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Abstract 

The aim of this research is to evaluate the main occurrences that blossoms in mathematics especially in the field 

of probability. To abstract the whole course generated in this context of both dimensional probability space and 

axiomatic probability theories then some few cases are discussed in it. These are the ways and the modes in 

which we can approach these core subjects of probability. Everything that pertain these two subjects is included 

in order to help in learning about these two prospective probability issues.  
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1. Introduction 

Mathematics is the key to every aspect of science. As a science, several objectives were being addressed of 

which probability was the main aspect of it. Meanwhile, probability as a branch of mathematics had a general 

layman’s meaning as the likelihood of something happening. As core figure in mathematics, probability was still 

given an absolute scientific meaning, which was almost the same but highly differentiated because in this case, 

probability took figures and numbers. However, probability being a huge scientific course in mathematics it had 

other several fields, which were being addressed to build up this probability. It is important to note that, under 

this probability, several objectives were met of which axiomatic probability theory and (Chen, Y. (2010) 

dimensional probability spaces were discussed. Between these two sectors of probability, we had other myriad 

chapters under it, but the major concern was entitled majorly here. 

When we take mathematical assumptions of probability, then the actual figures and definitions crop out and then 

we firstly define what the term “space” under probability meaning. This term “space” is defined mathematically 

as a set with some added structures. The set is exclusively entitled with other names of which it can also be 

called a “universe,” of which it can be used occasionally. When talking about probability spaces we actually talk 

about the parent space, which is the most prominent space of which it can also take other unlimited hierarchy of 

spaces. This hierarchy of spaces is formed from mathematical combination of spaces.  An example to illustrate 

the above scenario can be induced into taking the following conceptions, all inner products spaces are also 

formed vector spaces (Good, I. (1950) because the inner product induces a norm on the inner product space. That 

is self-satisfying. 

It is important to note that, scientific mathematical values for instance probability theory also have another name. 

It is also known as Lebesgue-Rokhlin probability space of just Lebesgue space. This is an ambiguous term 

relating this latter to taking an individual authentic beholder’s name. The man who introduced this subject of 

probability theory was called Vladimir Rokhlin, and this was in the year 1940. This man gave mutual satisfying 

assumptions to this matter of probability theory, assumptions which were satisfied using probability space. 

However, for probability theory to be actually known, an informal definition was given to it when meant that 

probability theory is probability space, (Gudder, S. (1970). (Pg 53-129)) This was consisting of an interval of 

finite or countable number of atoms. 

Furthermore, the subject spaces take a mathematical point of view. Mathematics has taken ages to grow and to 

cite its introduction will take up to years Before Christ, (BC). Those are the times when mathematics took the 

name of “ancient mathematics.” Probability was still being adorned by the scientific scholars of those times. As 

per the term “space,” it was defined scientifically as geometric dimensional space that is being observed every 

day.  Just as it was cited as probability matters introduced in BC years, (Gudder, S. (1970). Pg 53-129, so as 

axiomatic methods which were being used as the main research tools especially since Euclid in about 300 BC. 

This dates mathematics especially this branch of probability as old enough in the field of science. 

In addition, Rene Descartes adopted the method of coordinates, which is analytical geometry, in the year 1637. 

Those were times when geometric theorems were being treated as an absolute objective truth knowable through 
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intuition and reason, and these were similar to objects of natural science and axioms of which were being dealt 

with as obvious implications of definitions. Similarly, everything in these subjects had micro subjects and to 

reveal them all it actually takes extra efforts to enlist them. For the purpose of the above subject, geometric 

figures had two equivalence relations which were being used. These figures were “congruence” and “similarity.” 

When the subject congruence is taken into importance, we clearly find a multiple of components of figures that 

can be turned into congruent ones. These includes; translations, rotations and reflection transformation of figures 

into congruent figures, homothetic, into similar ones. A clearly working example will include, ((Gudder, S. 

(1970). Pg 53-129), take an example of circles, all circles are mutually similar, but eclipses are not similar to 

circles. A third equivalence relation which was introduced by Gaspard Monge in the year 1975 occurs in 

projective geometry. According to this mathematician, not only eclipses but also parabolas and hyperbolas turn 

into circles under appropriate transformations, because they are all protectively equivalent. 

When we are addressing mathematics as a science, it will actually show the bigger branches it has. It all starts 

with geometry which is complete pure science, sketches, and drawings which will be including the hyperbolas 

not forgetting the natural science about probability which is main or major subject of the study in this. It is 

covering the major affluent of probability which includes axiomatic probability theory and dimensional 

probability spaces. Though this unique science has taken ages to grow from ancient times to date, it is more 

expressed mathematically using scientific expressions like alpha.  

It is important to note that, mathematics takes out different core objects with different structures but in this case 

of geometry is not far much different. This is mainly because, the relations between two geometries, which are 

Euclidian and projective, show that mathematical objects are not given with their structures. However, they take 

a different view and this is; each mathematical theory describes objects by their properties, precisely those that 

are put as axioms at the foundation of this individual theory.  

So many situations occurred in 19
th

 century especially in this mathematical field of geometry. It claims that in 

some geometries, the sum of angles of a triangle is well defined but different from the classical value of 180 

degrees.  This argument was brought out by several mathematician scientists who supported their adventurous 

arguments with firm affirmatives. These scientists included; Nikolai Lobachevski back in the year 1829, Janos 

Bolyai in 1832. These two mathematicians argued that the sum depends on the triangle and is always less than 

180 degrees. In addition, several other mathematicians argued on this “model” trying to justify it as right. These 

mathematicians included; (Chow, Y., & Teicher, H. (2012, n, p) Eugenio Beltrami in the year 1868 and a fellow 

other mutual mathematician called Felix Klein in the year 1871. These two mutual performing mathematicians 

contributed to this core model and obtained Euclidian “model” of the non-Euclidian hyperbolic geometry and 

therefore completely justifying this prospective theory. 

Things became quite justifiable to quit the existence of probability in this field of the model above, the Euclidian 

model. This model took charges in the field as a whole covering geometry and space perspectives of probability. 

For instance, the Euclidean model of a non-Euclidean geometry was a clever choice of some objects existing in 

Euclidean space and some of those, relating these objects that were satisfying all axioms which meant “all 

theorems” of non-Euclidean geometry. To clearly exemplify the above relationship between these factors we 

ought to see how they interfere and mingle with each other. However, these Euclidean objects and relations 

“play” the non-Euclidean geometry like contemporary actors playing an ancient performance. This is mainly 

because; the relations between actors only mimic relations between the characters in the individual play. This 

nonprofessional’s comparison is relating to Euclidean relations to non-Euclidean relations to make the subject 

clearly understandable. (Chow, Y., & Teicher, H. (2012, n, p) Therefore, using this contemporary explanation, we 

can say that, chosen relations between the chosen objects of the Euclidean model only mimic the non-Euclidean 

relations. This is mainly because, is shows that the relations between objects are essential in mathematics, while 

the nature of objects is not. 

Space seems to be a wide range of Intel with multifaceted definitions, especially with the term probability space. 

A probability space is also defined as a measure space such that the measure of the whole space is equal to one. 

Concerning this matter, we can say that a product of any family, whether finite or infinite, of probability spaces, 

is a probability space. By so doing, in the affirmed context obviously has a pullback contrasting factors. This is 

well suited and therefore, in contrasting this event, for measure spaces in generally, only the products of finitely 

many spaces are defined. Otherwise, there are those many infinite dimensional probability measures especially 

Gaussian measures but lack infinite-dimensional Lebesgue measure.  

The modulus of standard probability spaces is also useful indeed. To paraphrase this concept, we can 

complement that every probability measure on standard measurable spaces leads to a well standard probability 
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space. This means that the product of a sequence, whether finite or infinite, of standard probability spaces is a 

standard probability space. All non-atomic standard probability spaces are mutually isomorphic where one of 

them is interval with Lebesgue spaces. By employing the concept of geometry, then this concept becomes invalid 

because the spaces are completely less geometric. Other words, the ideas of dimension, are applicable to all other 

spaces in either one form or another and this does not apply to measurable measures and probability. 

Most are the times when we apply general knowledge to pledge the concepts of mathematical factors and figures 

and hence we can take mathematical methodologies to analyze mathematical terms. Using the mathematical 

logics and assumptions, we can bring out the concept of descriptive set theory as a major clause in history of 

probability. Mathematically, we say that descriptive set theory is the study of “well-behaved” subsets of the real 

line and other polished substantial spaces. As well as being, one of the most primary areas of research in set 

theory, it. This descriptive set theory is termed as one (Kolmogorov, A. (1950), n.p) of the most primary areas of 

research in set theory. There are so many distinctive areas of study below the latter. However, this descriptive set 

theory has also distinct applications to other fields of mathematics such as functional analysis, ergodic theory, the 

study of operator algebras and group actions and mathematical logic 

 

2. Polish Spaces 

The term space as addressed in the probability still carries out its value with prospective branches. Well termed 

above sub-topic “polished spaces” as a relevant key subject. However, to exemplify this subject with a proper 

definition several factors are ordained and therefore “polished spaces” will be equipped with special definition 

and well paraphrased properties distinction this space body. This highly termed “polished space” is a second 

countable topological space that is amortizable with a complete metric. Further explanations to confect the 

essence behind this “polished spaces” are as well elaborated as a complete separable metric space whose metric 

has been forgotten. For instance, we have the real line and the Baire space. The Cantor space and the Hilbert 

cube as major examples to explain and bring out the image of the subject “polished spaces.” 

However, polished spaces have been credited as a major part of mathematics. It is, however, granted big chances 

especially in the mathematical discipline of general topology and it is in this region where the above golden 

definition of “polished space” comes from. They gained this name respectively because they were firstly 

extensively studied by topologists and logicians who included; Sierpinski, Kuratowski, Tarski, and others. It is 

important to note that, these kinds of spaces are major field of study especially nowadays because they are the 

primary settings of distinctive set theory, and also they include the study of Boreal equivalence relations. In 

addition to this matter, “polished spaces” are also a convenient setting for more advanced measure theory, 

particularly in probability theory. A major point of concern is about some spaces where they are not complete in 

the usual metric may be polished for example; the open interval. However, between any two infinite Polish 

spaces, there is a Boreal isomorphism, that is, a bijection that preserves the Boreal structure. Moreover, every 

uncountable Polish space has the cardinality of the continuum. To explain this further, we can term the 

generalizations of Polish spaces as Lusin spaces, Suslin spaces and finally Radon spaces.  

Every individual figure in mathematics is termed to have a distinctive feature or features that accrue it different 

from the rest. However, these polished spaces have special features, which are universal and prompt to show 

other subjects of mathematics that it is different from them. As a result, these features and characteristics were 

identified by other different topologists whose arguments if brought together made “polished spaces” different.  

Property number one was ordained in Alexandrov’s theorem. This property was expressed mathematically with 

digits and numbers to express the actual logic behind it. From this theorem, polished spaces were identified to 

have a special feature that if for example; X is a polish then so is any G, subset of X.  

Secondly, another property of polished space was taken from Cantor-Bendixson theorem, which was also stated 

in terms of digits and numbers. This affirming property stated that; if X is a polish then any closed subset of X 

could be written as the disjoint of a perfect subset and a countable open subset. 

The third property of this polished space was also claimed form conversing to Alexandrov’s theorem. However, 

this property was affirming the distinct nature of polished space by claiming that, a subspace of a polished space 

P is a polish if and only if Q is the intersection of a sequence of open subsets of P.  

The fourth well-stated property of this polished space claimed that, a topological space X is polish if and only if 

X is homeomorphism to the intersection of a sequence of open subsets of the cube, where ‘I’ is the unit interval 

and N is the set of natural numbers. 

The final property accrued to this polished space is got relatively from Hilbert cube. This property states that 
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every G-subset of the Hilbert cube is a polish space. Conversely, every polish space is homeomorphism to a 

G-subset of the Hilbert cube. 

After having done up with the distinctive properties of this polish spaces then we can close down to put through 

some of the spaces that are ever a polish. Therefore, the following are spaces which are a polish; the closed 

subsets of a polish space. Secondly, open subsets of a polish space, products and disjoint unions of countable 

families of polish spaces. Another example is the locally compact spaces that are amortizable and countable at 

infinity.  Of this finite definition, we cannot forget the countable intersections of polish subspaces of a 

Hausdorff topological space as a polish and finally the set of non-rational numbers with the topology induced by 

the real line. The above examples driven are a polish space. The above definitions of examples of existing 

polished spaces are far much distinct in their own nature. 

 

3. Boreal Sets 

The Boreal set is another huge factor of study upon this matter. We can clearly state Boreal sets and provide 

them with a complete definition and factors districting it from other factors and figures in mathematics as a 

science of probability. The definition of this subject, Boreal can have a mathematical definition too. 

Mathematically, we can say that a Boreal set is any set in a topological space that can be formed from open sets, 

which are equivalently from closed sets, though the operations of countable union, countable intersection and 

relative complement. The actual man to have a special naming of these Boreal set was Emile Boreal. This set’s 

name took after him. This Boreal set can be illustrated through a multivariate collection of numbers or digits 

only of just confect the meaning behind it. To exemplify this, we can probably say that for a topological space X, 

the collection of all Boreal sets on X forms an σ-algebra known as Boreal algebra or Boreal σ-algebra. The 

Boreal algebra on X is the smallest σ-algebra containing all open sets either equivalent or all closed sets. 

Just with mere special features of Boreal set, we can identify that; every open subset of X is a Boreal set and 

finally, if A is a Boreal set, so is. That is, the classes of Boreal sets are closed under complementation. However, 

if An is a Boreal set for each natural number n, then the union is a Boreal set. That is, the Boreal are sets under 

constable unions. 

The above topic on Boreal sets is observed to take the wave of mathematical ideologies and definitions as 

compared to other (Wootters, W. K. (1981). N.p) subjects of study. However, to put polish sets in Boreal sets we 

can say that a fundamental result shows that any two uncountable polish spaces X and Y are Boreal isomorphic. 

This means that there is a bijection from X and Y such that the pre-image of any Boreal set is Boreal, and the 

image of any Boreal is Boreal. Therefore, according to this explanation, we can say that it gives additional 

justification to the practice of restricting attention to Baire space and Cantor space, since these and any other 

polish spaces are all isomorphic at the level of Boreal sets. By so doing, this respective area of effective 

descriptive set theory combines the methods of descriptive set theory with those of generalized recursion theory. 

This theory focuses on the lightface analogues of hierarchies of classical descriptive theory. Therefore, this gives 

an upper hand in studying of generalized recursion theory than Boreal hierarchy, and analytical hierarchy instead 

of projective hierarchy. 

Likewise, in probability theory, we have a probability space or a probability triple. These terms can be illustrated 

as a mathematical construct that a real world process or experiment consisting of states that occur randomly. 

When this experiment is ongoing then we figure out the trend of occurrences in our minds, that is, we construct a 

probability space with a specific kind of situation in our minds. (Chow, Y., & Teicher, H. (2012, n, p) Once we 

experience an occurrence of a situation in a time, then we can predict the occurrence of the same situation and 

only find that the probabilities are all the same. 

Probability is made of different parts, which are only three respective parts. One part of probability is a sample 

space; where a sample space is the set of all possible outcomes. The second part is a set of events, where each 

event is a set containing zero or more outcomes. Finally, is the assignment of probabilities to the events; which 

are a function from events to probabilities? 

Every moment we carry out an event, an individual outcome result and that is like tossing up events. Outcomes 

generated maybe (Wootters, W. K. (1981). n.p) a little of practical use and more complex events are used to 

characterize these events outcomes and these collections of all such events is called σ-algebra.  

However, there is the need to specify each event’s likelihood of happening. Finally, there is the need to specify 

each event’s likelihood of happening. This is actually done using a methodology called probability measure 

function. When doing probability we put down the probability space and more naturally, the outcome are 
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selected in a single outcome from a sample space. All the events in that contain the selected outcomes and are 

said to have occurred. The selection performed by nature is carried out in a way that if the given experiments 

were to be repeated or done severally an infinite number of times, the resulting frequencies of occurrence of each 

individual event would coincide with the probabilities prescribed by the function. This notion of probability 

space was introduced by a Russian mathematician called Andrey Kolmogorov alongside with the concept of 

axioms of probability. This was back in the years 1930s. Days have gone and still alternative approaches of 

axiomatic of probability theory exist  

 

3.1 Discrete Case 

Another concept of probability configured out using this concept of discrete case. However, discrete probability 

theory needs only at most countable sample spaces. Probabilities can be ascribed to points of by the probability 

mass function such that all subsets of can be treated as events. The probability measure takes the simple form. 

The greatest σ-algebra describes the complete information. In general, σ-algebra corresponds to a finite or 

countable partition, the general form of an event being. The case is permitted by the definition, but rarely used, 

since such can be excluded from the sample space. 

Let Y be the random variable, which will represents the toss of a coin. In this case, there are two possible 

outcomes, which we can label as H and T. (Burks, A. W. (1979). N. p) unless we have reason to suspect that the 

coin comes up one way more often than the other way, it is natural to assign the probability of half to each of the 

two outcomes. In both of the above experiments, each outcome is assigned an equal probability. This would 

certainly not be the case in general. For example, if a drug is found to be active thirty percent of the time it is 

used, we might assign a probability 0.3 that the drug is effective the next time it is used and 0.7 that it is not 

effective. This last example illustrates the intuitive frequency concept of probability. That is, if we have a 

probability P that an experiment will result in outcome A, then if we repeat this experiment a large number of 

times we should expect that the fraction of times that A will occur is about P. To check intuitive ideas like this, 

we shall find it helpful to look at some of these problems experimentally. We could; For example toss a coin a 

large number of times and see if the fraction of times heads turns up is about half. We could also simulate this 

experiment on a computer. 

We will be particularly interested in repeating a chance experiment a large number of times. Although the 

cylindrical die would be a convenient way to carry out a few repetitions, it would be difficult to carry out a large 

number of experiments. Since the modern computer can do a large number of operations in a very short time, it 

is natural to turn to the computer for this task 

 

3.2 General Case 

So many different points of views have been used when it comes to the concept of probability.  However, credit 

goes solemnly to micro studies of this huge course of study. For example, to elaborate this concept of axiomatic 

theory and dimensional probability spaces we can figure out new methodologies and perceive this new study at a 

general point of view. That is exactly possible and below this sub unit micro study we can talk about the general 

cases of these two concepts; axiomatic theory and dimensional spaces of probability. Therefore this study can 

take the general shape of study as long as the concept is being supported with huge claims or working examples. 

That will be much better to stand. Take an example with the below statements and examples relating the matter 

with general cases. 

In this case, we can look and embrace the concept of axiomatic probability theory and probability space is viable 

on the angles of a general case. This can actually be shown using a proper working example. For example, If Ω 

is uncountable, it may happen that p(ω) ≠ 0 for some ω; such ω are called atoms. They are an at most countable 

set of which maybe empty, whose probability is the sum of probabilities of all atoms. Then, if this sum is equal 

to one, then all other points can be safely removed from the sample space, returning us to the discrete case. 

Otherwise, (Meakin,  P. (1983). N. p) if the sum of all probabilities of atoms is between zero and one, then the 

probability space decomposes into a discrete or atomic part which maybe empty and a non-atomic part. 

In the axiomatic approach to probability, random experiments are considered, sample space and also other events 

associate with different experiments. In our day to day encounter, we hear more of “chance” compared to 

“probability.” It is important to note that mathematics basically deals with qualifying things. Therefore, the 

probability theory quantifies chances of non-occurrence or occurrence of events. Also, one notable characteristic 

about probability is that it is mostly or can only be used to experiment a situation whereby the total number of 
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outcomes are known.  Therefore, to apply probability in a situation, one should be aware of the total of possible 

outcomes from a given experience. Axiomatic probability is, therefore, another way of describing the possible 

probabilities of an event. In this case some axioms are predefined before probabilities are assigned. This is done 

to help in quantizing an event, therefore, easing the calculation of non-occurrence or occurrence of the event. 

 

3.3 Non-atomic case 

When it comes to the word atomic, everything feels like falling apart for non-mathematics lovers but the concept 

behind it is very cheap and is grossing perfectly to understand. Although when it comes to these strange micro 

scientific terms feels like heavy concepts and it is truly supported with heavy claims of working probability and 

scientific mathematical terms. Take a look at these concepts supporting the non-atomic cases of axiomatic 

probability theory and dimensional space probability. In this case, (Meakin, P. (1983). N. p) to approach this 

concept of axiomatic probability theory and space is through or using the concept of non-atomic case. This can 

be illustrated through an example to help exemplify the case study. For example; if B (ω) = 0 for all ωZΩ, then 

in this case, Ω ought to be uncountable. This is because otherwise B (Ω) =1 which could not be satisfied, 

therefore, equation (∗) fails. Here, the probability of a given set is not the sum total over its elements, as the 

summation is only defined for the countable amount of elements. This helps in making the probability space 

theory much more technical. A formulation stronger than summation, measure theory is then applicable. Initially, 

probability is regarded to some “generator” sets. 

Then a limiting procedure allows assigning probabilities to sets that are limits of sequences of generator sets, or 

limits of limits, and soon. All these sets are the σ-algebra. A set belonging to this group is considered measurable. 

Generally, they perceived to be are much more complicated compared to the generator sets, but again much 

better than non-measurable sets. 

 

4. Complete probability space 

Another major concept induced n the study of axiomatic probability theory and probability space is about a 

complete probability space. A probability space is said to be a complete probability space if for all with and all 

one has. Most times, the study of probability spaces is basically restricted to complete probability spaces. In 

probability theory, (Parzen, E. (1960, n. p) a standard probability space, also called Lebesgue–Rokhlin 

probability space or just Lebesgue  space which is a probability space that satisfies certain assumptions which 

were  introduced by Vladimir Rokhlin in the year 1940. Informally, it is a one of the probability space that 

consist of an interval or countable or a finite number of atoms. 

The theory of standard probability spaces was started by Von Neumann in 1932 and shaped out later by Vladimir 

Rokhlin in the year 1940. It is important to note that Rokhlin showed the unit interval endowed by the Lebesgue 

measure has major advantages over the general probability space, yet it can be effectively substituted for most of 

these in probability theory. Additionally, the dimensions of unit interval is not an obstacle, as it was clear already 

to Norbert Wiener. Thereafter, he constructed the Wiener process, which was also called the Brownian motion, in 

the form of a measurable map from the unit interval to the space of continuous functions isomorphism. An 

isomorphism between any two probability spaces is an invertible map such that and both are measures 

preserving map. Two probability spaces are isomorphic, if there is an isomorphism between them. 

 

5. Isomorphism module zero 

This is still another scientific explanation of this concept of axiomatic theory and dimensional spaces of 

probability. This concept “isomorphism module zero” is clearly elaborated here below. 

This is a concept which takes part as a modulus of study in this probability axiomatic theory and space of which 

is analyzed as a mere concept of isomorphism module zero. To paraphrase this better, then we need to talk about 

probability space as a point of relations between its concepts with isomorphism. We can say that two probability 

spaces, are isomorphic, if only there exist null sets, such that the probability space are isomorphic and if only 

they are being endowed naturally with sigma-fields and probability measures. 

 

6. Standard probability space 

With still another major point of concern when it comes to axiomatic probability theory and dimensional space 
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probability is glued hand in hand with this concept of standard probability space and therefore it does not 

exclude itself from it. However, this is majorly discussed here below how it is a factor that is playing with the 

two concepts of probability.  It also contains the scientific terminologies just like any other science and a branch 

of probability. 

This subject has a very short cited dating in the concept of probability yet it is another concept which is still 

brought out in terms of standard probability space. This concept claims that a probability space is standard, if it 

is isomorphic to an interval with Lebesgue measure, a finite or countable set of atoms, or a combination of both, 

especially the disjoint union. The measure is assumed finite, not necessarily probabilistic. 

 

7. A criterion of standard 

We are not forgetting about this elated aspect of both axiomatic probability theory and dimensional probability 

space. Still on the same subject several things accrue to latter to validate it. For instance, a standard of a given 

probability space is equivalent to a certain property of a measurable map to a measurable space. The funniest bit 

is that the answer does not always depend on the choice. (Rényi, A. (1955). 6(3-4), 285-335.) This fact is quite 

useful and one may adapt the choice or be given but there is no need to examine all those cases. 

Otherwise, it may be convenient to examine a random variable vector of a random sequence or a sequence of 

events treated as a sequence of two-valued random variables. The question of how its existence will be addressed 

afterwards. The probability space is assumed to be complete, otherwise it cannot be standard. 

 

8. Regular conditional probabilities 

Another factor behind the back of everything about axiomatic probability theory and dimensional probability 

space is regular conditional probabilities. Actually these regular conditional probabilities have a good back 

ground to this exclusive subject. Therefore, we mainly consider the main or the discrete set up as the most 

prominent factor of consideration. However, (Pistone & Sempi, C. (1995). Pg 1543-1561.) It is from this concept 

where the conditional probability is another kind of probability measure. Generally, this conditional expectation 

may be treated like or as the usual expectation with respect to the conditional measure.  

However, we also have the non-discrete part petition where the conditioning is actually often treated indirectly. 

That is, the conditional expectations. Therefore, as a result of this conditional expectation, a number of 

well-known facts which have special conditional counter parts. This can also be well illustrated prospectively 

using a working example.  This can well showed down with the,  following examples including; linearity of 

the expectation; Jensen's inequality; holder’s inequality; the monotone convergence theorem etc. Take a situation 

where you are granted with a random variable on a probability space, (Pistone  & Sempi, C. (1995). Pg 

1543-1561.)  it is natural to try constructing a conditional measure that is from the conditional distribution 

given from a class. Sometimes, under different occasions you can find different possibilities or impossibilities 

and this is too finite to trust. Take an instance with standard probability space; this is directly possible as 

compared to other events and a well-known canonical system of measures, which are basically the same as 

conditional probability measures. The conditional Jensen's inequality is the usual Jensen's inequality applied to 

the conditional measure. The same holds for many other facts.  

 

9. Measurable preserving transformation 

On the final prospect of this subject axiomatic probability theory and dimensional probability space we consider 

the subject measurable preserving transformation. Just like any other subject regarding to this issue, everything 

has been classified into its accordance and measurable preserving transformation deals majorly with the impacts 

of null sets and its relations to general probability space. This preserving measure nature has a wide coverage 

and the subject is illustrated as follows; for example, imagine that you are given two probability spaces and on 

top of that measure preserving map is also handed over to you. Then what conclusion does it occur lastly? Of 

course that is the biggest question you can ask yourself but to answer it, then you can consider that the image 

will never cover the whole, it will indeed miss a null set. Sometimes we can also drive other conclusions from 

this example. (Rényi, A. (1955). 6(3-4), 285-335.) 

This is mainly because according to the results from that probability event will seem to be equal to one but that is 

not actually so. The reality of outer measurements will be equal to one but the inner measures will be greatly 

differentiated otherwise, differ. We can also come up with our own conclusions assumptions to this event and say 
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that if the probability spaces are standard then it is one to one hence it satisfies fully the concept. Therefore it 

qualifies it to be a measurable preserving transformation measure. There are multivariate ways which are 

perfectly coherent ways to ignore these measures. Striving extremely hard to get rid of these null sets, 

mathematicians of ancient’s times had to come up with a best way to get rid of these null sets. However, to 

achieve this task they had to come up with use of equivalence classes of measurable sets or functions. These 

equivalence classes of measurable subsets of a probability space formed complete Boolean algebra called the 

measure algebra or the metric structure as a synonym. Therefore, every measure of preserving transformation 

map leads to a (Chen, Y. (2010), n.p) homeomorphism of measures of algebra. It may seem that every 

homomorphism of measuring algebras has to correspond to some or at least one measure preserving map. 

Contrary, it is not so. However, for the standard probability spaces each corresponds to some. 

 

10. Conclusion 

In conclusion, this Study on probability is addressed widely especially the core subjects of dimensional 

probability space and axiomatic probability theory. It is discussed perfectly with severely well managed working 

scientific mathematical samples. These examples are situated in each and every core study in this research and 

these main study divisions included, the general case of probability, the subject of polished spaces, the 

non-atomic case, discrete cases, isomorphism module zero, standard probability zero, a probability criterion of 

standard, regular conditional probabilities and finally measurable transformation conditional. These case studies 

explain this question context intensively 
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