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Abstract 

Root finding is an issue in scientific computing. Because most nonlinear problems in science and engineering 

can be considered as the root finding problems, directly or indirectly. The research in numerical modeling for 

root finding is still going on. In this study, fixed point iterative methods for solving simple real roots of nonlinear 

equations, which improve convergence of some existing methods, are thorough. Derivative estimations up to the 

third order (in root finding, some recent ideas) are applied in Taylor’s approximation of a nonlinear equation by a 

cubic model to achieve efficient iterative methods. We may also discuss possible extensions to two dimensions 

and consider Newton’s method and Halley’s method in 1D and 2D problem solving. Several examples for test of 

efficiency and convergence analyses using C++ are offered. And some engineering applications of root finding 

are conferred. Graphical demonstrations are supported with matlab basic tools. 

Keywords: engineering applications, derivative estimations, iterative methods, simple roots, Taylor’s 

approximation. 

 

1. Introduction  

Nonlinear equations appear in most science and engineering models. For example, for solving nonlinear 

differential equations, in circuit analysis, analysis of state equations for a real gas, mechanical motions 

/oscillations, weather forecasting, in optimization and many other fields of engineering designing processes. 

Nonlinear problems are difficult to solve but they occur naturally in fluid motions, heat transfer, wave motions, 

etc. 

Some existing iterative root finding methods such as the Secant, bisection, Regula Falsi and Muller’s methods 

need more than one initial guesses. And others may contain higher derivatives, which are sources of algorithm 

complexities [1, 2, 3, 10, 14, 15, 16, 18]. In this study, based on the author’s work in [14, 15], we surrogate the 

higher derivative '''f  in terms of ', ff  and ''f  to minimize the number of function evaluations which 

can also facilitate us develop one-point fixed point iterative algorithms in the third order (cubic model) Taylor’s 

approximation/ interpolation of a nonlinear equation ).(xf  As already discussed in [14], these derivative 

estimations are not the actual usual function evaluation but a kind of substitution (to reduce algorithm 

complexity), which we  may  use only in root finding. Also we have some theoretical and practical 

modifications in this present work. One good idea is discussion on possible extensions for nonlinear systems in 

2D. This article consists of; (1) introduction (2) materials and procedures or construction method (3) Discussion 

and results (analysis, experiment and results) (4) Possible extensions (5) applications (6) conclusion and 

recommendation (7) references. 

 

  

 

2. Materials and methods 

This work is intended to follow and modify the derivative estimation (replacement, for root finding) recently 
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proposed in the author’s previous works in [14, 15]. The study uses mixed design approach. We use C++ and 

matlab as a tool. The procedures are as below. 

2.1. Construction methods 

In this section, we apply derivative estimation (substitution) technique based on ideas in [14, 15], in the third 

order  (cubic model) Taylor’s (interpolation) approximation to present some fixed-point iterative methods. 

We shall apply a technique of replacement of a higher derivative (  '',',''' fffFf   by lower derivatives (in 

terms of ', ff and ''f ). This will reduce the cost of function evaluations at least by one and may increase 

efficiency index ).( /1 fpe   where p is the order of convergence. One of the higher derivative estimations 

proposed in [14, 15]  is  .'',',''' fffFf   

When the replacement of this third derivative ''''f  is performed by the lower derivatives, the new method will 

contain only up to the second derivative of ).(xf  Which is a success. Further replacement can be done to 

remove even the second derivative as in [15]. And the new methods may be more efficient than the one with the 

third derivative. 

3.  Discussions and Results 

Let us first present our previous works in [14]. We start with the Taylor’s approximation of )(xf  about an 

approximate root hxr o  , with x0 an initial guess for a root r of )(xf and h  is too small. 

 ...)('''6/1)(''2/1)(')()( 32  ooooo xfhxfhxhfxfhxf                                 (1) 

Consider the estimation,  

.0)('''6/1)(''2/1)(')()( 32  ooooo xfhxfhxhfxfhxf                      (2) 
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h  in (3), we obtain an iterative algorithm (4)  
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'''   and ''''' ff   into (4), the algorithms below 

 could be obtained.  
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Now let 

 

  .0)('''6/1)(''2/1)(')( 32  oooo xfhxfhxhfxf                 (11) 

Eqn (11) gives  

.
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If 
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f
h   in the right part of (12), then one will get 
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Note also that (14) is an extension of (23) below.  
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in (14), then we get algorithms (15) and (16) respectively. 
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Suppose also 
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One can note that (19) is the obvious extension of (24). In (19), if we use 
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 then we obtain the algorithms below respectively. 
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The linear approximation of f(x), 

 0)(')(  oo xhfxf  gives the Newton’s method (22)[2, 3, 4, 18]  
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The linear interpolation also yields an other fixed point method (22b) with only  

two function evaluations ( )(')( xfandxf ). 
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If we consider quadratic interpolation model of )(xf and let 

0)(''2/1)(')()( 2  oooo xfhxhfxfhxf , 

then we obtain Halley’s method (23) and Chebyshev’s method (24) [2, 3, 5, 6, 14, 15].  

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.4, 2017 

 

5 

)('')(2/1)]('[

)(')(
21

kkk

kk
kk

xfxfxf

xfxf
xx




                    (23) 

3

2

1
)]('[

)('')]([
2/1

)('

)(

k

kk

k

k

kk
xf

xfxf

xf

xf
xx 

                     (24) 

3.1. Other additional methods 

Consider again 
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And from which (27) is obtained.   
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3.2. Convergence Analysis 

We shall use the following important definition, theorem and statements.. 

Definition 3.1 A sequence (xn) generated by an iterative method is said to converge to a root r with order p  1 
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if there exists c > 0 such that 
p

nn cee 1 , ,onn  for some integer n0 0 and nn xre  [1, 2,3, 14,15]. 

 Theorem 3.1 (Order of Convergence) Assume that )(x  has sufficiently many derivatives at a root r 

of )(xf . The order of any one-point iteration function )(x  is a positive integer p, more especially 

)(x  has order p if and only if rr )(  and 0)()( rj  for 0 < j < p, 0)()( rp [2, 5, 14]. 

Statement-1: If ( , , ', '', ''')x f f f f   converges to the root r of )(xf  for a given initial guess, 

then ( , , ', '')x f f f   in which, the third derivative '''f  is replaced by lower derivatives will 

converge (probably faster) to the root r with the same initial guess x0. 

Statement-2: In this study, suppose that ( )x is expressible in terms of an iteration function ( )x  of order 

p , f( )x and its derivatives as in the proofs below. Then the order q of ( )x  [14] can be determined and 

.q p  

All the algorithms we presented need an appropriate choice of only one suitable initial guess ox  in an interval 

Io = [a, b][14]. Random choice of ox  leads to unnecessary works, we do not do it [14]. 

 

 

 

1) Proof of order of convergence of algorithm in (27)  

We can write (27) as .))(()( Hxxxx    With .
)]('[

)(''')]([
6/11)(

3

2

xf

xfxf
xH   

And )(xx  is Halley’s iteration function of order 3.  

Let r be a simple root of .0)( xf  We have ,)( rr   xx )( and .)( xx   

And 0)('')('  rr   but .0)(''' r  

Differentiating ,))(()( Hxxxx    we find that 0)('')('  rr   but .0)(''' r  

So, 3p . Conversely, if p = 3, then we can show that 0)('')('  rr   but 0)(''' r . 

Hence, (27) is third order convergent method by the theorem 3.1 above.   

2) To prove order of convergence of algorithm in (31).  

We can write (31) as .))(()( Txxxx     Where ( , ', '').T T f f f  

 And )(xx   is Halley’s iteration function. Doing as in 1) above we can show that (31) is also a cubic order. 
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Some other iterative methods can be referred to [14, 15]. And methods of higher orders in this report shall be 

analyzed in detail in our future works.   

3.3. Experimental examples and results 

We selected the following equations for tests of efficiency, each with 3 initial guesses. 

02cos36)(1  xxxf , ox
 = 0, 1, 2, r≈0.607102,  

0
3

3)( 1

2  

x
exf x

, ox
= 0.5, 2, 3,  r = 1.000000. 

0222)( 6

3  xxxf  , ox
= 1, 2, 3, r ≈ 1.134724 ,  

0333)( 3

4  xxxf , ox
= 1, 2, 3, r ≈ 1.324718. 

 0)( 4

5  xexxxf , ox
 = -1.5, -1, 0 r≈-0.52065.  

0cos)( 3

6  xexxxf , ox
 = -2.5, -1, -0.5, r ≈ -0.649565. 

22)(log)( 107  xxxf , ox
= 0.5, 1.5, 2.2, r =1.000000. 

 

Newton’s method (NM), Chebyshev’s method (CM), and the algorithms in equations (4), (6), (27) and (31) were 

considered. C++ implementation was done for each algorithms and the number of iterations taken to converge to 

a root r to six decimal places was recorded and written in the body cells of the next table-1.1 under each method. 

The stopping criteria were using the residual error )( ii xfE   such that )( ixf  ≤ , for chosen
710 . 

We also checked this by other stopping criteria in the literature.  

The triplets of numbers in each cells of table-1.1 correspond to the number of iterations needed for convergence 

for each of the three initial guesses of a root r. In the first column, ´́functions (f) ´́ refers to the number of 

function evaluations, ´́Efficiency (e) ´́ represents the computational efficiency index calculated by e = p
1/f

.  

The average number of iteration Nar is estimated [14]. In [14] the initial guesses were not given, but we would 

be free to choose closer to an indicated root or any root. There in [14], the focus was to derive new methods 

based on derivative replacements. Note that if a method with third order derivative converges to an exact root r, 

then the new method with third order derivative removed (by the replacement) also converges to r and may be 

even more efficient. 

Table 1.1 Summary of numerical results 

 

fi NM CH (4) (6) (27) (31) 

f1 3, 3,3 2, 2, 3 2, 2, 3 2, 2, 3 3, 2,3 2, 2,3 

f2 4,4, 4 3, 3, 4 3, 3, 4 3, 3, 4 3,3, 4 3,3, 3 

f3 5, 7,8 4, 5, 6 4, 5, 7 3, 4, 5 4, 4,6 3, 4, 5 
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From table 1.1 one can study the order p, efficiency index e, number of function evaluations f, and average 

number of iterations (Nar) of the algorithms. All the methods in the table are relatively efficient. 

 

 

 

4. Extensions in 2D 

Even though most real world problems consist several independent variables 

(are multidimensional), studying 1D problem solving is the basis for many 2D 

problems which is more difficult task. Let us begin with Newton’s method to 

solve systems of nonlinear equations in 2D. Consider a 2D nonlinear systems of 

equation [1, 3, 18, 19] 














0),(2

0),(1
),(

yxhf

yxgf
yxff

                                  (32) 

We desire to get X =(x, y) that satisfies f. If X0 = (x0,y0) is an initial guess and X1 =(x1,y1) is an 

f4 5,5, 6 4, 3, 4 4, 3, 4 4, 3, 4 3,3, 4 3,3, 4 

f5 6,4, 3 4, 3, 3 4, 3, 3 3, 3, 3 3,3, 3 3,3, 3 

f6 7, 5,4 5, 3, 4 5, 3, 4 4, 3, 3 5, 3,3 4, 3,3 

f7 3, 3,3 3, 2, 3 3, 2, 2 3, 2, 3 3, 2,3 3, 2,3 

Nar ≈4 ≈ 3 ≈ 3 ≈ 3 3 ≈3 

p 2 3 3 3 3 3 

f 2 3 4 3 4 3 

e 1.414 1.442 1.316 1.442 1.316 1.442 
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improved approximation , then one can apply Taylor’s linear estimation as 

( 1) ( 0) '( 0)( 1 0) 0f X f X f X X X                                (32b) 

Where the Jacobean matrix of f is 











yx

yx

hh

gg
yxXff )),((''

                                       (33) 

The linear system (32b) can be solved by elimination, or by Newton’s method 

11 0 '( 0) ( 1 0)X X f X X X   .                                 (33b) 

 Provided that the inverse 1'( 0)f X  exists. And the iteration process repeats until 

convergence. The convex acceleration of Newton’s method (33b) in 2D to solve f is [19] 

  )()(')]()[(2/1 11

1 kkkkkk XfXfXLIXLIXX 

                (34) 

With I is identity matrix of order 2 and 
1 1'( ) ''( ) '( ) ( )k k k kL f X f X f X f x  is called the 

logarithmic degree of convexity of f. Equation (34) is super-Halley’s method to solve (32). 

And Halley’s method is given by  

  )()(')](5.0)[(2/1 11

1 kkkkkk XfXfXLIXLIXX 

              (35) 

The Chebyshev’s method is 

  )()(')(2/1 1

1 kkkkk XfXfXLIXX 

                           (36) 

To see extendibility of some of the methods in this article in 2D via equation (35) or (34) or 

(33b) above as an example, observe that equation (27) can be expressed as  

.))(()( Fxxxx    With ).''',',( fffFF  and )(xx  is Halley’s iterative function in 1D. 
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Similarly equation (31) can be written as .))(()( Txxxx   Where ( , ', '').T T f f f )(xx   is 

Halley’s iteration function in 1D. The same can be done for equations (4), (6) and some others in this article. 

Anyway we shall make detail studies in our future work. 

5. Discussion on some applications 

Here, we shall proffer some applications of iterative root finding and investigate convergence graphically. For 

more examples, refer to [1, 9, 10, 12, 14, 15, 17, 18]. One has to note that to find roots is the only application of 

root finding in our world.  

1) Manning’s equation to compute the velocity u of water in a rectangular open channel can be given by 

2/3( )
2

s BH
u

n B H




[12, 17]                                         (37) 

Compute the depth H = d if the roughness coefficient n = 0.035; the slope S = 0.0001;the width B =10 , and 

u= 0.3624. 

Using (37),we obtain the equation to be solved for H= d is to be 

F(d) = 0.8354(d/(5+d))
(2/3)

- 0.3624                                       (38) 

 

FIGURE 1: A partial graph of F showing a root location 

To find the value of H = d for which F(d) = 0 using Newton’s method, we need '.F  . 

'F = 4177/7500/(d/(5+d))
(1/3)

(1/(5+d)-d/(5+d)
2
)                                      (39) 

And the Newton method for F is 

)('/)(1 iiii dFdFdd                                                      (40) 
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With an initial guess of d0 = 0.5, the method converges to the root value d = 2. 

 

FIGURE 2: Newton’s iteration equation showing convergence to a root 

2) The model below can be used to estimate Oxygen level c (mg/l) in a river downstream from a sewage 

discharge [12, 14]:   

c = 10-20(e-0.15x-e-0.5x)                                (41) 

 

Where x is the distance downstream in kilometers. Then we may need  the value of x for which Oxygen is 

minimum. We mean the zeros of the first derivative of (41), which is 

 

p = 3e
(-3/20*x)

-10*e
(-1/2*x)                                                   (42) 

One may notice that c and x are nonnegative. 

 

FIGURE 2: A root location for p 

 

Taking an initial guess x0 = 3 and applying Newton’s method we get x = 3.4399 with minimum Oxygen level c 

= 1.6433. 
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FIGURE 3: Newton fixed point for p on [3, 4] 

6.  Conclusions and Recommendations 

In this study, we presented iterative methods for estimating simple roots of nonlinear equations. We applied 

derivative estimation (a very new concept in root finding), presented in [14, 15] combined with Taylor’s third 

order approximation and investigated algorithms which are more efficient than some existing methods. We have 

already stated that if a method containing the third derivative works well, then when the derivative '''f  is 

replaced it can perform better. We observed that estimation of '''f  in terms of lower derivatives could result in 

an efficient method, important in science and engineering. We also discussed possible extensions in 2D and 

presented some examples of engineering applications. In the future, we will make further analyses of these 

algorithms. We hope that this result will be more valuable and trigger one to perform further research. 
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