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Abstract 

   The main aim of this study was to discuss some bounds for the Spectral Radius of the Hadamard Product of 

matrices. 

This study presents several spectral radius inequalities for sums, product ( hadamard product), and comutators of 

matrices, and it exposes to some properties of the hadamard product and the relationship between hadamard 

product and kronecker product for spectral radius of matrix. 

Applications of these results are also given. 
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1. Introduction 

      The spectral radius function is one of the most important functions of matrices. It is closely related to matrix 

norms and the numerical radius. 

    Many functionals in matrix analysis are submultiplicative with respect to ordinary matrix multiplication, but 

the spectral radius is not. However, for nonnegative or positive semidefinite matrices A,B ∈ Mn, the spectral 

radius is submultiplicative with respect to the Hadamard (entry-wise) product:  

                           𝑟(𝐴°𝐵) ≤ 𝑟(𝐴)𝑟(𝐵).   ((see Theorem 3.3.1).   

This result, among other interesting properties of the spectral radius and the hadamard product, can be found in 

the famous book of Halmos (1982) and that of Horn and Johnson (1985). Equalities and inequalities for the 

spectral radii of hadamard product and kronecker product of matrices have been given by Zhang (1999), Cheng, 

G-H., (2005)  Barra and Boumazgour (2001). Spectral radius inequalities for sums, products, and commutators 

of matrices have been recently given by Kittaneh (2005). These inequalities are based on a spectral radius 

inequality for partitioned matrices due to Hou and Du (1995). 

The material of this research has been arranged by sections, spread out in three parts. The arrangement of the 

subject matter is given in such a way to give a brief survey of results related to the spectral radius. 
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Firstly, the study introduces some preliminary results in matrix theory that will be very useful in this research. 

These include some elements of the spectral theory, positive definite matrices, nonnegative and positive 

matrices, and matrix norm. 

 Secondly, the study deals with matrix norms and introduces the concept of spectral radius. Special emphasis is 

given to properties of the spectral radius, and presents several inequalities for the spectral radii of sums, 

products, and commutators of matrices. 

Finally, the study introduces some basic definitions and properties of Hadamard product and Kronecker product 

of matrices. Also it gives and proves some bounds for the spectral radius of Hadamard product of matrices.   

2. Previous studies 
1) The study of (Pattrawut Chansangiam_, Patcharin Hemchote, Praiboon Pantaragphong, 2009) aimed to 

develop inequalities for Kronecker products and Hadamard products of positive definite matrices. A 

number of inequalities involving powers, Kronecker powers, and Hadamard powers of linear 

combination of matrices are presented. In particular, H¨older inequalities and arithmetic mean-

geometric mean inequalities for Kronecker products and Hadamard products are obtained as special 

cases.  

 
2)  The study of ( Roger A. Horn and Fuzhen Zhang, 2010) aimed to prove Zhan’s conjecture (the 

spectral radius of the Hadamard product of two square nonnegative matrices is not greater than the 

spectral radius of their ordinary product), and a related inequality for positive semidefinite matrices, 

using standard facts about principal sub matrices, Kronecker products, and the spectral radius. 

3) The study of (Dongjun Chen and Yun Zhang, 2015) presented some spectral radius inequalities for 

nonnegative matrices. Used the ideas of Audenaert, and then proved the inequality which may be 

regarded as a Cauchy--Schwarz inequality for spectral radius of nonnegative matrices 

𝑟(𝐴°𝐵) ≤ [𝑟(𝐴°𝐴)]
1

2⁄ [𝑟(𝐵°𝐵)]
1

2⁄ . 

In addition, new proofs of some related results due to Horn and Zhang, Huang were also given. 

Finally, it interpolated Huang's inequality by proving 

𝑟(𝐴1°𝐴2°…  °𝐴𝑘) ≤ [𝑟(𝐴1𝐴2 … 𝐴𝑘]
1−

2

𝑘[𝑟((𝐴1°𝐴1)… (𝐴𝑘°𝐴𝑘)]
1

𝑘 ≤ 𝑟(𝐴1𝐴2 … 𝐴𝐾). 

On the spectral radius of Hadamard products of nonnegative matrices 

4) The study of (Koenraad M.R., 2010) aimed to prove an inequality for the spectral radius of products of 

non-negative matrices conjectured by Zhan. And showed that for all n × n non-negative matrices A and 

B, 𝑟(𝐴°𝐵) ≤ 𝑟[(𝐴°𝐴)(𝐵°𝐵)]
1

2 ≤ 𝑟(𝐴𝐵), in which ◦ represents the Hadamard product.  

5) The study of (Maozhong Fang, 2007) aimed to prove an upper bound for the spectral radius of the 

Hadamard product of nonnegative matrices and a lower bound for the minimum eigenvalue of the Fan 

product of M-matrices. 

6) The study of ( M. Goldberg, G. Zwas, 1974) characterized all nxn matrices whose spectral radius 

equals their spectral norm. it showed that for n⩾3 the class of these matrices contains the normal 

matrices as a subclass. 

7) The study of (Zejun Huang, 2010) aimed to prove the spectral radius inequality 𝑟(𝐴1°𝐴2°…  °𝐴𝑘) ≤
𝑟(𝐴1𝐴2 …𝐴𝑘)for nonnegative matrices using the ideas of Horn and Zhang. It obtained the inequality 

‖𝐴°𝐵‖ ≤ 𝑟(𝐴𝑇𝐵) for nonnegative matrices, which improves Schur’s classical inequality ‖𝐴°𝐵‖ ≤
‖𝐴‖‖𝐵‖, where ‖. ‖ denotes the spectral norm. It also gave counterexamples to two conjectures about 

the Hadamard product. 

 

 

 

3. Fundamentals of Matrix Analysis 

3.1 Basic Results in Matrix Theory :- 

Let  M mn denote the space of all m × n complex matrices and let M n denote the algebra of all n  × n 

complex matrices.  

http://www.iiste.org/
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          Definition 3.1.1: Let A 𝜖 M n , Then a complex number λ is called an eigenvalue of A, if there              

          exists a nonzero vector 𝑥 ∈ 𝐶𝑛. Such that 𝐴𝑥 = 𝜆𝑥. Such a vector 𝑥 is called an eigenvector    

          of A associated with λ. 

Definition 3.1.2: If  A ∈ M n, then det(λI – A) = 0 is called the characteristic equation of A, where det 

(.) is the determinant function. The polynomial p(λ ) = det (λI – A) is called the characteristic 

polynomial of A. the set of all eigenvalues of A is called the spectrum of A, denoted by σ (A). 

Theorem 3.1.3: If 𝐴 ∈ 𝑀𝑛, then 𝜆 ∈ σ (A) is an eigenvalue of A if and only if det(λI – A) = 0 

Definition 3.1.4: Let A= [a ij] ∈ 𝑀𝑛. Then    

(1) the trace of A is given by trA =∑ 𝑎𝑖𝑖
𝑛
𝑖=1 . 

(2) the transpose of A is given by A
t  =

 [𝑎𝑗𝑖]and A
* 
=[𝑎𝑗𝑖̅̅ ̅] is called the adjoint of A. 

    Theorem 3.1.5: For all A, B ∈ Mn 

1) σ(AB)=σ (BA( 

2)   If  σ(A) = {λ1,...,λn }, then det(A) =∏ 𝜆𝑗
𝑛
𝑗=1 , and tr(A)= ∑ 𝜆𝑛

𝑗=1 j. 

3)   σ(𝐴∗) = {𝜆:̅ 𝜆 ∈ 𝜎(𝐴)}. 

          Theorem 3.1.6: Let A,B ∈ Mn, and let 𝛼 ∈ 𝐶. Then 

1) det AB = (det A)(det B( 

2) det (𝛼A) = 𝛼𝑛 det 𝐴. 

3) σ(A
k
) = (σ(A))

k
 = {λ

k 
: λ ∈ σ(A)}, where k is a natural number. 

4) σ(A
t
)=σ (A) . 

5) for any matrix A with rank at most 1,  σ(A)= {trA,0} 

          Theorem 3.1.7: Let A, B Є M n, a Є C. Then 

1) tr(A + B)= trA +trB. 

2) traA = a trA. 

3) trAB = trBA. 

4) tr0 = 0 , trIn  = n , where  In  is the idenitity matrix of order n. 

          Theorem3.1.8: Let A,B Є M n , 𝛼 Є C. Then 

(1)  (A
*
)

* 
 = A. 

(2)  (A+B)
* 
 = A

* 
+ B

*
 

(3)  
 (𝛼 𝐴∗) = �̅�A

*
. 

(4)  (A B)
* 
= B

* 
A

*
 

(5)  
 det(A

*
) = det (𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(6)  trA
* 
= 𝑡𝑟𝐴̅̅ ̅̅̅. 

(7)  trA
* 
A ≥ 0 . 

(8)  σ(A
*
) = 𝜎(𝐴)̅̅ ̅̅ ̅̅ . 

 

           Definition 3.1.9: A,B Є Mn are called similar if there exists invertible S ∈ M n such 

 that 

B = S 
-1

 AS       or        A = SBS
-1 

           Theorem 3.1.10: Similar matrices have the same eigenvalues.
 

           Corollary 3.1.11: Similar matrices have the same determinant and trace. 

           Theorem 3.1.12:(The spectral mapping theorem), Let A Є M n. Then for every polynomial 𝑓       
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                                       σ( 𝑓 (A))= 𝑓 (σ(A)). 

           Theorem 3.1.13: ( Cayely - Hamilton ). Every matrix satisfies its characteristic 

            Polynomial (i.e,  if A Є M n  and p  is the characteristic polynomial of A , then 

p(A) = 0). 

            Remark 3.1.14: Let A ∈ M n and let k ∈ C.Then σ(kA)= kσ(A(. 

            Definition 3.1.15: If A Є M n , then 

 (1  ) A is called Hermitian if A
*
 = A. 

(2  )  A is called skew-Hermitian if A
*
 = -A. 

 (3  ) A is called unitary if A
* 
A = AA

* 
 = I. 

 (4  ) A is called  normal if A
* 
A = AA

* 

 It is obvious that Hermitian, skew-Hermitian and unitary matrices are normal matrices. 

             Remark 3.1.16: 

 (1   ) The sum of two Hermitian matrices is Hermitian. 

 (2   ) The product of two Hermitian matrices is Hermitian if and only if these matrices     

         commute. 

(3   )  If A ∈ M n , then AA
*
 , A

* 
A , A + A

*
  are Hermitian. 

 (4   ) If A ∈ M n  is Hermitian, then every eigenvalue of A is a real number. 

             Remark 3.1.17: Let A ∈ M n . Then 

   (1) If A is unitary, then | det A |   = 1. 

 (2   ) The product of two unitary matrices is unitary. 

 (3   ) A  is unitary if and only if A
-1

 = A
*
 is unitary. 

 (4   ) If A is unitary, then every eigenvalue of A has modulus one. 

              Definition 3.1.18: If x = [x1,x2,...,x n]
t
 ,y = [y1,y2,...,y n]

t
  ∈ C 

n
 , then the Euclidean inner  

                                            product of x  and  y  is given by: (x, y) = ∑ 𝑥𝑖yi̅
𝑛
𝑖=1   

              Note that,  (𝑥, 𝑦 ) = 𝑦∗𝑥 

              Remark 3.1.19: Let x, y, z ∈ 𝐶𝑛, 𝛼 ∈ 𝐶 Then 

(1)  (y, x) =   (𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅ 

(2)  (𝛼x, y) = 𝛼(x, y) 

(3)  (x +y, z) = (x, z)+(y, z) 

(4)  (x, x) = ∑  | 𝑥𝑖  | 
2  ≥ 0 with equality iff x=0 

(5)  (x, 𝛼y) = �̅� (x, y) 

(6)  (z, x + y) = (z, x) + (z, y) 

 

               Definition 3.1.20: A matrix B ∈ M n is said to be unitarily equivalent to A ∈ M n  if  there     

                                             is a unitary matrix  U ∈ M n  such that  B = U 
*  

AU. 

               Theorem 3.1.21:  ( Schur's unitary triangularization theorem ). Let A ∈ M n with σ(A) =    

                                            {λ1,λ2, … ,λn}. Then there is a unitary matrix  U ∈ M n such that U 
*
 AU  

                                            = T, where  T = [ t ij] ∈ M n  is an upper triangular matrix with diagonal  

                                            entries  t ii = λ i  , for i = 1, 2, … ,n. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.3, 2017 

 

 

5 

 

               Theorem 3.1.22: (Spectral theorem for normal matrices). A ∈ M n is normal if and only if  

                                             A is unitarily equivalent to a diagonal matrix (that is, A = UDU
*
, where                   

                                            D is diagonal and U is unitary( 

             3.2   Positive Definite Matrices 

Definition 3.2.1: A Hermitim matrix  A ∈ M n is said to be positive definite, if (Ax,x)> 0  for all 

nonzero x ∈ C
n
 , and it is called positive semidefinite, if (Ax,x) ≥ 0 for all  x ∈ C

n
 

 

Remark 3.2.2: 
 (1  ) The sum of any two positive definite (semidefinite)  matrices of the same size is    

positive definite (semidefinite). 

(2 ) The product of any two positive definite (semidefinite) matrices is positive 

definite (semidefinite) if and only if the two matrices commute. 

 (3  ) Each eigenvalue of a positive definite (semidefinite) matrix is a positive  ) nonnegative) real 

number. 

 (4  ) A Hermitian matrix whose eigenvalues are positive (nonnegative) is positive definite (positive 

semidefinite). 

(5 )  The trace and determinant of a positive definite (semidefinite) matrix are positive 

(nonnegative) real numbers. 

Theorem 3.2.3: Let A ∈ M n be a positive semidefinite (definite) matrix and let k ≥1 

be a given integer .Then there exists a unique positive semidefinite (definite) matrix  B 

such that A = B
k
 ,written as B = 𝐴

1
𝑘⁄ . 

Theorem 3.2.4:  A matrix A ∈ M n is positive semidefinite if and only if A = BB
*
 for some B ∈ M n 

. In the positive definite case B is taken to be invertible. 

Definition 3.2.5: The eigenvalues of the matrix ⟨𝐴⟩ = (𝐴∗𝐴)
1

2⁄  are called the singular values of A. 

They are denoted by s1 (A), s2 (A), ... , sn (A) and they are arranged in nonincreasing order so that s1 

(A) ≥ s2 (A) ≥ …≥  sn(A ). 

Theorem 3.2.6: (Singular value decomposition).  If A ∈ M n, then A  may be written in the form A 

= VDW
*
, where V,W ∈ M n are unitary, and the matrix 

D = diag(s1(A),s2(A),...,s n(A). 

 

Theorem 3.2.7: (Polar decomposition). If A ∈ M n, then there exists a unitary matrix U ∈ M n such 

that A=U ⟨𝐴⟩ 
 

Remark 3.2.8: Let A ∈ M n and let U, V ∈ Mn be unitary, Then 

(1  ) The matrices A
*
A and AA

* 
are unitarily equivalent, and hence, they have  the same 

eigenvalues. 

 (2  ) The matrices ⟨𝑈𝐴𝑉⟩ and (A) are unitarily equivalent, which implies that  

 sj (UAV)= sj (A) for all j = 1,2,...,n. 

 (3  ) lf A is normal with eigenvalues λ (A) ordered in such a way that 

 |  λ 1 (A) |≥ … ≥| λ n (A) |, then sj (A)= | λj(A)│for all j= 1,2,…., n. 

Definition 3.2.9: A matrix A = [𝑎𝑖𝑗  ] ∈ M n is called diagonally dominant if | 𝑎𝑖𝑖  | > ∑ |𝑎𝑖𝑗|𝑖≠𝑗   

for i = 1, 2, … , n. 

               Definition 3.2.10: Let A∈ M mn. For index sets 𝛼𝜖{1, 2, ..., m} and 𝛽 ∈{1, 2, .., n}, we  

               denote the submatrix that lies in the rows of A indexed by 𝛼 and the columns indexed by ß  

               as A(𝛼, 𝛽). If m = n and 𝛽 = 𝛼, the submatrix A(𝛼, 𝛼) is called a principal submatrix of  

               A and is abbreviated  A(𝛼). 

Definition 3.2.11: Let B = [b ij ]∈ M n and A = [a ij ] ∈ M n .We write 

B ≥ 0     if all    b ij ≥ 0 

B > 0     if all   b ij > 0 

http://www.iiste.org/
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A ≥ B     if        A-B ≥ 0 

A > B     if        A – B > 0.  

                If  A ≥ 0, we say that A is a nonnegative  matrix, and if A > 0, we say that A is a positive       

                matrix. We define |A| ≡ [ | a ij | ] . 

               Theorem 3.2.12: Let A, B, C, D ∈ M n , Then 

(1  ) |A| ≥ 0 and |A|  = 0 if and only if A = 0. 

 (2  ) |aA| = |a||A|, for all complex numbers a. 

 (3  ) |A+B| ≤ |A| + |B|. 

 (4  ) If A ≥ 0, B ≥ 0, and a, b ≥ 0, then aA + bB ≥ 0. 

 (5  ) If A ≥ B and C ≥ D, then A+C ≥ B+D. 

 (6  ) If A ≥ B and B ≥ C, then A ≥ C. 

Theorem 3.2.13: Let A, B, C, D ∈ M n, and let x ∈ C
n
. Then 

(1) |Ax| ≤ |A| |x|. 

(2) |AB| ≤ |A||B|. 

(3) |A
m 

| ≤ |A|
 m 

for all m = 1,2,… 

(4) If 0 ≤ A ≤ B and 0 ≤ C ≤ D, then 0 ≤ AC ≤ BD.  

(5) If 0 ≤ A ≤ B, then 0 ≤ A
m 

≤ B 
m 

for all m = 1, 2, … 

(6) If A ≥ 0, then A
m 

≥ 0, and if A > 0, then A
m 

> 0 for all m = 1, 2, … 

(7) If A > 0, x ≥ 0, and x ≠0, then Ax > 0. 

(8) If A ≥ 0, x > 0, and Ax = 0, then A = 0.  

3.3 Matrix Norm 

Definition 3.3.1: let 𝑉 be a vector space over a field F. A Function ‖ . ‖:𝑉 → 𝑅 is a vector norm if for all x, 

y ∈ 𝑉 

(1) ‖𝑥‖ ≥ 0, 𝑎𝑛𝑑‖𝑥‖ = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 0                (positivity) . 

 

(2) ‖𝑐𝑥‖ =  |𝑐|‖𝑥‖ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑐𝑎𝑙𝑎𝑟𝑠 𝑐 ∈ 𝐹                           (Homogenity). 

 

(3) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖                                                    (Triangle inequality). 

 

For a vector 𝑥 = ( 𝑥1 , 𝑥2, … , 𝑥𝑛) ∈ 𝐶𝑛, we define 

 

                               ‖𝑥‖𝑝 = (∑ |𝑥𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝    ,              1 ≤ 𝑝 < ∞ 

                                ‖𝑥‖∞ =  lim𝑝→∞‖𝑥‖𝑝 = max1≤𝑗≤𝑛|𝑥𝑗|. 

For each 1≤ 𝑝 ≤ ∞, ‖𝑥‖𝑝 defines a norm on 𝐶𝑛. These are called the p-norms or ℓ𝑝 norms. While for 0< 𝑝 < 1 

this defines a quasinorm. Instead of the triangle inequality we have. 

                              ‖𝑥 + 𝑦‖𝑝 ≤ 2
1

𝑝−1⁄ (‖𝑥‖𝑝 + ‖𝑦‖𝑝),                    0 < 𝑝 < 1 

Definition 3.3.2: A function 𝑁:𝑀 → 𝑅 is a matrix norm if for all 𝐴, 𝐵 ∈ 𝑀𝑛 it satisfies the following axioms : 

(1) 𝑁(𝐴) ≥ 0 and 𝑁(𝐴) = 0 if and only 𝐴 = 0 . 
(2) 𝑁(𝑎𝐴) = |𝑎|𝑁(𝐴) for all complex numbers 𝑎 . 
(3) 𝑁(𝐴 + 𝐵) ≤ 𝑁(𝐴) + 𝑁(𝐵). 
(4) 𝑁(𝐴𝐵) ≤ 𝑁(𝐴)𝑁(𝐵). 

Remark 3.3.3: A vector norm on 𝑀𝑛, that is a function that satisfies (1) – (3) and not necessarily (4) , is often 

called a generalized matrix norm . 
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Examples 3.3.4: Let = ⌊𝑎𝑖𝑗⌋ ∈  𝑀𝑛 . Then 

(1) The ℓ1norm is defined by ‖𝐴‖1 = ∑ |𝑎𝑖𝑗|
𝑛
𝑖,𝑗=1  . 

Note that ‖. ‖1 is a matrix norm because 

                                        ‖𝐴𝐵‖1 = ∑ |∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑛
𝑘=1 |𝑛

𝑖,𝑗=1  ≤ ∑ |𝑎𝑖𝑘𝑏𝑘𝑗|
𝑛
𝑖,𝑗,𝑘=1 

                                                    ≤ ∑ |𝑎𝑖𝑘𝑏𝑚𝑗|
𝑛
𝑖,𝑗,𝑘,𝑚=1 = (∑ |𝑎𝑖𝑘|𝑛

𝑖,𝑘=1 )(∑ |𝑏𝑚𝑗|
𝑛
𝑗,𝑚=1 

                                                    =‖𝐴‖1‖𝐵‖1                                                    

 

(2) The ℓ2 norm (or the Euclidean norm) is defined by 

                      ‖𝐴‖2=(∑ |𝑎𝑖𝑗|
2
)𝑛

𝑖,𝑗=1

1

2
 

 

       Note that ‖. ‖2 is a matrix norm because                                                                                                

            ‖𝐴𝐵‖2
2 = ∑ |∑ 𝑎𝑖𝑘𝑏𝑘𝑗

𝑛
𝑘=1 |

2𝑛
𝑖,𝑗=1 

                                           ≤ ∑ (∑ |𝑎𝑖𝑘|
2𝑛

𝑘=1
𝑛
𝑖,𝑗=1 )(∑ |𝑏𝑚𝑗|

2𝑛
𝑚=1 ) 

                                           = ‖𝐴‖2
2‖𝐵‖2

2 

This inequality is just the Cauchy – Schwarz inequality. When applied to matrices, this norm is sometimes called 

the forbenius norm, the Schur norm, or the Hilbert – Schmidt norm . 

(3) The maximum column sum matrix norm is defined by 

                      ‖|𝐴|‖1 = max1≤𝑗≤𝑛 ∑ |𝑎𝑖𝑗|
𝑛
𝑖=1 

(4) The maximum row sum matrix norm is defined by 

 

                      ‖|𝐴|‖∞ = max1≤𝑖≤𝑛 ∑ |𝑎𝑖𝑗|
𝑛
𝑗=1 

 

     Note that, the norms ‖|. |‖1, 𝑎𝑛𝑑 ‖|. |‖∞ are induced by the ℓ1𝑎𝑛𝑑 ℓ∞ vectors norms, respectively, 

and hence must be matrix norms. 

 

(5) The spectral norm ( or the usual operator norm )is defined by 

                             ‖𝐴‖ =  max‖𝑥‖=1‖𝐴𝑥‖ . 

Note that, for any matrix 𝐴 ∈ 𝑀𝑛, 

 

(a)‖𝐴‖ = max‖𝑥‖=‖𝑦‖=1|(𝑦, 𝐴𝑥)| . 

 

(b) 𝐼𝑓 𝐴 ∈ 𝑀𝑛 is Hermitian, then, ‖𝐴‖ = max‖𝑥‖=1|(𝑥, 𝐴𝑥)|. 

(c) If 𝐴 ∈ 𝑀𝑛 is a unitary, then ‖𝐴‖ = 1. 

(d) ‖𝐴𝑘‖ ≤ ‖𝐴𝑘‖, for 𝑘 = 1,2, …. 

(e) If |𝐴| ≤ |𝐵| , then‖𝐴‖2 ≤ ‖𝐵‖2 . 

(6) The norm ‖𝐴‖∞ = max1≤𝑖,𝑗≤𝑛|𝑎𝑖𝑗| is a generalized matrix norm. 

 

4. Spectral Radius Inequalities 
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4.1 Properties of the Spectral Radius  

The following properties of the spectral radius can be found in horn and Johnson (1985). 

Definition 4.1.1: The spectral radius 𝑟(𝐴) of a matrix  𝐴 ∈ 𝑀𝑛 is 

𝑟(𝐴) = max{|𝜆|: 𝜆 is an eigenvalue of 𝐴}. 

Observe that if λ is any eigenvalue of, then |𝜆| ≤ 𝑟(𝐴). 

Theorem 4.1.2: If 𝑁(. )is any matrix norm and if 𝐴 ∈ 𝑀𝑛, then 𝑟(𝐴) ≤ 𝑁(𝐴). 

Proof: 

 Let λ∈ 𝜎 (𝐴) such that |𝜆| = 𝑟(𝐴) and let 𝑥 ∈ 𝐶𝑛 be a nonzero vector such that  𝐴𝑥 = 𝜆𝑥. 

If 𝑋 = [𝑥: 𝑥: … : 𝑥], then |𝜆|𝑁(𝑋) = 𝑁(𝜆𝑋) = 𝑁(𝐴𝑋) ≤ 𝑁(𝐴)𝑁(𝑋). Since 𝑁(𝑋) ≠ 0, we have |𝜆| ≤ 𝑁(𝐴), and 

so 𝑟(𝐴) ≤ 𝑁(𝐴). 

Corollay 4.1.3: If 𝐴 ∈ 𝑀𝑛 , then (𝐴) ≤ ‖𝐴‖ ,  and equality holds if 𝐴 is normal . 

Remark 4.1.4: If 𝐴, 𝐵 ∈ 𝑀𝑛, then 𝑟(𝐴𝐵) = 𝑟(𝐵𝐴). 

To see this , use the fact 𝜎(𝐴𝐵) = 𝜎(𝐵𝐴). 

Theorem 4.1.5: If 𝐴, 𝐵 ∈ 𝑀𝑛 and 𝐴𝐵 = 𝐵𝐴, Then  

(1) 𝑟(𝐴 + 𝐵) ≤ 𝑟(𝐴) + 𝑟(𝐵). 
(2) 𝑟(𝐴𝐵) ≤ 𝑟(𝐴)𝑟(𝐵). 

Proof: 

(1) Since 𝐴𝐵 = 𝐵𝐴, by schur’s theorem there is a unitary matrix 𝑈 ∈ 𝑀𝑛 such that 

𝑈∗𝐴𝑈and 𝑈∗𝐵𝑈 are both upper triangular, 

I.e,                    𝑇1=𝑈∗𝐴𝑈 =

[
 
 
 
 
𝜆1 𝑎12 𝑎13 … . . 𝑎1𝑛

0 𝜆2 𝑎23 … . . 𝑎2𝑛

0 0 𝜆3 … . . 𝑎3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … . . 𝜆𝑛 ]

 
 
 
 

 

Where 𝜆𝑖 , 𝑖 = 1,2, … , 𝑛 are the eivgenvalues of 𝐴, and  

 𝑇2 = 𝑈∗𝐵𝑈 =

[
 
 
 
 
𝜇1 𝑏12 𝑏13 … 𝑏
0 𝜇2 𝑏23 … 𝑏2𝑛

0 0 𝜇3 … 𝑏3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 𝜇𝑛 ]

 
 
 
 

 

Where 𝜇𝑖, 𝑖 = 1,2, … , 𝑛 are the eivgenvalues of B. 

Note that 𝜎(𝐴) = 𝜎(𝑇1) = {𝜆𝑖 ∶ 𝑖 = 1,… , 𝑛}, and 𝜎(𝐵) = 𝜎(𝑇2) = {𝜇𝐼: 𝑖 = 1, … 𝑛}. 

Now, 𝜎(𝐴 + 𝐵) ⊆ 𝜎(𝐴) + 𝜎(𝐵), and 𝜎(𝐴𝐵) ⊆ 𝜎(𝐴)𝜎(𝐵). 

So, we have 𝑟(𝐴 + 𝐵) ≤ 𝑟(𝐴) + 𝑟(𝐵) and𝑟(𝐴𝐵) ≤ 𝑟(𝐴)𝑟(𝐵). 
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Remark 4.1.6: If 𝐴, 𝐵 ∈ 𝑀𝑛do not commute, then Theorem 4.1.5 is false. To see this consider the following 

example. 

Let 𝐴 = [
0 1
0 0

] , 𝐵 = [
0 0
1 0

]. 

Then 𝑟(𝐴) = 0 and 𝑟(𝐵) = 0, but 𝑟(𝐴 + 𝐵) = 1. 

So ,𝑟(𝐴 + 𝐵) = 1 > 𝑟(𝐴) + 𝑟(𝐵) = 0. 

Lemma 4.1.7: If ∈ 𝑀𝑛 , then  

 

 𝑟(𝐴) =inf {‖𝑆−1𝐴𝑆‖: 𝑆 ∈ 𝑀𝑛  𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒}. 

Proof: 

 If 𝑆 ∈ 𝑀𝑛 invertible, then 

 𝑟(𝐴) = 𝑟(𝑆−1𝐴𝑆) ≤ ‖𝑆−1𝐴𝑆‖ . 

So,  

 𝑟(𝐴) ≤inf {‖𝑆−1𝐴𝑆‖: 𝑆 ∈ 𝑀𝑛  𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒}. 

By the Schur traingularization theorem , there is a unitary matrix U and an upper triangular matrix T with 

diagonal entries 𝜆1, … . 𝜆𝑛 ( the eigenvalues of 𝐴), such that 𝑈∗𝐴𝑈 = 𝑇 

Set 𝐷1 = 𝑑𝑖𝑎𝑔(𝑡, 𝑡2, 𝑡3, … 𝑡𝑛) for 𝑡 > 0, and comput 𝐷𝑡𝑇𝐷𝑡
−1. 

 𝐷𝑡𝑇𝐷𝑡
−1 =

[
 
 
 
 
𝜆1 𝑡−1𝑑12 𝑡−2𝑑13   …   𝑡−𝑛+1𝑑1𝑛

0 𝜆2 𝑡−1𝑑23   … 𝑡−𝑛+2𝑑2𝑛

0 0 𝜆3   … 𝑡−𝑛+3𝑑3𝑛

⋮ ⋮ ⋮   ⋱   ⋮
0 0 0   … 𝜆𝑛 ]

 
 
 
 

 

Let 𝑆1=𝑈𝐷𝑡
−1 . Then 𝑆𝑡

−1𝐴𝑆𝑡 = 𝐷𝑡𝑈
∗𝐴𝑈𝐷𝑡

−1 = 𝐷𝑡𝑇𝐷𝑡
−1 . 

Thus, for 𝑡 > 0 large enough, we can be certain that the sum of all the absolute values of the off-diagonal entries 

of 𝑆𝑡
−1𝐴𝑆𝑡 , can be made arbitrary small. It follows that  

 ‖𝑆𝑡
−1𝐴𝑆𝑡 − 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑛)‖ → 0 as 𝑡 → ∞. 

Thus  

 ‖𝑆𝑡
−1𝐴𝑆𝑡‖ → ‖𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑛)‖ = max1≤𝑖≤𝑛|𝜆𝑖| = 𝑟(𝐴). 

Now, 

 𝑟(𝐴) ≤ 𝑖𝑛𝑓‖𝑆−1𝐴𝑆‖ ≤ ‖𝑆𝑡
−1𝐴𝑆𝑡‖, for all 𝑡 > 0 . 

Letting 𝑡 → ∞, we obtain 

 𝑟(𝐴) ≤ inf ‖𝑆−1𝐴𝑆‖ ≤ 𝑟(𝐴), and so 

𝑟(𝐴) =inf ‖𝑆−1𝐴𝑆‖ . 

 

   5.  The Spectral Rdius of the Hadamard product of matrices 
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5.1 The Hamdamard product  

Definition 5.1.1 :  

𝐼𝑓 𝐴 = ⌊𝑎ĳ⌋ , 𝐵 =  ⌊𝑏ĳ⌋ 𝜖 𝑀𝑚𝑛 , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 ℎ𝑎𝑑𝑎𝑚𝑎𝑟𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴° 𝐵 = ⌊𝑎ĳ𝑏ĳ⌋𝜖 𝑀𝑚𝑛 . 

Theorem 5.1.2 : (Zhang , 1999). If A, B ϵ 𝑀𝑛 and A, B are positive semi definite, Then 

𝐴°𝐵 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑚𝑖 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 .  

Proof :  

For every vector ∈ 𝐶𝑛, We have  

((𝐴°𝐵)𝑥, 𝑥) = 𝑥∗(𝐴°𝐵)𝑥 .  

If X = 𝑑𝑖𝑎𝑔(𝑥1, 𝑥2, … , 𝑥𝑛), and �̅� = 𝑑𝑖𝑎𝑔 (�̅�1, �̅�2, … , �̅�𝑛), then  

 𝑥∗(𝐴°𝐵) x = tr (�̅�𝐴𝑋𝐵𝑡) 

                    = 𝑡𝑟 ((𝐵
1

2⁄ )
𝑡

 �̅�𝐴
1

2⁄ 𝐴
1

2⁄ 𝑋 (𝐵
1

2⁄ )
𝑡

)                                         by (Theorem 3.1.7) 

= 𝑡𝑟 ((𝐴
1

2⁄ 𝑋 (𝐵
1

2⁄ )
𝑡

)
∗

(𝐴
1

2⁄ 𝑋 (𝐵
1

2⁄ )
𝑡

)) ≥ 0 

                                                                                                           by (Theorem 3.1.8) 

Some properties of the Hadamard product :  

Theorem 5.1.3: (Zhang 1999) . Let A, B and C ∈ 𝑀𝑚𝑛 . Then  

1- 𝐴°𝐵 = 𝐵°𝐴 .  

2- 𝐾(𝐴°𝐵) = (𝐴𝐾)°𝐵 = 𝐴°(𝐾𝐵), 𝑤ℎ𝑒𝑟𝑒 𝐾 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 .  

3-(A±𝐵) °𝐶 = (𝐴°𝐶) ± (𝐵°𝐶).  

4- if A and B are diagonal matrices , then 𝐴°𝐵 = 𝐴𝐵 .  

5-(𝐴°𝐵)𝑡 = 𝐴𝑡  ° 𝐵𝑡 . 

6-(𝐴°𝐵)∗ = 𝐴∗  ° 𝐵∗.  

7- If 𝐴 ∈ 𝑀𝑛 𝑎𝑛𝑑 𝐴 ≥ 0 𝑎𝑛𝑑 𝑖𝑓 𝐴 ̃𝑖𝑠 𝑎𝑛𝑦 principal submatrix of A, then 𝑟(�̃�) ≤ 𝑟(𝐴) 

8-if 𝐴 ≥ 0 𝑎𝑛𝑑 𝐵 ≥ 0, 𝑡ℎ𝑒𝑛 𝐴°𝐵 ≥ 0 

9- if 𝐼𝑛𝜖 𝑀𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 , 𝑡ℎ𝑒𝑛 𝐴 °𝐼𝑛 = 𝑑𝑖𝑎𝑔(𝑎11, 𝑎22, … … . , 𝑎𝑛𝑛). 

10-let A,B and C be positive semidefinite and if A-B is positive semidefinite, then (𝐴°𝐶) − (𝐵°𝐶) is positive 

semidefinite. 

11- If 𝐴 = ⌊𝑎ĳ⌋ 𝜖 𝑀𝑛 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑚𝑖𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒, 𝑡ℎ𝑒𝑛 ⌊|𝑎ĳ|
2
⌋ 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑚𝑖𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒. 

12-If A and B are Hermitian matrices ,then A°B is Hermitian . 

13- If 𝐷1, 𝐷2 𝜖 𝑀𝑛 𝑎𝑟𝑒 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠, 𝑡ℎ𝑒𝑛  𝐴°(𝐷1𝐵𝐷2) = 𝐷1(𝐴°𝐵)𝐷2 . 

Proof of (12) :  

𝑙𝑒𝑡 𝐷1 = 𝐷𝑖𝑎𝑔(ʎ1, ʎ2, …… ʎ𝑛) 𝑎𝑛𝑑 𝐷2 = 𝑑𝑖𝑎𝑔 (𝜇1, 𝜇2,………..𝜇𝑛) .then 
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𝐷1𝐵𝐷2 = 

[
 
 
 
 
ʎ1𝜇1𝑏11

ʎ1𝜇1𝑏21

ʎ1𝜇1𝑏31

⋮
ʎ𝑛𝜇1𝑏𝑛1

ʎ1𝜇2𝑏12

ʎ1𝜇2𝑏22

ʎ1𝜇2𝑏32

⋮
ʎ𝑛𝜇2𝑏𝑛2

ʎ1𝜇3𝑏13

ʎ1𝜇3𝑏23

ʎ1𝜇3𝑏33

⋮
ʎ𝑛𝜇3𝑏𝑛3

⋯
⋯
⋯
⋱
⋯

ʎ1𝜇𝑛𝑏1𝑛

ʎ2𝜇𝑛𝑏2𝑛

ʎ3𝜇𝑛𝑏3𝑛

⋮
ʎ𝑛𝜇𝑛𝑏𝑛𝑛]

 
 
 
 

 

 

              𝐴°(𝐷1 𝐵𝐷2) = 

[
 
 
 
 
 

[
 
 
 
 
ʎ1𝜇1𝑏11

ʎ1𝜇1𝑏21

⋮
ʎ𝑛𝜇1𝑏𝑛1

ʎ1𝜇2𝑏12

ʎ1𝜇2𝑏22

⋮
ʎ𝑛𝜇2𝑏𝑛2

⋯
⋯
⋱
⋯

ʎ1𝜇𝑛𝑏1𝑛

ʎ2𝜇𝑛𝑏2𝑛

⋮
ʎ𝑛𝜇𝑛𝑏𝑛𝑛

]
 
 
 
 

]
 
 
 
 
 

 

                                 = [

ʎ1
0
⋮
0

0 ⋯ 0
ʎ2 ⋯ 0

⋮
0

⋱
⋯

⋮
ʎ𝑛

]   [

𝑎11𝑏11

𝑎21𝑏21

⋮
𝑎𝑛1𝑏𝑛1

𝑎12𝑏12 ⋯ 𝑎1𝑛𝑏1𝑛

𝑎22𝑏22 ⋯ 𝑎2𝑛𝑏2𝑛

⋮
𝑎𝑛2𝑏𝑛2

⋱
⋯

⋮
𝑎𝑛𝑛𝑏𝑛𝑛

]      [

𝜇1

0
⋮
0

0 ⋯ 0
𝜇2 ⋯ 0

⋮
0

⋱
⋯

⋮
𝜇𝑛

]      

= 𝐷1 (𝐴°𝐵)𝐷2 . 

Theorem 5.1.4 : (Zhang , 1999) . Let A,B ϵ 𝑀𝑛 be positive semidefinite . then  

𝐴2°𝐵2 ≥ (𝐴°𝐵)2 .  

Proof :  

Let𝑎𝑖  𝑎𝑛𝑑 𝑏𝑖, be i-th columns’ of the matrices A and B, respectively. Now, by a Direct computation we have, 

(𝐴𝐴∗)°(𝐵𝐵∗) = (𝐴°𝐵) (𝐴∗ ° 𝐵∗) + ∑(𝑎𝑖°𝑏𝑗)(𝑎𝑖
∗ °𝑏𝑗

∗) 

𝑖≠𝑗

 .  

So ,  

(𝐴𝐴∗)°(𝐵𝐵∗) ≥ (𝐴°𝐵) (𝐴∗ ° 𝐵∗). 

Since A and B are positive semidefinite, then   

                                                                    𝐴2°𝐵2 ≥ (𝐴°𝐵)2.                           

    

5.2 The kronecker Product :  

Definition 5.2.1: 

𝐵 =  ⌊𝑏ĳ⌋ 𝜖 𝑀𝑝𝑞 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴 ⊗ 𝐵   The Kronecker Product of, A = ⌊𝑎ĳ⌋ 𝜖 𝑀𝑚𝑛 𝑎𝑛𝑑   

𝑎𝑛𝑑 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 

                                                𝐴 ⊗ 𝐵 = 

[
 
 
 
 
𝑎11𝐵
𝑎21𝐵
𝑎31𝐵

⋮
𝑎𝑛1𝐵

𝑎12𝐵
𝑎22𝐵
𝑎32𝐵

⋮
𝑎𝑛2𝐵

𝑎13𝐵
𝑎23𝐵
𝑎33𝐵

⋯ 𝑎1𝑛𝐵
⋯ 𝑎2𝑛𝐵
⋯ 𝑎3𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑛3𝐵 ⋯ 𝑎𝑚𝑛𝐵]

 
 
 
 

 𝜖 𝑀(𝑚𝑝)(𝑛𝑞). 

Theorem 5.2.2: (zhang,1999),Let A,B and C ϵ 𝑀𝑛. 𝑡ℎ𝑒𝑛 

(1) (aA)⊗B=A(aB) for all complex numbers a. 

(2) (𝐴 ⊗ 𝐵)𝑡 = 𝐴𝑡 ⊗ Bt. 
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(3) (𝐴 ⊗ 𝐵)∗ = 𝐴∗ ⊗ B∗ 

(4) (𝐴 ⊗ 𝐵) ⊗ C = 𝐴 ⊗ (B ⊗ C). 

(5) (𝐴 + 𝐵) ⊗ C = (𝐴 ⊗ C) + (B ⊗ C). 

(6) (A°𝐵) 𝑖𝑠𝑝𝑟𝑖𝑐𝑖𝑝𝑎𝑙 𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓  A⊗ B 

(7) If 𝐴, 𝐵 ≥ 0 𝑡ℎ𝑒𝑛 𝐴 ⊗ 𝐵 ≥ 0 . 
 

Lemma 5.2.3: (Zhang , 1999). Let A, B, C and D ϵ𝑀𝑛. 𝑇ℎ𝑒𝑛  

                          (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷. 

Proof: 

                                                Let A=[𝑎𝑖ℎ] 𝑎𝑛𝑑 𝐶 = ⌊𝑐ℎ𝑗⌋. 𝑇ℎ𝑒𝑛 

                                              𝐴 ⊗ 𝐵 = [𝑎𝑖ℎ𝐵] and 𝐶 ⊗ 𝐷 = ⌊𝑐ℎ𝑗𝐷⌋,and  

      (𝐴 ⊗ 𝑏)(𝐶 ⊗ 𝐷) =  

 

= [   

(∑ 𝑎1ℎ𝑐ℎ1
𝑛
ℎ=1 )𝐵𝐷

(∑ 𝑎2ℎ𝑐ℎ1
𝑛
ℎ=1 )𝐵𝐷

⋮
(∑ 𝑎𝑛ℎ𝑐ℎ1

𝑛
ℎ=1 )𝐵𝐷

       

(∑ 𝑎1ℎ𝑐ℎ2
𝑛
ℎ=1 )𝐵𝐷

  (∑ 𝑎2ℎ𝑐ℎ2
𝑛
ℎ=1 )𝐵𝐷    

 
⋯
⋯        

    ⋮                             ⋱ 
(∑ 𝑎𝑛ℎ𝑐ℎ2

𝑛
ℎ=1 )𝐵𝐷  ⋯

   

(∑ 𝑎1ℎ𝑐ℎ𝑛
𝑛
ℎ=1 )𝐵𝐷

(∑ 𝑎2ℎ𝑐ℎ𝑛
𝑛
ℎ=1 )𝐵𝐷

⋮
(∑ 𝑎𝑛ℎ𝑐ℎ𝑛

𝑛
ℎ=1 )𝐵𝐷

] 

 

= [∑ 𝑎𝑖ℎ𝑐ℎ𝑗

𝑛

ℎ=1

]  ⊗ 𝐵𝐷  

= 𝐴𝐶 ⊗ 𝐵𝐷 . 

Theorem 5.2.4 (Zhang , 1999) . Let Aϵ𝑀𝑛 𝑎𝑛𝑑 𝐵 𝜖 𝑀𝑚  . 𝑡ℎ𝑒𝑛  

𝜎(𝐴 ⊗ 𝐵) =  𝜎(𝐴)𝜎(𝐵).  

Proof :  

Since 𝐴 ∈ 𝑀𝑛, Since 𝐴 ∈ 𝑀𝑛 𝑎𝑛𝑑 𝐵 ∈ 𝑀𝑚, by Schur’s unitary triangularization theorem, there are unitary 

matrices 𝑈 ∈ 𝑀𝑛 𝑎𝑛𝑑 𝑉 ∈ 𝑀𝑚 such that,  

𝑈∗  𝐴𝑈 = 𝑇1, 𝑎𝑛𝑑 𝑉∗𝐴𝑉 = 𝑇2 , 

Where 𝐺1and 𝐺2 are upper triangular with entries diagonal the eigenvalues of A and B, respectively. Then  

(𝑈 ⊗ 𝑉)∗(𝐴 ⊗ 𝐵)(𝑈 ⊗ 𝑉) = (𝑈∗ ⊗ 𝑉∗)(𝐴 ⊗ 𝐵)(𝑈 ⊗ 𝑉) 

                                                                              = (𝑈∗𝐴𝑈)  ⊗ (𝑉∗𝐵𝑉) 

                                                                              = T1 ⊗ T2. 

 

Now, we note that, 𝑇1 ⊗ 𝑇2 is upper triangular with entries diagonal  

{ʎ1𝜇1, ʎ1𝜇2, … , ʎ1𝜇𝑚, ʎ2𝜇1, ʎ2𝜇2, … ʎ2𝜇𝑚, … ʎ𝑛𝜇1, ʎ𝑛𝜇2, … ʎ𝑛𝜇𝑚, } , 

Where σ(A) = {ʎ1, ʎ2, …… . ʎ𝑛} and σ (B) = {𝜇1, 𝜇2, … …… , 𝜇𝑚}. 
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So,  

𝜎(𝐴 ⊗ 𝐵) = {ʎ𝑖𝜇𝑗 , 𝑖 = 1, … . . 𝑛, 𝑗 = 1,… . ,𝑚} 

Then ,  

𝜎(𝐴 ⊗ 𝐵) = 𝜎(𝐴)𝜎(𝐵). 

Corollary 5.2.5 : Let Aϵ𝑀𝑛𝑎𝑛𝑑 𝐵𝜖 𝑀𝑛  . 𝑡ℎ𝑒𝑛  

𝑟(𝐴 ⊗ 𝐵) =  𝑟(𝐴)𝑟(𝐵).  

 

 

5.3 Some Bounds for the Spectral Radius of the Hadamard products of Matrices  

The study begins this section by the following theorem which relates the hadamard product with the spectral 

radiues .  

Theorem 5.3.1: (Cheng, etal., 2005) let A,B ϵ𝑀𝑛, 𝑎𝑛𝑑 𝐴, 𝐵 ≥ 0 . 𝑇ℎ𝑒𝑛  

𝑟(𝐴°𝐵) ≤ 𝑟(𝐴)𝑟(𝐵).  

Proof : We have  

𝑟(𝐴 ⊗ 𝐵) =  𝑟(𝐴)𝑟(𝐵)                         (by corollary 5.2.5) 

                                                                                                                                                                

Since A⊗B≥ 0 𝑎𝑛𝑑 , 𝐴°𝐵 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝐴 ⊗ 𝐵, 𝑡ℎ𝑒𝑛  

𝑟(𝐴°𝐵) ≤ 𝑟(𝐴 ⊗ 𝐵) = 𝑟(𝐴)𝑟(𝐵)                    (by property (7) of theorem 5.1.3) 

                                                                                                                                                                          

Theorem 5.3.2 : (cheng, etal., 2005) let 𝐴 ≥ 0, 𝐵 ≥ 0 𝑏𝑒 𝑛𝑥𝑛 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠.  

If there exists a positive diagonal D such that 𝐷𝐵𝐷−1is diagonally dominant of its column (or row) entries, then  

(1)   r(A°𝐵) ≤ 𝑟(𝐴)max𝑖=1,2,…𝑛 𝑏𝑖𝑖………………(1)  

 

and  

 

(2)   r(B)≤ 𝑡𝑟(𝐵) … … …… …… …… . (2) 

Proof of inequality (1):  

We have  

                     𝐴°(𝐷𝐵𝐷−1) = 𝐷(𝐴°𝐵)𝐷−1               ( by property (13) of theorem 5.1.3)   

and Hence,  

           𝑟(𝐴°(𝐷𝐵𝐷−1)) = 𝑟(𝐷(𝐴°𝐵)𝐷−1) = 𝑟(𝐷−1𝐷(𝐴°𝐵)) = 𝑟(𝐴°𝐵)            (by remark 4.1.4) 
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Notice that the diagonal entries of B and DBD−1 are the same, so we may assume that B is diagonally dominant 

of its column, (or row) entries. Then  

𝐴°𝐵 ≤ 𝐴 𝑑𝑖𝑎𝑔 (𝑏11, …… . 𝑏𝑛𝑚) ≤ 𝐴 max
𝑖=1,2,….,𝑛

𝑏𝑖𝑖 

So  

                        𝑟(𝐴°𝐵) ≤ 𝑟(𝐴𝑑𝑖𝑎𝑔(𝑏11, 𝑏22, , , , , , , , , , , 𝑏𝑛𝑚, )) ≤ 𝑟(𝐴 max𝑖=1,2,,,,𝑛 𝑏𝑖𝑖) ………..(3) 

Then , 

                                                      𝑟(𝐴°𝐵) ≤ 𝑟 (A) max𝑖=1,2,,,,𝑛 𝑏𝑖𝑖. 

     If B is diagonally dominant of its row entries, then  

 𝑟(𝐴°𝐵) =  𝑟(𝐴°𝐵)𝑡 = 𝑟(𝐴𝑡°𝐵𝑡)                ( by theorem 3.1.6 and property ( 5) of theorem 5.1.3) .  

Now,  

At° Bt  ≤ Atdiag (b11, , , , , , , bnn) ≤ At max
i=1,2,,,,,n

bii. 

Then,   

𝑟(𝐴°𝐵) = 𝑟(𝐴𝑡°𝐵𝑡) ≤ 𝑟(𝐴𝑡) max
𝑖=1,2,…,𝑛

𝑏𝑖𝑖 = 𝑟(𝐴) max
𝑖=1,2,…,𝑛

𝑏𝑖𝑖  

If B is not diagonally dominant, we have𝐷𝐵𝐷−1 is diagonally dominant with diagonal (𝑏11, … , 𝑏𝑛𝑛) entries, and 

by similarly suppose that 𝐷𝐵𝐷−1 is diagonally dominant of its column, then  

A°(DBD−1) ≤  Adiag(b11, … , bnn) ≤ A max
i=12,,,,,,n

bii 

So  

𝑟(𝐴°(𝐷𝐵𝐷−1)) =  𝑟(𝐴°𝐵) ≤ 𝑟(𝐴) max
𝑖=1,2,…,𝑛

𝑏𝑖𝑖  

and if DBD−1 is diagonally dominant of it is row entries, then  

𝑟(𝐴°𝐵) = 𝑟(𝐴°𝐷𝐵𝐷−1) =  𝑟(𝐴°𝐷𝐵𝐷−1)𝑡 = 𝑟(𝐴𝑡  °(𝐷𝐵𝐷−1)𝑡) 

Now  

              At ° (DBD−1)t  ≤ Atdiag (b11, b22, , , , , , , , , , bnn) ≤  At maxi=1,2,…,n bii  

So  

𝑟(𝐴°𝐵) = 𝑟(𝐴𝑡  ° (𝐷𝐵𝐷−1)𝑡) ≤ 𝑟 (𝐴𝑡) max
𝑖=1,2,…,𝑛

𝑏𝑖𝑖 = 𝑟(𝐴) max
𝑖=1,2,…,𝑛

𝑏𝑖𝑖 . 

Proof of inequality (2):  

Letting A=Jn, where Jn is the nxn matrix of all ones in the first inquality (3), we have  

𝑟(𝐽𝑛 ° 𝐵) ≤ 𝑟(𝐽𝑛𝑑𝑖𝑎𝑔 (𝑏11, … , 𝑏𝑛𝑛)). 

Notice that, 

[

1
1

1
1

⋯ 1
⋯ 1

⋮ ⋮ ⋯ ⋮
1 1 ⋯ 1𝑛𝑛

]    [

𝑏11

0

0
𝑏22

⋯ 0
⋯ 0

⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑏𝑛𝑛

]  
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       =

[
 
 
 
 
𝑏11 𝑏22

𝑏11 𝑏22

𝑏33 ⋯
𝑏33 ⋯

𝑏𝑛𝑛

𝑏𝑛𝑛

𝑏11 𝑏22

⋮ ⋮
𝑏33 ⋯
⋮ ⋱

𝑏𝑛𝑛

⋮
𝑏11 𝑏22 𝑏33 ⋯ 𝑏𝑛𝑛]

 
 
 
 

     = 𝑄  

And σ(Q)={0, ∑ 𝑏𝑖𝑖
𝑛
𝑖=1 },                                (by Theorem 3.1.6) 

Then,  

𝑟(𝑄) = ∑ 𝑏𝑖𝑖

𝑛

𝑖=1

= 𝑡𝑟𝑄 = 𝑡𝑟𝐵 .  

So 

                                                             𝑟(𝐽𝑛 ° 𝐵)  ≤ 𝑟(𝑄).  

Then,  

                                                          𝑟(𝐵) ≤ 𝑟(𝑄) =  𝑡𝑟𝑄 = 𝑡𝑟𝐵 . 

Remark 5.3.3: It is not true that if 𝐴, 𝐵 ∈ 𝑀𝑛 , 𝑡ℎ𝑒𝑛 (𝐴°𝐵) ≤ 𝑟(𝐴) max𝑖−1,2,…,𝑛 𝑏𝑖𝑖  , as seen from the following 

example. 

             Let A = [
0 1
1 0

] , 𝐵 = [
1 2
2 1

] 𝑎𝑛𝑑 , 𝐴°𝐵 = [
0 2
2 0

] . 𝑡ℎ𝑒𝑛  

                 𝑟(𝐴) = 1, 𝑟(𝐵) = 3, 𝑟(𝐴°𝐵) = 2 ,max𝑖=1,2,…,𝑛 𝑏𝑖𝑖 = 1 

So 

                                               𝑟(𝐴°𝐵) > 𝑟(𝐴) max𝑖=1,2,…,𝑛 𝑏𝑖𝑖 . 

 

Remark 5.3.4 : it is not  true that if A≥ 0 𝑎𝑛𝑑 𝐵 ≥ 0 are both diagonally dominant of its (column) row entries, 

then   

                                       𝑟(𝐴°𝐵) ≤ (max𝑖=1,2,…,𝑛 𝑎𝑖𝑖)(max𝑖=1,2,…,𝑛 𝑏𝑖𝑖)   

Consider the example: 

𝐴 = [
2 1
1 1.5

] , 𝐵 = [
2 1
1 2

] , 𝑎𝑛𝑑 𝐴°𝐵 = [
4 1
1 3

] 

With 

                                       𝑟(𝐴°𝐵) ≅ 4.6180 > 4 = (max𝑖=1,2,…,𝑛 𝑎𝑖𝑖)(max𝑖=1,2,…,𝑛 𝑏𝑖𝑖)  

Corollary 5.3.5:  (Cheng, et al., 2005). Let 𝐵 ≥ 0 𝑏𝑒 𝑛 × 𝑛 nonnegative matrix. If there exists a positive 

diagonal 𝐷 such that 𝐷𝐵𝐷−1 is diagonally dominant of its column (or row) entries, then 

max{𝑟(𝐴°𝐵): 𝐴 ≥ 0,   𝑟(𝐴) = 1} =  max
𝑖=1,2,…,𝑛

𝑏𝑖𝑖 

Proof :  

Letting 𝐴 = 𝐼𝑛, ( where 𝐼𝑛 𝑡ℎ𝑒 𝑛 × 𝑛 identity matrix) in inequality(1) of theorem 5.3.2 we have                     
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𝑟(𝐼𝑛°𝐵) ≤ 𝑟(𝐼𝑛) max
𝑖=1,2,…,𝑛

𝑏𝑖𝑖 

Then  

𝑟(𝑑𝑖𝑎𝑔(𝑏11, … , 𝑏𝑛𝑛)) ≤ max
𝑖=1,2,…,𝑛

𝑏𝑖𝑖 

But  

𝑟(𝑑𝑖𝑎𝑔(𝑏11, … , 𝑏𝑛𝑛)) = max
𝑖=1,2,…,𝑛

𝑏𝑖𝑖  

So,  

max{𝑟(𝐴°𝐵): 𝐴 ≥ 0,   𝑟(𝐴) = 1} =  max𝑖=1,2,…,𝑛 𝑏𝑖𝑖 . 

 

6. Conclusion 

 

   In this study, the Hadamard product and kronecker product have good properties when it works with diagonal 

matrices, positive semidefinite matrices, Hermitian matrices, and nonnegative matrix. 

   These properties and some theories that have been used ( see theorem 5.3.1and others) can help us to 

understand and prove some inequalities for the spectral radius of the hadamard product and kronecker product. 
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