On M-Compact Ring

Mohammed H. Lafta

Department of Statistical, College of Administration and Economics,

University of Sumer, Al- Rifaee, Thi- qar, Iraq.

mmohamnedhadi@gmail.com

Abstract: In the present paper, we have introduced some new definitions On M-cover ring, M-compact ring, weakly M-compact c. ring, M-compact c. ring, M-compact locally ring and M-compact strong locally ring, we obtain some examples and results related to M-cover ring, M-compact ring, weakly M-compact ring, weakly M-compact c. ring, M-compact c. ring,

Keywords: rings, M-cover ring, M-compact ring, ring homomorphism, ring isomorphism.

AMS 2017: 54A25, 45B05.

1- Introduction:

The notion of groupoid was introduced by H. Brandt [Math. Ann., 96(1926), 360- 366; MR 1512323]. A groupoid (G,*) is a set on which is defined a non associative binary operation which is closed on G, the groupoid (G,*) is a semigroup if the binary operation * is associative [4].

Milne [2], introduced details on a ring. We call $(R,*,\circ)$ to be a ring if the following conditions are satisfied.

- 1) (R, *) is a group.
- 2) (R,\circ) is a semigroup.
- 3) (i) $a \times (b + c) = a \times b + a \times c$
 - (ii) $(a+b) \times c = a \times c + b \times c$

for all a ,b ,c $\in R$, a nonempty subset P of R is said to be a subring of R if P is a ring under the operations of R.

We investigated on *M*-cover ring, *M*-compact ring, weakly *M*-compact ring, weakly *M*-compact c. ring, *M*-compact c. ring, *M*-compact locally ring and *M*-compact strong locally ring, we obtain some good examples and results related to these concepts above.

2- Definitions:

<u>Definition (1)</u>: Let $(R,*,\circ)$ be a ring, and *I* be an indexed set.

Let $M = \{R_i; R_i \subset R, (R_i, *, \circ) \text{ is a proper subring of } (R, *, \circ), \forall i \in I \}$ be a family of proper subrings of $(R, *, \circ), (I \text{ is a finite or an infinite set})$, we say that M is a *M*-cover ring of $(R, *, \circ)$ if $R = \bigcup_{i \in I} R_i$.

Definition (2): Let $(R,*,\circ)$ be a ring, we say that $(R,*,\circ)$ is a *weakly M-compact ring* if there is a finite sub-*M-cover ring* of $(R,*,\circ)$.

Definition (3): Let $(R,*,\circ)$ be a ring, we say that $(R,*,\circ)$ is *M*-compact ring if for every *M*-cover ring of $(R,*,\circ)$ there exists a finite sub-*M*-cover ring of $(R,*,\circ)$.

Definition (4): Let $(R,*,\circ)$ be a ring, we say that $(R,*,\circ)$ is *weakly M-compact c. ring* if there is a countable *M-cover ring* of $(R,*,\circ)$.

Definition (5): Let $(R,*,\circ)$ be a ring, we say that $(R,*,\circ)$ is *M*-compact c. ring if for every *M*-cover ring of $(R,*,\circ)$ there exists a countable sub-*M*-cover ring of $(R,*,\circ)$.

Definition (6): Let $(R,*,\circ)$ be a ring, we say that $(R,*,\circ)$ is a *M*-compact locally ring if for every element x of R there is a subring (proper) of R include x.

Definition (7): Let $(R,*,\circ)$ be a ring, we say that $(R,*,\circ)$ is a *M*-compact strong locally ring if for every element x of R (except the unite element) there is a unique subring (proper) of R include x.

Definition (8): Let $(R,*,\circ)$ be a ring, the subring $(H,*,\circ)$ of the ring $(R,*,\circ)$ is called a *M*-compact subring (weakly *M*-compact subring, *weakly M*-compact *c*. subring, *M*-compact *c*. subring, *M*-compact locally subring, *M*-compact strong locally subring), if $(H,*,\circ)$ is a *M*-compact ring (weakly *M*-compact ring, weakly *M*-compact *c*. ring, *M*-compact *c*. ring, *M*-compact locally ring, *M*-compact strong locally subring, *M*-compact locally ring, *M*-compact *c*. ring, *M*-compact *c*. ring, *M*-compact locally ring), respectively.

Definition (9) [3]: Let $(R, *, \circ)$ and $(\overline{R}, \overline{*}, \overline{\circ})$ are two rings, we say that 1- $f: (R, *, \circ) \to (\overline{R}, \overline{*}, \overline{\circ})$ is a homomorphism if $f(x * y) = f(x) \overline{*} f(y)$ and $f(x \circ y) = f(x) \overline{\circ} f(y), \forall x, y \in G.$ 2- $f: (R, *, \circ) \to (\overline{R}, \overline{*}, \overline{\circ})$ is an isomorphism if f is a bijective homomorphism.

Definition (10) [3]: Let $(R, *, \circ)$ and $(\overline{R}, \overline{*}, \overline{\circ})$ are two rings ,we say that $(R, *, \circ)$ is an isomorphic to $(\overline{R}, \overline{*}, \overline{\circ})$, denoted that $(R, *, \circ) \cong (\overline{R}, \overline{*}, \overline{\circ})$, if there is an *isomorphism* $f: (R, *, \circ) \to (\overline{R}, \overline{*}, \overline{\circ})$.

3- Examples:

Example (1): The ring $(\mathbb{Z}_2, +_2, \cdot_2)$, has no *M*-cover ring. The ring $(\mathbb{Z}_2, +_2, \cdot_2)$ is not *M*-compact ring, while the ring $(\mathbb{Z}_2 \times \mathbb{Z}_2, \bigoplus, \bigotimes)$ has *M*-cover ring $\{(0,0),(1,1)\},\{(0,0),(1,0)\},\{(0,0),(0,1)\}$. Such that $(a, b) \oplus (c, d) = (a +_2 c, b +_2 d), (a, b) \otimes (c, d) = (a \cdot_2 c, b \cdot_2 d)$. **Example (2):** Let $R = \{0, 1, 2, \ldots\}$, defined a binary operator \prec as follows; $a \prec b = \begin{cases} \max\{a, b\} & a \neq b \\ 0 & a = b \end{cases}, \forall a, b \in R$. It is easy to show that (R, \prec) is a group. The ring (R, \prec, \ast) is a *M*-compact *C*. ring (* define by $a \ast b = 0$ for all $a, b \in R$). The ring (R, \prec, \ast) is not *M*-compact ring, since the family of subrings $\{(\{0, a, b\}, \prec, \ast); a, b \in \mathbb{N}\}$ is a *M*-cover ring of (R, \prec, \ast) has no finite sub-*M*-cover ring of (R, \prec, \ast) .

www.iiste.org

Example (3): Let $(\mathbb{Z}_2 \times \mathbb{Z}_2, \bigoplus, \otimes)$ be a ring. Then $(\mathbb{Z}_2 \times \mathbb{Z}_2, \bigoplus, \otimes)$ is a *M*-compact strong locally ring(also *M*-compact locally ring), since there are only three subrings of $(\mathbb{Z}_2 \times \mathbb{Z}_2, \bigoplus, \otimes)$ which are $(M_1, \bigoplus, \otimes), (M_2, \bigoplus, \otimes)$ and $(M_3, \bigoplus, \otimes)$, (except the trivial subrings) where

 $M_1 = \{(0,0), (0,1)\}, \ M_2 = \{(0,0), (1,0)\}, \ M_3 = \{(0,0), (1,1)\}.$

Example (4): Let $R = \{-n, ..., -2, -1, 0\}$, defined a binary operator > as follows;

 $a > b = \begin{cases} \min\{a, b\} & a \neq b \\ 0 & a = b \end{cases}, \forall a, b \in R.$ It is easy to show that (R, >) is a group.

The ring $(R, \succ, *)$ (* define by a * b = 0 for all $a, b \in R$) is *M*-compact ring.

Example (5): Let $X = \{0\} \cup \mathbb{R}^+$, defined a binary operator \prec as follows; $a \prec b = \begin{cases} \max\{a, b\} & a \neq b \\ 0 & a = b \end{cases}$, $\forall a, b \in X$. It is easy to show that (X, \prec) is a group. The ring (X, \prec, \ast) (* define by $a \ast b = 0$ for all $a, b \in X$) is *M*-compact locally ring. The ring (X, \prec, \ast) is not *M*-compact *c*. ring, since the family of subrings { ($\{0, a, b\}, \prec, \ast$); $a, b \in \mathbb{R}^+$ } is a *M*-cover ring of (X, \prec, \ast) has no countable *sub-M*-cover ring of (X, \prec, \ast) .

4- Main Results:

The prove of all the following lemmas are direct from definitions.

Lemma (1): If (R,*,°) is a *M*-compact ring, then (R,*,°) is a *M*-compact *c*. ring.

Lemma (2): If (R,*,°) is a *M*-compact ring, then (R,*,°) is a weakly *M*-compact ring.

Lemma (3): If (R,*,°) is a *M*-compact *c*. ring, then (R,*,°) is a weakly *M*-compact *c*. ring.

Lemma (4): If (R,*,°) is a Weakly M-compact ring, then (R,*,°) is a weakly M-compact c. ring.

Lemma (5): If (R,*,°) is a *M*-compact strong locally ring, then (R,*,°) is a *M*-compact locally ring.

The following theorems are direct from definitions,

<u>Theorem (1)</u>: Let (R,*,°) be ring, if R weakly *M*-compact ring, then it is *M*-compact locally ring.

Proof: Let $x \in R$ and R weakly *M*-compact ring, then there is cover ring of $R \implies R = \bigcup_{i \in I} R_i$ (R_i is proper sub ring of $R \lor i \in I$)

 $x \in \bigcup_{i \in I} R_i \implies x \in R_i$ for some *i*. R is *M*-compact locally ring.

<u>Corollary (1)</u>: Let (R,*, °) be a ring. Then

1) *M*-compact ring \Rightarrow *M*-compact locally ring.

2) *M*-compact c. ring \Rightarrow *M*-compact locally ring.

3) weakly *M*-compact c. ring \Rightarrow *M*-compact locally ring.

Theorem (2): Any finite non cyclic ring of order a nonprime number, is a *M*-compact locally ring.

Proof: Let $(R,*,\circ)$ is a finite ring, for every element x of G the subring $(\langle x \rangle,*,\circ)$ of $(R,*,\circ)$ include x, it is clear that $R \neq \langle x \rangle$, since $(R,*,\circ)$ is not cyclic ring, and therefore $(R,*,\circ)$ is a *M*-compact locally ring.

<u>Theorem (3)</u>: If (R, *, °) is a finite ring. then the following are equivalent;

- 1) $(R,*,\circ)$ is a *M*-compact ring.
- 2) $(R,*,\circ)$ is a *M*-compact c. ring.
- 3) $(R,*,\circ)$ is a weakly M-compact ring.
- 4) $(R,*,\circ)$ is a weakly M-compact c. ring.

Theorem (4): Any finite ring has a prime order is not *M*-compact locally ring.

Proof: Let $(R,*,\circ)$ is a ring with |R| = p, p prime number, by "Lagrange theorem" the order of every subgroup of R divides p, but p is prime, so there is no proper subgroup of R except the unit element and hence is no proper subring of R. Then $(R,*,\circ)$ is not *M*-compact locally ring.

Corollary (2):

1) Any finite ring has prime order is not *M*-compact ring.

2) Any finite ring has prime order is not *M*-compact c. ring.

3) Any finite ring has prime order is not *weakly M-compact ring*.

4) Any finite ring has prime order is not *weakly M-compact c. ring*.

<u>Corollary (3)</u>: Any finite ring has prime order $(R,*,\circ)$ is not *M*-compact strong locally ring.

<u>Theorem (5)</u>: If $(R,*,\circ)$ ring, then $(R,*,\circ)$ is a *M*-compact ring is not simple ring.

Proof: If $(R,*,\circ)$ is a *M*-compact ring, then there is *M*-cover ring and hence there is proper subring of $(R,*,\circ) \implies (R,*,\circ)$ is not simple ring.

Theorem (6): Any simple ring $(R,*,\circ)$ is not *weakly M-compact ring*. **Proof:** Clear, any simple ring has no proper sub ring and has no *M-cover*. i.e $(R,*,\circ)$ is not *weakly M-compact ring*.

<u>Corollary (4)</u>: Any (R,*,°) simple ring is not *M*-compact ring. **Theorem (7)**: Any (R,*,°) simple ring is not *M*-compact c. ring.

Proof: Clear, any simple ring has no proper sub ring and has no *M*-cover. i.e (R,*,°) is not *M*-compact ring. **Theorem (8):** Any cyclic ring is not *M*-compact locally ring.

Proof: Assume $(R,*,\circ)$ is a cyclic ring which is a *M*-compact locally ring so for every element x of R there is a subring of R include x, but R is a cyclic so there is an element say g such that $\langle g \rangle = R$ (R generated by g) and hence any subring contains g must be equal to R, that is there is no proper subring contains g.

Corollary (5):

- 1) Any cyclic ring is not *M*-compact ring.
- 2) Any cyclic ring is not *M*-compact c. ring.

3) Any cyclic ring is not weakly M-compact ring.

4) Any cyclic ring is not *weakly M-compact c. ring.*

5) Any cyclic ring is not *M*-compact strong locally ring.

<u>Theorem (9)</u>: If $(G_{,*}, \circ) \cong (\overline{G}_{,\overline{*}}, \overline{\circ})$. Then

 $(G,*,\circ)$ is a *M*-compact ring $\Leftrightarrow (\overline{G},\overline{*},\overline{\circ})$ is a *M*-compact ring.

Proof: (\Rightarrow) Let $(\overline{G}_{l}, \overline{*}_{l}, \overline{\circ}_{l})$ be any *M*-cover ring of $(\overline{G}, \overline{*}, \overline{\circ}) \Rightarrow \overline{G} = \bigcup_{i \in I} \overline{G}_{l}$, but *f* is an isomorphism $\Rightarrow f(G) = \overline{G} = \bigcup_{i \in I} \overline{G}_{l}$

 $\implies G = f^{-1}(\bigcup_{i \in I} \overline{G}_i) = \bigcup_{i \in I} f^{-1}(\overline{G}_i), \text{ and } f^{-1}(\overline{G}_i) \text{ is a ring } \forall i \in I,$

but $(G, *, \circ)$ is a *M*-compact ring so there is a finite set J such that

 $G = \bigcup_{j \in J} f^{-1}(\overline{G}_j) = f^{-1}(\bigcup_{j \in J} \overline{G}_j) \implies \overline{G} = f(G) = f\left(f^{-1}(\bigcup_{j \in J} \overline{G}_j)\right) = \bigcup_{j \in J} \overline{G}_j \text{ and } (\overline{G}_j, \overline{*}_j) \text{ is a ring } \forall j \in J$

 \Rightarrow ($\bar{G},\bar{*},\bar{\circ}$) is a *M*-compact ring.

 $\leftarrow \text{Let } (G_i, *_i, \circ_i) \text{ be any } M\text{-cover ring of } (G, *, \circ) \implies G = \bigcup_{i \in I} G_i \text{, but } f \text{ is an isomorphism} \\ \Rightarrow \bar{G} = f(G) = f(\bigcup_{i \in I} G_i) = \bigcup_{i \in I} f(G_i) \text{, and is a ring } \forall i \in I \text{, but } (\bar{G}, \bar{*}) \text{ is a } M\text{-compact ring} \\ \text{so there is a finite set } J \text{ such that } \bar{G} = \bigcup_{j \in J} f(G_j) = f(\bigcup_{j \in J} G_j) \\ \Rightarrow G = f^{-1}(\bar{G}) = f^{-1}(f(\bigcup_{j \in J} G_j)) = \bigcup_{j \in J} G_j$

and $(G_j, *_j, \circ_j)$ is a ring $\forall j \in J \implies (G, *, \circ)$ is a *M*-compact ring.

Theorem (10): If $f: (G,*,\circ) \to (\overline{G},\overline{*},\overline{\circ})$ is an *isomorphism* and $(H,*,\circ)$ is a *M*-compact subring of $(G,*,\circ)$, then f(H) is a *M*-compact subring of $(\overline{G},\overline{*},\overline{\circ})$.

Proof: Let $\{W_i : i \in I\}$ is *M*-cover of $f(H) \implies \bigcup_{i \in I} W_i = f(H)$ Since f is isomorphism, $f^{-1}(f(H)) = f^{-1}(\bigcup_{i \in I} W_i) = f(H)$

 $H = \bigcup_{i \in I} f^{-1}(W_i) [f^{-1}(W_i) \text{ is sub rings of } (G, *, \circ) \text{ for all } i \in I]$

⇒ $\exists finite set J \subseteq I \ni H = \bigcup_{i \in J} f^{-1}(W_i)$ [since $(H,*,^\circ)$ is a *M*-compact subring of $(G,*,^\circ)$]

$$\Rightarrow f(H) = f(\bigcup_{i \in J} f^{-1}(W_i)) = \bigcup_{i \in J} f(f^{-1}(W_i)) = \bigcup_{i \in J} W_i$$

 \Rightarrow f(H) is a *M*-compact subring of $(\bar{G}, \bar{*}, \bar{\circ})$.

Theorem (11): If $f: (G,*,\circ) \to (\overline{G},\overline{*},\overline{\circ})$ is an *isomorphism* and $(S,\overline{*},\overline{\circ})$ is a *M*-compact subring of $(\overline{G},\overline{*},\overline{\circ})$. then $f^{-1}(S)$ is a *M*-compact subring of $(G,*,\circ)$. **Proof:** Let $\{W_i: i \in I\}$ is *M*-cover of $f^{-1}(S) \Longrightarrow \bigcup_{i \in I} W_i = f^{-1}(S)$. Since f is isomorphism, $f(f^{-1}(S)) = f(\bigcup_{i \in I} W_i) = S \implies S = \bigcup_{i \in I} f(W_i) [f(W_i)]$ is sub rings of $(\overline{G}, \overline{*}, \overline{\circ})$ for all $i \in I$]

⇒ ∃ finite set $J \subseteq I \ni S = \bigcup_{i \in J} f(W_i)$ [since $(S, *, ^\circ)$ is a *M*-compact subring of $(\overline{G}, \overline{*}, \overline{\circ})$]

$$\Rightarrow f^{-1}(S) = f^{-1}\left(\bigcup_{i \in J} f(W_i)\right) = \bigcup_{i \in J} f^{-1}\left(f(W_i)\right) = \bigcup_{i \in J} W_i$$

 \Rightarrow S is a *M*-compact subring of (G,*,°).

Theorem (12): If $(A, *, \circ)$ is a ring and $(G, *, \circ)$ is a *M*-compact ring, then $(A \times G, \oplus, \otimes)$ is a *M*-compact ring. Where

 $(a_1, g_1) \oplus (a_2, g_2) = (a_1 * a_2, g_1 * g_2), (a_1, g_1) \otimes (a_2, g_2) = (a_1^{\circ} a_2, g_1^{\circ} g_2),$

 $\forall (a_1, g_1), (a_2, g_2) \in A \times G.$

Proof: Let $\{(A \times G_i, \bigoplus, \otimes); G_i \subset G, (A \times G_i, \bigoplus, \otimes) \text{ is a subring of } (A \times G, \otimes), \forall i \in I \}$ be any *M*-cover ring of $(A \times G, \bigoplus, \otimes)$, it is clear that $(G_i, *, \circ)$ is a subrings of $(G, *, \circ)$, such that $A \times G = \bigcup_{i \in I} A \times G_i = A \times (\bigcup_{i \in I} G_i) \implies G = \bigcup_{i \in I} G_i$, but $(G, *, \circ)$ is a *M*-compact ring, so there is a finite set *J* such that $G = \bigcup_{j \in J} G_j$, and hence

$$A \times G = A \times (\bigcup_{j \in J} G_j) = \bigcup_{j \in J} A \times G_j \implies (A \times G, \bigoplus, \bigotimes) \text{ is a } M\text{-compact ring.}$$

<u>Theorem (13)</u>: If $(G, *, \circ)$ and $(\overline{G}, \overline{*}, \overline{\circ})$ are *M*-compact strong locally rings, then

 $(G \times \overline{G}, \bigoplus, \bigotimes)$ is a *M*-compact strong locally ring.

Proof: Let $(x, y) \in G \times \overline{G} \implies x \in G$ and $y \in \overline{G}$, but $(G, *, \circ)$ and $(\overline{G}, \overline{*}, \overline{\circ})$ are *M*-compact strong locally rings $\implies \exists ! G_x$ and $\exists ! \overline{G}_y$ subrings of *G* and \overline{G} , respectively, such that $x \in G_x$ and $y \in \overline{G}_y$ $\implies (x, y) \in G_x \times \overline{G}_y$ and $G_x \times \overline{G}_y$ is a unique subrings of $G \times \overline{G} \implies (G \times \overline{G}, \bigoplus, \bigotimes)$ is a *M*-compact strong locally ring.

<u>Corollary (6)</u>: If $(G, *, \circ)$ and $(\overline{G}, \overline{*}, \overline{\circ})$ are *M*-compact locally rings, then $(G \times \overline{G}, \bigoplus, \otimes)$ is a *M*-compact locally ring.

<u>**Theorem (14):**</u> If $(G,*,\circ)$ and $(\overline{G},\overline{*},\overline{\circ})$ are *M*-compact rings, then $(G \times \overline{G}, \oplus, \otimes)$ is a *M*-compact ring.

Proof: Let $(G, *, \circ)$ and $(\overline{G}, \overline{*}, \overline{\circ})$ are *M*-compact rings \Rightarrow there exists a *M*-cover ring of $(G, *, \circ)$ say $\{G_a\}_{a \in A}$ and a *M*-cover ring of $(\overline{G}, \overline{*}, \overline{\circ})$ say $\{\overline{G}_b\}_{b \in B} \Rightarrow G \times \overline{G} = (\bigcup_{a \in A} G_a) \times (\bigcup_{b \in B} \overline{G}_b) = \bigcup_{a \in A, b \in B} (G_a \times \overline{G}_b) \Rightarrow \{G_a \times \overline{G}_b\}_{a \in A, b \in B}$ is a *M*-cover ring of

 $(G\times \bar{G},\oplus,\otimes).$

Now, Let $\{\mathcal{W}_i\}_{i \in I}$ be any *M*-cover ring of $(G \times \overline{G}, \bigoplus, \bigotimes)$

 $\Rightarrow G \times \overline{G} = \bigcup_{i \in I} \mathcal{W}_i$, such that $\mathcal{W}_i = \mathcal{U}_i \times \mathcal{V}_i$, where $\{\mathcal{U}_i\}_{i \in I}$ are subrings of $(G, *, \circ)$ and $\{\mathcal{V}_i\}_{i \in I}$ are subrings of $(\overline{G}, \overline{*}, \overline{\circ})$. But $(G, *, \circ)$ is a *M*-compact ring, so there is a *M*-cover ring of

(G,*) contains $\{\mathcal{U}_i\}_{i\in I}$ which have a finite *sub-M-cover ring* (*i.e.* there is a finite set J) such that $G = \bigcup_{j\in J} \mathcal{U}_j$, let $\mathcal{U}_{j_1} \in \{\mathcal{U}_j\}_{j\in J} \implies \{\mathcal{U}_{j_1} \times \mathcal{V}_i\}_{i\in I}$ is a *M-cover ring* of the *M-compact ring* $(\mathcal{U}_{j_1} \times \overline{G}, \bigoplus, \bigotimes)$ (from **Theorem 10** since $(\mathcal{U}_{j_1}, *, \circ)$ is a ring and $(\overline{G}, \overline{*}, \overline{\circ})$ is a *M-compact ring*), so there is a finite set S such that

$$\mathcal{U}_{j_1} \times \bar{G} = \bigcup_{s \in S} (\mathcal{U}_{j_1} \times \mathcal{V}_s) = \mathcal{U}_{j_1} \times (\bigcup_{s \in S} \mathcal{V}_s)$$
$$\Rightarrow \bigcup_{j \in J} (\mathcal{U}_j \times (\bigcup_{s \in S} \mathcal{V}_s)) = (\bigcup_{j \in J} \mathcal{U}_j) \times (\bigcup_{s \in S} \mathcal{V}_s) = G \times \bar{G}$$

 $\Rightarrow G \times \overline{G} = \left(\bigcup_{j \in J} \mathcal{U}_j\right) \times \left(\bigcup_{s \in S} \mathcal{V}_s\right) = \bigcup_{j \in J, s \in S} \left(\mathcal{U}_j \times \mathcal{V}_s\right), \text{ where } \mathcal{U}_j \times \mathcal{V}_s \text{ are subrings of } G \times \overline{G}.$ And therefore $G \times \overline{G}$ is a *M*-compact ring.

<u>Corollary (7)</u>: If $(G,*,\circ)$ is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring, weakly *M*-compact c. ring), then $(G^2, \bigoplus, \bigotimes)$ is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring), then $(G^2, \bigoplus, \bigotimes)$ is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring), then $(G^2, \bigoplus, \bigotimes)$ is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring) is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring) is a *M*-compact ring (*M*-compact strong locally ring).

Theorem (15): If $(G, *, \circ)$ is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring, weakly *M*-compact c. ring), then $(G^n, \bigoplus, \bigotimes)$ is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring (*M*-compact ring) is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring, weakly *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring (*M*-compact ring) is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring) is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring, weakly *M*-compact ring) is a *M*-compact ring (*M*-compact strong locally ring) is a *M*-compact locally ring (*M*-compact ring) is a *M*-compact ring (*M*-compact ring) is a *M*-compact ring (*M*-compact strong locally ring).

Theorem (16): The product of any finite collection of *M*-compact rings (*M*-compact strong locally rings, *M*-compact locally rings, weakly *M*-compact rings, weakly *M*-compact c. rings), is a *M*-compact ring (*M*-compact strong locally ring, *M*-compact locally ring , weakly *M*-compact ring, weakly *M*-compact c. rings).

<u>References</u>:

[1] T. W. Körner, Topological rings, Part III, Spring 2008.

[2] J. S. Milne, Ring Theory, September 24, 2010, Version 3.10.

[3] P. Schapira, General Topology, Course at Paris VI University, 2010-2011 (v.3).

[4] W. B. Vasantha Kandasamy, Groupoids and Smarandache Groupoids, 2012.

[5] W. B. Vasantha Kandasamy, Smarandache Special Definite Algebraic Structures, InfoLearn Quest, Ann Arbor, 2009.