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ABSTRACT  

We present a new set of one step finite difference schemes for the numerical solution of  First order differential 

equations using a combination of an interpolation function and a modification of the resulting schemes by 

replacing step size ℎ with a suitable function of  ℎ as required by the second non-standard modeling rule. The 

resulting schemes have been applied to some initial value problems and the schemes have been found to possess  

desirable qualitative properties. 
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INTRODUCTION 

Differential equations stem from some academic method of presenting models that best 

describe a physical phenomenon. They are mathematical models which represent some 

dynamical state or behavior of such physical phenomena. This also means that the solution 

may or may not exist. It may also exist, but may not be easy or maybe impossible to represent 

it in a simple explicit or implicit function. Therefore, finding a solution to such model may 

require creating a “simpler” mathematical model that can be used to simulate or analyze the 

original system as presented by the differential equation. This is the area where numerical 

methods have long played a leading role (or has been in the forefront). 

A lot of research work has gone into finding numerical approximations to the solutions of 

differential equations using finite difference methods. Such approximations are usually based 

on some acceptable  rules and desirable qualities. Early numerical analysts are primarily 

concerned with standard issues like stability, convergence and consistency of the methods. 

The works of Lambert (1991), Stretter (1973) and Fatunla (1988) are  some of the widely 

referenced  to mention a few. Some of these numerical analysts laid the foundation for general 

acceptance and suitability of finite difference methods for numerical approximations. Most of 

these techniques  are generally referred to as Standard Numerical methods. 

Standard finite difference methods have been found to be more valuable in finding solutions 

at close ranges and around special grid points like equilibrium and bifurcation points.  

However looking holistically at the nature of the solution curves and behavioral patterns of 
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the schemes, studies have shown that most of this standard algorithms produce solution 

curves that does not carry along the qualitative properties of the original dynamic 

equations(Mickens 1994&2010) 

One of the aims of nonstandard method is to develop numerical models that correctly 

represent the behavioral patterns of the dynamic equation under study. Mickens 1994 and 

Angueluv and Labuma (2003) have laid a standard foundation for modeling using 

nonstandard methods that can produce stable schemes that carried along the behavioral 

pattern of a dynamic system whose initial conditions are known.  

This work will follow a mix of some standard techniques and  the nonstandard method 

represented in the  works of  Mickens1994 with special attention to normalization of the 

denominator  functions. This technique is similar to that of Obayomi et al (2015 ,2016) 

In this work we assume a solution  that can be represented by  a polynomial function with a 

simple exponential component.  The function is then taken through some second order 

differentiation in order to determine the possible values of the adjoining parameters. The 

difference form is then approximated using Taylors expansion to obtain a standard numerical 

model . This numerical model is further extended by the renormalization of the standard 

discretization function using the Nonstandard modeling rules 

 

Derivation of the schemes 

Let's assume an Initial Value Problem possess a solution of the form  

 𝑦(𝑥) = 𝑎𝑜 + 𝑎1 x +𝑎3𝑒−𝛼𝑥        (1) 

 𝑦′(𝑥) = 𝑎1- 𝛼𝑎3𝑒−𝛼𝑥         (2) 

 𝑦″(𝑥) = ∝2 𝑎3𝑒−𝛼𝑥         (3) 

From (1)  𝑎𝑜= 𝑦(𝑥) - 𝑎1𝑥 - 𝑎3𝑒−𝛼𝑥        (4) 

From (2),  𝑎1 = y′(𝑥) +  𝛼𝑎3𝑒−𝛼𝑥        (5) 

From (3),  𝑎3=
𝑦″(𝑥)

𝛼2𝑒−𝛼𝑥          (6) 

From (6) and (5)   𝑎1=𝑦′(𝑥) + 𝛼𝑒−𝛼𝑥 𝑦″(𝑥)

𝛼2𝑒−𝛼𝑥  

 𝑎1=𝑦′(𝑥) +
𝑦″(𝑥)

𝛼
         (7) 

Putting (7) and (6) in (4), we obtain 
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 𝑎𝑜 =y(𝑥) − ((𝑦′(𝑥)) + 
𝑦″(𝑥)

𝛼
) - 

𝑦″(𝑥)

𝛼2  

 𝑎𝑜 =y(𝑥) − 𝑦′(𝑥) −  
𝑦″(𝑥)

𝛼
−  

𝑦″(𝑥)

𝛼2  

 ∴ 𝑎𝑜 = y(𝑥) − 𝑦′(𝑥) − 𝑦″(𝑥) ∝−2       (8) 

The Interpolating function must coincide with the theoretical solution at 𝑥 = 𝑥𝑛 and 𝑥 = 𝑥𝑛+1 

such that  

y(𝑥𝑛) =  𝑎𝑜 +  𝑎1𝑥𝑛 +  𝑎3 𝑒
−∝𝑥𝑛 

y(𝑥𝑛+1)  =  𝑎𝑜 + 𝑎1 𝑥𝑛+1 + 𝑎3𝑒−∝𝑥𝑛+1 

Let y′(𝑥) = 𝑓𝑛 , y″(𝑥)  =  𝑓𝑛
′ 

it follows that :  y (𝑥𝑛+1)  − 𝑦 (𝑥𝑛) = 𝑦𝑛+1 - 𝑦𝑛  

And 𝑎0 +  𝑎1𝑥𝑛+1 + 𝑎3
𝑒−𝛼𝑥𝑛+1− = 𝑎0 −  𝑎1𝑥𝑛 − 𝑎3

𝑒−𝛼𝑥𝑛 = 𝑦𝑛+1 −  𝑦𝑛 

 𝑦𝑛+1 = 𝑦𝑛 + 𝑎1(𝑥𝑛+1 − 𝑥𝑛) + 𝑎3(𝑒−𝛼𝑥𝑛+1 − 𝑒−𝛼𝑥𝑛)    (9) 

If our initial value is given at grid point “a” then 

 𝑥𝑛 =a+ 𝑛ℎ  and  𝑥𝑛+1 = 𝑎 +  (𝑛 + 1)ℎ. 

 (𝑥𝑛+1 −  𝑥𝑛)  = 𝑎 + (𝑛 + 1)h−𝑎 − 𝑛ℎ = ℎ. 

Then, 𝑦𝑛+1 = 𝑦𝑛 +  𝑎1 ℎ + 𝑎3(𝑒−𝛼(𝑎+(𝑛+1)ℎ) − 𝑒−𝛼(𝑎+𝑛ℎ))    (10) 

Putting (6) and (7) in (10), we have: 

𝑦𝑛+1 =  𝑦𝑛 +  (𝑓𝑛 +
𝑓𝑛

′

∝
)h+ {

𝑓𝑛
′

𝛼2  𝑒−𝛼(𝑎+𝑛ℎ)} (𝑒−𝛼(𝑎+(𝑛+1)ℎ) −  𝑒−𝛼(𝑎+𝑛ℎ))   (11) 

Equation (11) is the required Standard Finite Difference Scheme: 

This will be renormalized applying rule 2 of the Nonstandard modeling rules 

We will obtain two new schemes by replacing ℎ with a dynamic function of ℎ  as follows 

with the condition that 𝜓(ℎ) → ℎ + 0(ℎ2) 𝑎𝑠 ℎ → 0.   

𝜓 = sin (ℎ) ,    𝜓 =
(𝑒𝜆h−1)

𝜆 , 𝜓 = sin(∝ ℎ) , 𝜓 = ℎ      ∝, 𝜆 ∈ 𝓡  

The Standard scheme developed using (11)  will be named NEW ℎ. 
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The hybrid scheme is obtained by substituting ℎ for 𝜑 = sin (ℎ) and  𝜑 =
(𝑒𝜆h−1)

𝜆
 

which will be named  NEW SIN, NEW EXP  respectively 

Qualitative properties of the new scheme 

Definition ( Henrici,1962) 

Any algorithm for solving a differential equation in which the approximation 𝑦𝑛+1 to the 

solution at 𝑥𝑛+1  can be calculated iff  𝑥𝑛, 𝑦𝑛𝑎𝑛𝑑 ℎare known is called a one step method. It is 

a common practice to write the functional dependence 𝑦𝑛+1  On the quantities  𝑥𝑛, 𝑦𝑛𝑎𝑛𝑑 ℎ  

in the form   𝑦𝑛+1= 𝑦𝑛 + 𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 

Where 𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 𝑖𝑠 𝑡ℎ𝑒 incremental function 

Theorem ( Henrici,1962) 

Let the incremental function of the scheme defined  in the one step scheme  above be 

continuous and  jointly as a function of its arguments in the region defined by  

𝑥 ∈ [𝑎, 𝑏]𝑎𝑛𝑑 𝑦 ∈ (−∞ , ∞), 0 ≤ ℎ ≤ ℎ0Whereh0 > 0 and let there exists a constant L such 

that  𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) ≤ 𝐿|𝑦𝑛 − 𝑦𝑛

∗| for all  (𝑥𝑛, 𝑦𝑛, ℎ)𝑎𝑛𝑑  (𝑥𝑛, 𝑦𝑛
∗, ℎ)   

𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗𝑢𝑠𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 then the relation (𝑥𝑛, 𝑦𝑛, 0) =  (𝑥𝑛, 𝑦𝑛
∗) is a necessary condition 

for the convergence of the new scheme 

Definition ( Fatunla, 1988) 

A numerical scheme with an incremental  𝜙(𝑥𝑛, 𝑦𝑛, ℎ)   is said to be consistent with the initial 

value problem      𝑦′ = 𝑓(𝑥, 𝑦) , 𝑦(𝑥0) = 𝑦0  if the incremental function is identically zero at 

t0 when ℎ = 0, 

 

Theorem (Fatunla, 1988) 

Let  𝑦𝑛= 𝑦(𝑥𝑛) and  𝑝𝑛= 𝑝(𝑥𝑛) denote two different numerical solution of the differential 

equation with the  initial condition specified a 

𝑦0= 𝑦(𝑥0) = 𝜉and  𝑝0= 𝑝(𝑥0) = ξ∗ respectively, such that  |𝜉−ξ∗|<ε   ε>0 

If the  two numerical estimates are generated by the integration scheme , we have  

𝑦𝑛+1= 𝑦𝑛+ℎ𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 

𝑝𝑛+1= 𝑝𝑛+ℎ𝜙(𝑥𝑛, 𝑝𝑛, ℎ) 

The  condition that  |𝑦𝑛+1 − 𝑝𝑛+1|≤ K  |𝜉−ξ∗|  is the necessary and sufficient condition for 

the stability and convergence of the schemes. 
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Proof of Convergence 

𝑦𝑛+1 =  𝑦𝑛 +  (𝑓𝑛 +
𝑓𝑛

′

∝
)h+ {

𝑓𝑛
′

𝛼2  𝑒−𝛼(𝑎+𝑛ℎ)} (𝑒−𝛼(𝑎+(𝑛+1)ℎ) −  𝑒−𝛼(𝑎+𝑛ℎ))    

𝑦𝑛+1 =  𝑦𝑛 +  (𝑓𝑛 +
𝑓𝑛

′

∝
)h+ {

𝑓𝑛
′

𝛼2  } (𝑒−𝛼ℎ −  1)    

Simplify to obtain 

𝑦𝑛+1= 𝑦𝑛+{ℎ}𝑓𝑛+{
(𝑒−𝛼ℎ−1)

𝛼2  
+  

ℎ

𝛼
} 𝑓𝑛

′            

(12) 

The incremental function can be written as 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) = ℎ𝑓𝑛+{
(𝑒−𝛼ℎ−1)

𝛼2  
+  

ℎ

𝛼
} 𝑓𝑛

′ 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ)= 𝐴𝑓𝑛+ 𝐵𝑓𝑛
′             

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) = 𝐴[𝑓(𝑥𝑛, 𝑦𝑛, ℎ) − 𝑓(𝑥𝑛, 𝑦𝑛

∗, ℎ)] + 𝐵[𝑓′(𝑥𝑛, 𝑦𝑛, ℎ) − 𝑓′(𝑥𝑛, 𝑦𝑛
∗, ℎ)] 

= 𝐴[𝑓(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥𝑛, 𝑦𝑛
∗)] + 𝐵[𝑓′(𝑥𝑛, 𝑦𝑛) − 𝑓′(𝑥𝑛, 𝑦𝑛

∗)] 

= 𝐴[
𝜕𝑓(𝑥𝑛,ӯ)

𝜕𝑦𝑛
(𝑦𝑛 − 𝑦𝑛

∗)] + 𝐵[
𝜕𝑓′(𝑥𝑛,ӯ)

𝜕𝑦𝑛
(𝑦𝑛 − 𝑦𝑛

∗)]      (13) 

L1 = SUP(𝑥𝑛,𝑦𝑛)∈𝐷
𝜕𝑓(𝑥𝑛,ӯ)

𝜕𝑦𝑛
  and 

L2 = SUP(𝑥𝑛,𝑦𝑛)∈𝐷
𝜕𝑓′(𝑥𝑛,ӯ)

𝜕𝑦𝑛
 

then 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) = 𝐴[𝐿1(𝑦𝑛 − 𝑦𝑛

∗)] + 𝐵[𝐿2(𝑦𝑛 − 𝑦𝑛
∗)]    (14) 

Let  𝑀 =  |𝐴. 𝐿1 + 𝐵. 𝐿2| 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) ≤ 𝑀|𝑦𝑛 − 𝑦𝑛

∗|which is the condition for convergence 

 

Consistency of the schemes 

𝑦𝑛+1= 𝑦𝑛+ℎ𝑓𝑛+{
(𝑒−𝛼ℎ−1)

𝛼2  
+  

ℎ

𝛼
} 𝑓𝑛

′     

𝑦𝑛+1= 𝑦𝑛+ℎ {𝑓𝑛 + [
(𝑒−𝛼ℎ−1)

ℎ𝛼2  +  
1

𝛼
]𝑓𝑛

′}     

𝑦𝑛+1= 𝑦𝑛+ℎ 𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 

When ℎ = 0  

⇒𝑦𝑛+1= 𝑦𝑛 and the incremental function is identically zero when ℎ = 0 

⇒𝜙(𝑥𝑛, 𝑦𝑛, 0) ≡ 0 
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Stability of the schemes 

Consider the equation 

𝑦𝑛+1= 𝑦𝑛+ℎ𝑓𝑛(𝑥𝑛, 𝑦𝑛) +{
(𝑒−𝛼ℎ−1)

𝛼2  +  
ℎ

𝛼
} 𝑓𝑛

′(𝑥𝑛, 𝑦𝑛) 

𝑦𝑛+1= 𝑦𝑛+{𝐴}𝑓𝑛(𝑥𝑛, 𝑦𝑛) +{𝐵}𝑓𝑛
′(𝑥𝑛, 𝑦𝑛)       (15) 

Let 𝑝𝑛+1= 𝑝𝑛+{𝐴}𝑓𝑛(𝑥𝑛, 𝑃𝑛) +{𝐵}𝑓𝑛
′(𝑥𝑛, 𝑃𝑛) 

𝑦𝑛+1 − 𝑝𝑛+1= 𝑦𝑛 − 𝑝𝑛+ {𝐴}[𝑓𝑛(𝑥𝑛, 𝑦𝑛) − 𝑓𝑛(𝑥𝑛, 𝑃𝑛)] +{𝐵}[𝑓𝑛
′(𝑥𝑛, 𝑦𝑛) − 𝑓𝑛

′(𝑥𝑛, 𝑃𝑛)] 

= 𝑦𝑛 − 𝑝𝑛+ 𝐴[
𝜕𝑓(𝑥𝑛 ,𝑝𝑛)

𝜕𝑝𝑛
(𝑦𝑛 − 𝑝𝑛)] + 𝐵[

𝜕𝑓′(𝑥𝑛,𝑝𝑛)

𝜕𝑝𝑛
(𝑦𝑛 − 𝑝𝑛)]     (16) 

L1 = SUP(𝑥𝑛,𝑦𝑛)∈𝐷
𝜕𝑓(𝑥𝑛,𝑝𝑛)

𝜕𝑝𝑛
  and 

L2 = SUP(𝑥𝑛,𝑦𝑛)∈𝐷
𝜕𝑓′(𝑥𝑛,𝑝𝑛)

𝜕𝑝𝑛
 

𝑦𝑛+1 − 𝑝𝑛+1= 𝑦𝑛 − 𝑝𝑛+ 𝐴. 𝐿1(𝑦𝑛 −  𝑝𝑛)  +  𝐵. 𝐿2(𝑦𝑛 − 𝑝𝑛)  

|𝑦𝑛+1 − 𝑝𝑛+1|= |𝑦𝑛 − 𝑝𝑛|+ [𝐴. 𝐿1 + 𝐵. 𝐿2]|(𝑦𝑛 − 𝑝𝑛)|     (17) 

Let N = |1+ [𝐴. 𝐿1 + 𝐵. 𝐿2]| 

|𝑦𝑛+1 − 𝑝𝑛+1|≤N |𝑦𝑛 − 𝑝𝑛| 

Let 𝑦0= 𝑦(𝑥0) = 𝜉and  𝑝0= 𝑝(𝑥0) = ξ∗ then 

|𝑦𝑛+1 − 𝑝𝑛+1|≤ K  |𝜉−ξ∗|         (18) 

  

Application to some Initial Value Problems 

These Initial value problems are from the books of Shepley Ross and  also D.G. Zill  

Example 1 

𝑦′ =  𝑥2 + 𝑦, 𝑦(0) =  1         (19) 

𝑓𝑛 = 𝑦′(𝑥𝑛) = 𝑥𝑛
2 + 𝑦𝑛 

   𝑓𝑛
′ =  𝑦″(𝑥𝑛)  = 2𝑥𝑛 + 𝑦𝑛

′ = 2𝑥𝑛 + 𝑥𝑛 
2 + 𝑦𝑛 

The standard scheme is 

𝑦𝑛+1 =  𝑦𝑛 +  (𝑥𝑛
2 + 𝑦𝑛 +

2𝑥𝑛+𝑥𝑛 
2 +𝑦𝑛

∝
)h+ {

2𝑥𝑛+𝑥𝑛 
2 +𝑦𝑛

∝2  𝑒−∝(𝑎+𝑛ℎ)} (𝑒−∝(𝑎+(𝑛+1)ℎ) −  𝑒−∝(𝑎+𝑛ℎ)) (20) 

Set a= 0 

𝑦𝑛+1 =  𝑦𝑛 +  (𝑥𝑛
2 + 𝑦𝑛 +

2𝑥𝑛+𝑥𝑛 
2 +𝑦𝑛

∝
)h+ {

2𝑥𝑛+𝑥𝑛 
2 +𝑦𝑛

∝2  𝑒−𝛼𝑛ℎ } (𝑒−∝((𝑛+1)ℎ) − 𝑒−∝𝑛ℎ)  (21) 
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The two  hybrid schemes of (21) will be obtained  by changing h  to 𝜓 =sin (ℎ) and  𝜓= 

(𝑒𝜆h−1)

𝜆  

The Analytic solution is  𝑦 =  2𝑒𝑥 − 𝑥 − 1 

The Nonstandard scheme using rules 2 and 3 will be obtained by replacing the denominator h 

by ψ  and approximating y non-locally 

𝑦′ =  𝑥2 + 𝑦           (22) 

(yn+1−yn)

ψ
=𝑥𝑛 

2 + 𝑐𝑦𝑛+1 +  𝑑𝑦𝑛        

yn+1 = yn +
𝑦𝑛(1+ψd)+ψ𝑥𝑛 

2

(1−ψc)
         (23) 

Example 2 

𝑦′ =  4𝑥 − 2𝑦,   𝑦(0) =  3         (24) 

𝑓𝑛 = 𝑦(𝑥𝑛 )
′ = 4𝑥𝑛 − 2𝑦𝑛 

   𝑓𝑛
′ =  𝑦″(𝑥𝑛)  = 4 − 2𝑦𝑛

′ = 4 − 8𝑥𝑛 + 4𝑦𝑛 

𝑦𝑛+1= 𝑦𝑛+ℎ𝑓𝑛+{
(𝑒−𝛼ℎ−1)

𝛼2  +  
ℎ

𝛼
} 𝑓𝑛

′     

𝑦𝑛+1= 𝑦𝑛+ℎ(4𝑥𝑛 − 2𝑦𝑛) +{
(𝑒−𝛼ℎ−1)

𝛼2  
+  

ℎ

𝛼
} (4 − 8𝑥𝑛 + 4𝑦𝑛)    (25) 

The two  hybrid schemes of (25) will be obtained  by changing h  to 𝜓 =sin (ℎ) and  𝜓= 

(𝑒𝜆h−1)

𝜆  

The Nonstandard scheme using rules 2 and 3 will be obtained by replacing the denominator h 

by ψ  and approximating y non-locally 

𝑦′ =   4𝑥 − 2𝑦          (26) 

(yn+1−yn)

ψ
=4𝑥𝑛 + 2𝑐𝑦𝑛+1 +  2𝑑𝑦𝑛         

yn+1 = yn +
𝑦𝑛(1−2ψd)+4xψ

(1+2ψc)
         (27) 

Example 3 
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𝑑𝑦

𝑑𝑥
(𝑒2𝑥𝑦) = (2𝑥 − 𝑒2𝑥𝑦2),  y(0)=2,   𝑦(𝑥) = e−x(2𝑥2 + 4)

1
2⁄     (28) 

𝑓𝑛 = 𝑦′(𝑥𝑛) =
2𝑥𝑛 − 𝑦𝑛 

2 𝑒2𝑥𝑛

𝑦𝑛𝑒2𝑥𝑛
 

   𝑓𝑛
′ =  𝑦″(𝑥𝑛)  = [(4𝑥𝑛 − 2)𝑦𝑛 + (𝑦𝑛 

2 𝑒2𝑥𝑛 + 2𝑥𝑛)𝑓𝑛]/(𝑦𝑛 
2 𝑒2𝑥𝑛  ) 

𝑦𝑛+1= 𝑦𝑛+ℎ𝑓𝑛+{
(𝑒−𝛼ℎ−1)

𝛼2  +  
ℎ

𝛼
} 𝑓𝑛

′         

𝑦𝑛+1= 𝑦𝑛+ℎ(
2𝑥𝑛−𝑦𝑛 

2 𝑒2𝑥𝑛

𝑦𝑛𝑒2𝑥𝑛
  )+{

(𝑒−𝛼ℎ−1)

𝛼2  + 
ℎ

𝛼
}

[(4𝑥𝑛 −2)𝑦𝑛+(𝑦𝑛 
2 𝑒2𝑥𝑛+2𝑥𝑛)𝑓𝑛]

(𝑦𝑛 
2 𝑒2𝑥𝑛  )

   (29) 

The two  hybrid schemes of (29) will be obtained  by changing h  to 𝜓 =sin (ℎ) and  𝜓= 

(𝑒𝜆h−1)

𝜆  

The Nonstandard scheme using rules 2 and 3 will be obtained by replacing the denominator h 

by ψ  and approximating 𝑦2 non-locally 

Replace  𝑦2 𝑖𝑛 (28)   𝑏𝑦 (𝑎𝑦𝑘𝑦𝑘+1 + 𝑏yk
2), 𝑎 + 𝑏 = 1 and  ℎ by 𝜓 

𝑦𝑘+1−𝑦𝑘

𝜑
 = 

2𝑥−𝑒2𝑥(𝑎𝑦𝑘𝑦𝑘+1+𝑏yk
2)

𝑒2𝑥𝑦𝑘
 

𝑦𝑘+1(𝑒2𝑥𝑦𝑘 + 𝑎𝜑𝑦𝑘𝑒2𝑥) =  𝑒2𝑥𝑦𝑘
2 + 2𝜑𝑥 − 𝑏𝜑𝑒2𝑥𝑦𝑘

2 

yk+1 =   
2φx+e2xyk

2(1−bφ)

e2xyk (1+aφ)
         (30) 

 

Numerical experiment 

The schemes have been tested using various step sizes and the behavior of the curves were 

consistent. We  present below the 3D graphs for the scheme using step size h=0.01 

Example 1  Schemes  of 𝑦′ =  𝑥2 + 𝑦, 𝑦(0) =  1 
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Fig 1:  solution curves for  the standard, hybrid and Nonstandard schemes of example 1 

 

Fig 2:  Graph of absolute Error for  the standard, hybrid and Nonstandard schemes of example 

1 

 

Example 2   Schemes of 𝑦′ =  4𝑥 − 2𝑦,   𝑦(0) =  3 

 

Fig 3:  solution curves for  the standard, hybrid and Nonstandard schemes of example 2 
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Fig 4:  Graph of absolute Error for  the standard, hybrid and Nonstandard schemes of example 

2 

Example 3 schemes of   
𝑑𝑦

𝑑𝑥
(𝑒2𝑥𝑦) = (2𝑥 − 𝑒2𝑥𝑦2),  y(0)=2 

 

Fig 5:  solution curves for  the standard, hybrid and Nonstandard schemes of example 3 

 

Fig 6:  Graph of absolute Error for  the standard, hybrid and Nonstandard schemes of example 

3 

Discussion  Conclusion 

Mickens non-standard modeling rules remains a very powerful tool for discrete modeling of 

dynamic systems. It has ones again prove to be very useful tool for building numerically 

stable finite difference schemes. This example shows that a lot of improvement can be 
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obtained by apply the renormalization techniques to finite difference schemes. It will be 

recalled that only the derived scheme NEW h is a standard finite difference scheme . Even 

though this New h scheme also possess the consistency, stability and convergence qualities,  

the renormalized schemes produced lower  absolute error of deviation from the Analytic 

solution . It can be observed that schemes with normalized step-size (Sin, Exp) instead of 

standard step-size h  have very low absolute error and are relatively closer to the Analytic 

solution.  All the schemes have been found to be consistent with literature and compared 

favorably with the dynamics of the original equation. 
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