. Gottschalk and Hedlund [4] 

presented the notions of left (right) syndetic set in topological group. He defined a subset 𝐴 of 

topological group 𝐺, is called left (right) syndetic if there exists a compact subset 𝑀 of 𝐺 such 

that 𝐴𝑀 = 𝐺.Al-Kutaibi [2] presented the concept of Semi-syndetic sets and feebly syndetic 

sets in topological groups. In 2016, Al-Khafaji [3] presented paper 𝛼-syndetic sets. 

The purpose of this paper is to present the concept of Semi-𝛼-syndetic Sets ans study their 

basic properties in topological groups. 

 

2. Preliminaries: 

 Throughout this paper, (𝐺 , 𝑇) (or simply 𝐺) always mean topological space on which 

no separation axioms are assumed unless otherwise mentioned, For a set 𝐴 in a topological 

Space (𝐺 , 𝑇), 𝐶𝑙(𝐴), 𝑖𝑛𝑡(𝐴) and 𝐴𝑐 = 𝐺 − 𝐴 denote the closure of 𝐴, the interior of 𝐴 and 

the Complement of 𝐴 respectively. 

 

Definition 2.1[6]:- A subset 𝐴 of a topological space (𝐺 , 𝑇) is Called 𝛼-open set iff 𝐴 ⊆

𝑖𝑛𝑡 (𝑐𝑙(𝑖𝑛𝑡(𝐴))). The family of all 𝛼-open sets of 𝐺 is denoted by 𝑇𝛼.  

Definition 2.2[7]:- A subset 𝐴 of atopological Space (𝐺, 𝑇) is called Semi-𝛼-open set iff there 

exists an 𝛼-open set 𝑈 in 𝐺 Such that 𝑈 ⊆ 𝐴 ⊆ 𝐶𝑙(𝑈). The family of all Semi-𝛼-open sets of 

𝐺 is denoted by 𝑆𝛼𝑂(𝐺). The complement of Semi-𝛼-open set is called Semi-𝛼-closed set. 

The family of all Semi-𝛼-closed sets is denoted by 𝑆𝛼𝐶(𝐺). 
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Proposition 2.3[6]:- Let (𝐺, 𝑇) be a topological space, 𝐴 ⊆ 𝐺. Then 𝐴 is Semi-𝛼-open set iff 

𝐴 ⊆ 𝐶𝑙 (𝑖𝑛𝑡 (𝐶𝑙(𝑖𝑛𝑡(𝐴)))). 

Remark 2.4 [6]: 

i. Every open set is 𝛼-open, so it is Semi-𝛼-open set, but the converse is not true in 

general. 

ii. Every 𝛼-open set is Semi-𝛼-open set, but the converse is not true in general. 

Example 2.5: Let 𝐺 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑇𝐺 = {𝐺, ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}}, then  

𝑇𝛼 = 𝑇𝐺 ∪ {{𝑎, 𝑏, 𝑐}}, 

𝑆𝛼𝑂(𝐺) = 𝑇𝛼 ∪ {{𝑏, 𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏}, {𝑎, 𝑐}}  

i. Let 𝐴 = {𝑎, 𝑏, 𝑑}, 𝐴 is 𝛼-open set but it is not an open. Let 𝐵 = {𝑏, 𝑐}, 𝐵 is Semi-𝛼-

open set but it is not an open set 

ii.  Let 𝐴 = {𝑏, 𝑑}, 𝐴 is Semi-𝛼-open set but it is not an 𝛼-open set. 

Definition 2.6[6]:- Let 𝐴 be a subset of a topological space (𝐺, 𝑇). The intersection of all 

Semi-𝛼-closed sets containing 𝐴 is called Semi-𝛼-Closure of 𝐴. The Semi-𝛼-Closure of 𝐴 is 

denoted by 𝑆𝛼 − 𝐶𝑙(𝐴) . 

Definition 2.7[1]:- Let (𝐺, 𝑇) be a topological space, 𝐴 ⊆ 𝐺, of a family 𝑊 of subsets of 𝐺 is 

said to be a Semi-𝛼-open cover of 𝐴 iff 𝑊 cover 𝐴 and 𝑊 is a subfamily of 𝑆𝛼𝑂(𝐺). 

Definition 2.8[1]:- A topological space (𝐺, 𝑇) is said to be semi-𝛼-compact iff every Semi-𝛼-

open cover of 𝐺 has a finite sub cover. 

Remark 2.9[1]:- Every Semi-𝛼-compact space is compact. 

Proposition 2.10[1]:- The union of two Semi-𝛼-compact subsets of 𝐺 is Semi-𝛼-compact. 

Definition 2.11[5]:- A topological group is a set 𝐺 which carries group Stricture and a 

topology and satisfied the two axioms: 

i. The map (𝑎, 𝑏) → 𝑎𝑏 of 𝐺 × 𝐺 into 𝐺 is continuous. (That is, the operation of 𝐺 is 

continuous). 

ii. The map 𝑎 → 𝑎−1 (The inversion map) of 𝐺 into 𝐺 is continuous. 

3. Semi-𝛼-Syndetic Sets: 

Definition 3.1:- Let 𝐴 be a subset of a topological group 𝐺, then 𝐴 is called left (right) Semi-

𝛼-Synditic if there exists a Semi-𝛼-compact subset 𝑀 of 𝐺 such that 𝐴𝑀 = 𝐺 (𝑀𝐴 = 𝐺). 

Remark 3.2:- In the following results we will prove the cace of left Semi-𝛼-syndetic and the 

case of right Semi-𝛼-syndetic will be similar. 
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Proposition 3.3:- If 𝑀 is Semi-𝛼-compact set in a topological group 𝐺, then 𝑀−1 is Semi-𝛼-

compact set. 

Proof:- Let 𝑓: 𝐺 → 𝐺 be the inverse map, that is, 𝑓(𝑎) = 𝑎−1 for all 𝑎 in 𝐺, let 𝐻 be Semi-𝛼-

open set cover of 𝑀−1, then 𝑓(𝐻) is Semi-𝛼-open set cover of 𝑓(𝑀−1) = (𝑀−1)−1 = 𝑀, but 

𝑀 is Semi-𝛼-compact, which implies 𝑓(𝐻) has a finite Sub cover 𝐻∗, then 𝑓(𝐻∗) covers 

𝑓(𝑀) = 𝑀−1 . Hence, 𝑀−1 is Semi-𝛼-compact set. 

Proposition 3.4:- Let 𝐺 be a topological group and let 𝐴 ⊆ 𝐺, then 𝐴 is left (right) Semi-𝛼-

Syndetic set in 𝐺 iff there exists a Semi-𝛼-compact subset 𝑀 of 𝐺 such that every left (right) 

translation of 𝑀 intersects 𝐴. 

Proof:- Suppose that 𝐴 is a left Semi-𝛼- Syndetic set, then there exists a Semi-𝛼-compact 

subset 𝑀 of 𝐺 such that 𝐴𝑀 = 𝐺 , let 𝑔 ∈ 𝐺, then there exists 𝑥 ∈ 𝐴, 𝑚 ∈ 𝑀 such that 

𝑔 = 𝑥𝑚 which implies 𝑥 = 𝑔𝑚−1 and then 𝑥 ∈ 𝑔𝑚−1 but 𝑚−1 is Semi-𝛼-compact. Hence 

𝑔𝑚−1 ∩ 𝐴 ≠ ∅, (i.e 𝑚−1 is the Semi-𝛼-compact set we need). 

Conversely, let 𝑔 ∈ 𝐺, there exists Semi-𝛼-compact subset 𝑀 of 𝐺 such that, 𝑔𝑀 ∩ 𝐴 ≠ ∅, 

for each 𝑔 in 𝐺, there exists 𝑥 ∈ 𝐴, 𝑚 ∈ 𝑀 such that 𝑔𝑚 = 𝑥, so 𝑔 = 𝑥𝑚−1, which implies 

𝐺 = 𝐴𝑀−1, and since 𝑀−1 is Semi-𝛼-compact then 𝐴 is a left Semi-𝛼-Syndetic. 

Proposition 3.5:- Let A be a subset of a topological group 𝐺, then 𝐴 is left (right) Semi-𝛼-

Syndetic in 𝐺 iff 𝐴−1 is right (left) Semi-𝛼-Syndetic. 

Proof:- Let 𝐴 be a left Semi-𝛼-Syndetic, then there exists Semi-𝛼-compact subset 𝑀 of 𝐺 

such that 𝐴𝑀 = 𝐺. Since 𝐺 = 𝐺−1 = (𝐴𝑀)−1 = 𝑀−1𝐴−1 and Since 𝑀−1 is Semi-𝛼-compact, 

then 𝐴−1 is right Semi-𝛼-syndetic. 

Proposition 3.6:- Let 𝐺 be a topological group, let 𝐴, 𝐵 be two subset of 𝐺 Such that 𝐴 ⊆ 𝐵. If 

𝐴 is left (right) Semi-𝛼-Syndetic set, then so is 𝐵. 

Proof:- Let 𝐴 be a left Semi-𝛼-syndetic set, then there exists a Semi-𝛼-compact subset 𝑀 of 𝐺 

such that 𝐴𝑀 = 𝐺, since 𝐴 ⊆ 𝐵, then 𝐵𝑀 = 𝐺, which implies that 𝐵 is left Semi-𝛼-Syndetic. 

Theorem 3.7:- Let 𝐺 be a topological group, then 

i. If 𝐴 is a left Semi-𝛼-Syndetic set in 𝐺, then 𝐶𝑙(𝐴) and Semi-𝛼-𝐶𝑙(𝐴) are left Semi-𝛼-

Syndetic. 

ii. The union of any family of left (right) Semi-𝛼-Syndetic sets is left (right) Semi-𝛼-

Syndetic. 

Proof:-  i and ii directly from proposition (3.6) 

Theorem 3.8:- Let 𝐺 be a topological group, let 𝐴, 𝐵 be two left (right) Semi-𝛼-Syndetic 

Subset og 𝐺, then 𝐴 ∩ 𝐵 is a left (right) Semi-𝛼-Syndetic. 
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Proof:- Let 𝐴 and 𝐵 be two left Semi-𝛼-Syndetic, then there exist Semi-𝛼-compact sets 𝑀 and 

𝑁 such that 𝐴𝑀 = 𝐺 and 𝐵𝑁 = 𝐺 and then (𝐴 ∩ 𝐵)(𝑀 ∪ 𝑁) = 𝐴(𝑀 ∪ 𝑁) ∩ 𝐵(𝑀 ∪ 𝑁) =

𝐺 ∩ 𝐺 = 𝐺 and since (𝑀 ∪ 𝑁) is Semi-𝛼-compact, then (𝐴 ∩ 𝐵) is left Semi-𝛼-Syndetic. 

Theorem 3.9:- Let 𝐴 be a subset of topological group 𝐺. If 𝐴 is a Subgroup of 𝐺 or if 𝐺 is an 

abelian group, then 𝐴 is left Semi-𝛼-Syndetic in 𝐺 iff 𝐴 is a right Semi-𝛼-Syndetic in 𝐺. 

Proof:- Let 𝐴 be a left Semi-𝛼-Syndetic subgroup of 𝐺, then 𝐺 = 𝐴𝑀, that means 𝐺−1 =

𝑀−1𝐴−1 and hence 𝐺 = 𝑀−1𝐴, but 𝑀−1 is Semi-𝛼-compact, which implies 𝐴is a right Semi-

𝛼-Syndetic in 𝐺. 

Theorem 3.10:- Let 𝐴 be a Semi-𝛼-Syndetic subgroup of a topological group 𝐺, then the 

quotient space 𝐺/𝐴 is compact. 

Proof:- Let 𝐴 be a Semi-𝛼-Syndetic subgroup of a topological group 𝐺, then there exists a 

Semi-𝛼-compact set 𝑀 such that 𝑀𝐴 = 𝐺. Let 𝑓: 𝐺 → 𝐺/𝐴 be the quotient map. Clear that 

𝑓(𝑀) ⊆ 𝐺/𝐴, Let 𝑔𝐴 ∈ 𝐺/𝐴, then 𝑔𝐴 ⊆ 𝐺 which implies 𝑔𝐴 ⊆ 𝑀𝐴, that is 𝑔𝐴 ∈ 𝑓(𝑀) and 

then, 𝐺/𝐴 ⊆ 𝑓(𝑀). Hence 𝐺/𝑀 = 𝑓(𝑀). Since 𝑓 is continuous and 𝑀 is Semi-𝛼-compact, 

then 𝑓(𝑀) = 𝐺/𝐴 is compact set. 
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