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Abstract 

A mathematical model of hydromagnetic turbulent boundary layer fluid flow past a horizontal 

infinite cylinder with Hall current is considered. The cylinder is placed in cross flow with the 

fluid. The fluid flow is impulsively started and the flow problem is subsequently analysed. 

The flow is modeled using the momentum, energy and concentration conservation equations. 

The Reynolds stresses arising due to turbulence in the conservation equations are resolved 

using Prandtl mixing length hypothesis. The equations are then solved by a finite difference 

method. The effects of flow parameters on the primary velocity, secondary velocity, 

temperature and concentration profiles are investigated. It is found that velocity profiles 

increase with increase in Hall parameter and temperature and concentration profiles increase 

with increase in magnetic parameter. 

Key words: Turbulent flow, Hall current, cylinder, hydromagnetic, convection, finite 

difference 

 

1. INTRODUCTION  

Research in magnetohydrodynamics continues to attract increased interest. This is attributed to 

the importance of this subject to solving engineering problems. Turbulent flows are 

increasingly being investigated as most practical fluid flows are turbulent in nature.  Verron J. 

and Sommeria J.,(1987) carried out a numerical simulation of a two-dimensional turbulence 

experiment in magnetohydrodynamics. The setup consisted of a layer of mercury enclosed in a 

square box and driven by the injection of electric currents in a uniform magnetic field. The 

numerical finite difference model was used to simulate the Navier–Stokes equation in two 
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dimensions with steady forcing and linear bottom friction.  

 

Kim S. J. and Lee C. M. (2002), carried out an  investigation of the flow around a circular 

cylinder under the influence of an electromagnetic force.  In their investigation, the effect of 

the local electromagnetic body force on the flow behavior around a circular cylinder was 

conducted. Benim et al (2008) modelled turbulent flow past a circular cylinder by RANS, 

URANS, LES and DES. Dousset V. and Potherat A.,(2008) presented their work on numerical 

simulation of a cylinder wake under a strong axial magnetic field. They studied the flow of a 

liquid metal in a square duct past a circular cylinder in a strong externally imposed magnetic 

field.  Kwanza et al, (2010)  presented a study on a mathematical model of turbulent 

convective fluid flow past a vertical infinite plate with hall current.  They investigated a 

magnetohydrodynamics (MHD) turbulent boundary layer fluid flow past a vertical infinite plate 

in a dissipative fluid with Hall current. They concluded that increase in Hall parameter led to 

increase in velocity profiles. They used Prandtl mixing length hypothesis to resolve turbulence 

stress terms in the momentum equation. Dawit et al (2014) did an analysis of turbulent 

hydromagnetic flow with radiative heat over a moving vertical plate in a rotating system .  

Rashid A. Ahmad (1996) presented his work on steady-state numerical solution of the 

Navier-Stokes and energy equations around a horizontal cylinder at moderate reynolds numbers 

from 100 to 500 . In his work a numerical analysis of forced-convection heat transfer from a 

horizontal stationary circular cylinder dissipating a uniform heat flux in a cross flow of air was 

conducted. The full two-dimensional steady-state Navier-Stokes and energy equations in the 

range of the Reynolds numbers from 100 to 500 (based on diameter) were solved. Yoon H. S. et 

al, (2004) carried out a numerical study on the fluid flow and heat transfer around a circular 

cylinder in an aligned magnetic field. They numerically investigated a two-dimensional laminar 

fluid flow and heat transfer past a circular cylinder in an aligned magnetic field using the 

spectral method to ensure the accuracy of results. Emmah M et al (2012) presented a study on 

hydromagnetic turbulent flow past a semi-infinite vertical plate subjected to heat flux. They 

found out that Hall current significantly affected the velocity of a fluid flow. 

 

In the current investigation a study is carried out on turbulent fluid flow over an infinite 

horizontal cylinder in the presence of a strong magnetic field.  
 

2. Mathematical model 

A two dimensional turbulent boundary layer flow is considered. The fluid flow is transverse to a 

horizontal infinitely long cylinder lying in the x-y plane. The cylinder is immersed in the fluid. 

The axis of the cylinder is in the positive x-axis direction and the fluid flows from positive 

y-axis direction orthogonal to the axis of the cylinder. The vertical axis is the z-axis. The 

cylinder is assumed to have non-end effects. The fluid is assumed incompressible and viscous. 

A strong magnetic field of uniform strength H0 is applied along the x-axis. The induced 

magnetic field is considered negligible hence H = (H0, 0, 0). The temperature of the surface of 

the cylinder and the fluid are assumed to be the same initially. At time t
*
>0 the fluid starts 

moving impulsively with velocity U0 and at the same time the temperature of the cylinder is 
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instantaneously raised to *

WT  which is maintained constant later on. Given that the flow is over 

a cylinder, cylindrical coordinate form of the governing equations are used. The flow is 

considered to be along the angular and axial components. There is no radial flow. Thus the two 

dimensions of this flow are θ and x. 

 

 

The above flow is governed by the following cylindrical coordinate equations: 
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The boundary and initial conditions are: 

everywhere  ,,0,0:0 ******

  CCTTUUt x                                (5a) 

 
D

 rC,CT,T,UU:Ut *

W

*

W

**

x

*

θ

*

2
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The equation of conservation of charge ,0.  J  gives kjr  , a constant, 

where  zr jjjJ ,,  . The constant is zero since, 0rj at the cylinder which is electrically 

non-conducting. Thus 0rj  everywhere in the flow. Neglecting the ion-slip and 

thermoelectric effects, generalized Ohm’s law including the effects of Hall current (Cowling T. 

G. (1957)) gives: 
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For the problem we seek to solve there is no applied electric field hence 0E and thus 

neglecting electron pressure, equation (6) becomes: 
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simplifying  equation (7) and solving gives: 
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Where eewm   is the Hall parameter. 

Thus the electromagnetic force along   and x-axis from (8) are respectively: 
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Hence the governing equations (1) and (2) are respectively:  
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2.1 NON-DIMENSIONALIZATION 

We non-dimensionalize equations (3), (4), (10) and (11).  The following scaling variables are 

applied in the non-dimensionalization process: 
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Substituting this scaling variables and introducing non-dimensional parameters gives:  
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Where: 
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Boundary and Initial Conditions 

From equation 12 the non-dimensional form of 5 becomes: 
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a) for r
+
>5 we neglect the viscous term in the shear stress, 

b) krl  where k is the von Karman constant, sometimes referred to as the Karman                                                                                                                                                                                                             

constant (McComb(1994)). 

We thus have: 



























r

U

r

U
rkUU r




22''                                                      (18) 

and  



























r

U

r

U
rkUU xx

rx

22''                                                     (19) 

The turbulent Prandtl number is defined as: 
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3. Finite Difference Scheme 
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In the following finite difference scheme the primary velocity Uθ is denoted by U and the 

secondary velocity Ur is denoted by V to reduce the subscripts as we use i and j as subscripts, i 

corresponds to r as j corresponds to t. The equivalent finite difference schemes for equations (20) 

– (23) are respectively: 
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The boundary and initial conditions (17) now take the form: 

everywhere  0,0,0,0:0 ),(),(),(),(  jijijiji CVUj                              (28a) 

r  i,C,ji,V:Uj jijiji 
2

1
at    110),(10 ),(),(),(                             (28b) 

 i,C,,VU jijijiji  as  0000 ),(),(),(),(                                    (28c) 
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These were solved and the results displayed in graphs.  The results were analyzed and the 

analyses are given below. 

4.0 Determination of skin friction, the rate of heat transfer and the rate of mass transfer  

Skin friction, the rate of heat transfer and the rate of mass transfer are determined from the 

velocity, temperature and concentration profiles and given in tables. The rate of heat and mass 

transfer are given by 

5.0




rr
Nu


and

5.0




rr

C
Sh respectively. 

The skin friction is given by, Rathy (1976), 
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The above are calculated by numerical differentiation using Newton’s interpolation formula 

over the first five points. 

 ),4(3),3(16),2(36),1(48),0(25
6

5
iuiuiuiuiux       (29) 

 ),4(3),3(16),2(36),1(48),0(25
6

5
ivivivivivy       (30) 

 ),4(3),3(16),2(36),1(48),0(25
6

5
iiiiiNu                   (31) 

 ),4(3),3(16),2(36),1(48),0(25
6

5
iCiCiCiCiCSh          (32) 

5.0 DISCUSSION OF RESULTS  

The primary velocity, secondary velocity, temperature and concentration profiles are presented 

graphically in figures 2 – 5 while skin friction, rate of heat transfer and rate of mass transfer are 

presented in tables 1 – 3. 

5.1 Primary velocity 

From figure 2 we observe that:  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.4, 2017 

 

54 

(i) Increase in Magnetic parameter leads to decrease in primary velocity profiles. Increase in 

Magnetic parameter implies magnetic force subdues the inertial force of the fluid thus the 

decrease in primary velocity profile. 

(i) The primary velocity profiles decreases with increase in Reynolds number. This is due to the 

fact that as Reynolds Number increases the viscous effects are lessened consequently the 

boundary layer diminishes and the fluid assumes the free stream velocity. 

(iii) The primary velocity profiles increases with increase in Hall parameter this is due to the 

fact that the effective conductivity decreases with the increase in Hall parameter which reduces 

the magnetic damping force hence the increase in velocity. It is also clear from the model 

equations that the Hall parameter directly affects the primary velocity.  

(iv) The primary velocity profiles increase with increase in time parameter. This is because as 

time increases the flow approaches the free stream region hence assuming the free stream 

velocity.  

(v) Prandtl number and Schmidt number do not affect the velocity profiles. 

 

5.2 Secondary Velocity 

From figure 3 we observe that: 

(i) Secondary velocity profiles decreases with increase in Magnetic number. This is caused by 

the fact that increase in Magnetic number implies magnetic force is more significant over 

inertial force hence increase in Magnetic number subdues velocity. 

(ii)Increase in Reynolds number decreases secondary velocity profiles. As Reynold’s number 

increases the viscous effects diminish hence the boundary layer also diminishes. 
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(iii) Secondary velocity profiles increase with increase in Hall parameter. 

(iv) The secondary velocity profiles increase with increase in time parameter just as for the case 

with primary velocity as time increases the flow approaches the free stream region hence 

assuming the free stream velocity.  

(v) Prandtl number and Schmidt number do not affect the velocity profiles. 

 

5.3 Temperature 

In figure 4 the first three curves of colours red, blue and black coincide and appear as black. 

From this figure it is noted that:  

 (i) Increase in Prandtl number leads to decrease in temperature profiles. Increase in Prandtl 

number implies decrease in thermal diffusion hence reduction in temperature profiles. 

(ii) There is no change in temperature profiles with variation in Reynolds number and Magnetic 

parameter. This is clear as from the model equation the Reynolds number does not directly 

affect temperature equation. 

(iii) The profiles increase with increase in time parameter. This implies as time increases the 

temperature increase thus the temperature is time dependent as it is in the model. 

(iv) Variation in Hall parameter and Schmidt number do not affect Temperature profiles as the 

two parameters do not have an aspect that relates to temperature. 

5.4 Concentration 

From figure 5 it is observed that 

(i) Increase in Magnetic and Reynolds numbers does not affect concentration profiles. This 

shows that the contribution of this two parameters to concentration through velocity is 
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negligible. 

(iii) Concentration profiles decrease with increase in Schmidt number. Increase in Schmidt 

number implies decrease in mass diffusion thus the reduction in concentration profiles. 

(iv) The profiles increase with increase in time parameter. This is because the concentration 

profiles are time dependent thus as time increases they increase. 

(v) Variation in Hall parameter and Prandtl number were found not to affect concentration 

profiles thus they were kept constant. 

 

5.5 Skin friction 

From table 1 it is observed that: 

i) An increase in magnetic parameter leads to a decrease in the skin friction 
u . This is 

occasioned by the increase in primary velocity profile which implies decrease in skin friction 

when magnetic parameter is increased.  

ii) The skin friction τv increases with increase in magnetic parameter.
u  

iii) An increase in Hall parameter leads to a decrease in both skin frictions
u  and 

v . This is 

due to the fact that increase in Hall parameter increases the velocity and therefore shear 

resistance is decreased. 

iv) An increase in Reynolds number leads to a decrease in skin friction u as high Reynold's 

number implies increased inertial force hence increased velocity. 

(v) Skin friction v  increases with increase in Reynolds number. Secondary velocity profiles 

are reduced by Reynold's number due to increase of shear stress v . 

vi) An increase in time parameter leads to a decrease in skin friction u   as time parameter 
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increases velocity but does not have an observable effect on skin friction 
v . 

 

5.6 Heat transfer rate 

From table 2 it is noted that: 

i) A variation in magnetic parameter, Reynolds number or time parameter does not affect the 

rate of heat transfer. 

ii) An increase in Prandtl number leads to an increase in the rate of heat transfer. Increase in 

Prandtl number implies decrease in thermal diffusion hence increase in rate of heat transfer. 

 

5.7 Mass transfer rate 

From table 3 it is noted that:  

i) A variation in magnetic parameter, Reynolds number or time parameter does not affect the 

rate of mass transfer.  

ii) An increase in Schmidt number leads to an increase in the rate of mass transfer. Increase in 

Schmidt number implies decrease in mass diffussion hence increase in rate of mass transfer. 

6.0 Conclusion  

The finite difference method used in this paper has made it possible to transform the highly 

nonlinear partial differential equations into discrete form to obtain their approximate 

solutions.  

 

From the preceding discussion of results, it can be concluded that a strong magnetic field 

subdues turbulence as it generally decreases velocity profiles. Hall current also affects the 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.4, 2017 

 

58 

primary velocity as it causes an increase in primary velocity profiles. It is observed that 

change in Hall parameter has no effect on temperature neither concentration. Clearly primary 

velocity, secondary velocity, temperature and concentration increase with time. The resolution 

of turbulence terms as done by use of the Prandtl mixing length hypothesis and use of 

turbulent Schmidt number and turbulent Prandtl number has been validified by this results as 

they are consistent with previous researches carried out for example by Kwanza (2010) and 

Marigi (2012). 
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Figure 2 Primary velocity profiles 
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Figure 3 Secondary velocity profiles 
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Figure 4 Temperature profiles 
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Figure 5 Concentration profiles 
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Table 1 Skin friction 

 

 

 

 

 

Table 2 Heat transfer rates 

 

 

 

 

 

Table 3 Mass transfer rates 

 

 

 

 

 

 

 

 

 

 M
2 

m Re t 
u  v  

I 2 2 5e3 0.2 0.0046 0.0013 

II 4 2 5e3 0.2 0.0026 0.0053 

III 2 4 5e3 0.2 0.0002 0.0008 

IV 2 2 1.5e4 0.2 0.0020 0.0040 

V 2 2 5e3 0.4 0.0007 0.0013 

 M
2 

Re Pr t Nu 

I 2 5e3 1 0.2 -0.0008 

II 4 5e3 1 0.2 -0.0008 

III 2 1.5e4 1 0.2 -0.0008 

IV 2 5e3 5 0.2 -0.0003 

V 2 5e3 1 0.4 -0.0008 

 M
2 

Re Sc t Sh 

I 2 5e3 1 0.2 -0.0008 

II 4 5e3 1 0.2 -0.0008 

III 2 1.5e4 1 0.2 -0.0008 

IV 2 5e3 5 0.2 -0.0003 

V 2 5e3 1 0.4 -0.0008 
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