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Abstract Solving nonlinear equations with root finding is very common in science and engineering models. In particular, one applies it in mathematics, physics, electrical engineering and mechanical engineering. It is a researchable area in numerical analysis. This present work focuses on some iterative methods of higher order for multiple roots. New and existing novel multiple and simple root finding techniques are discussed. Methods independent of a multiplicity m of a root r, which function very well for both simple and multiple roots, are also presented. Error-correction and variatonal technique with some function estimations are used for the constructions. For the analysis of orders of convergence, some basic theorems are applied. Ample test examples are provided (in C++) for test of efficiencies with suitable initial guesses. And convergence of some methods to a root is shown graphically using matlab applications.  
Keywords:Iterative algorithms, error-correction, variational methods, multiple roots, applications  
1. Introduction Nonlinear equations appear in most science and engineering problems. For example, in climate models, electric circuit analysis, analysis of state equations for the general gas law, mechanical motions and in many other processes (Alfio et al., 2000). A practical problem of application of multiple roots is finding multiple Eigen values of square matrices (see test equation f1 in unit-6).  The root finding algorithms are usually constructed by the methods of interpolations (linear, quadratic, cubic, etc) (Tekle, 2017& 2014), perturbation method (Pakdemirli, 2008), variational techniques (Muhammad et al.; 2011), the Newton’s method approach, fixed point techniques, etc (Germund and Ake, 2008; Jurgen,1994; Anthony and Philip, 1978). Some iterative methods for multiple roots can be referred to the works of (Muhammad et al.;2011;; YI Jin and Bahman,2010 ;Janak and Rajni, 2012;J.Stoer and Bulirsch, 1993), where the modified Newton method and some higher order convergent methods are accessible. Solving multiple roots with iterative methods may have some difficulties. The basic root finding algorithms such as the Secant method, Bisection method, Regula Falsi method, Newton’s method, fixed point iteration, Muller’s method and many others are not effective for multiple roots. Some of them need modifications to apply for multiple roots. For example, Richard ( 1977) used a procedure that involves the divided difference to apply the Secant method for multiple roots.  The Modified Newton method for multiple roots is obtained assuming that rx −  is a factor of )(xf  with a multiplicity m and then applying linearization or Newton’s method for simple root r of )(xf  (Alfio et al., 2000; J. Stoer and R. Bulirsch, 1993). Chebyshev’s method, Euler’s method, Halley’s method, Osada’s method and Chun-Neta (CNM) method are some well known for multiple roots (Muhammad et al., 2011;Janak and Rajni, 2012; Chungbum&Beny Neta,2009). The variational technique was used to generate novel third order algorithms for multiple roots based on modified Newton’s method (Muhammad et al., 2011). In this paper, our present study, we start with linearization technique to find linear convergent methods for multiple roots (Alfio et al.,2000; J.Stoer and R.Bulirsch,1993). And deriving for the [error-correction] rxh −=  (for both simple and multiple roots) from the derivative (s) of the assumed expression of ),(xf we obtain some new modified methods of order at least two for multiple roots. We also obtain methods that are independent of multiplicity m of a root r of ).(xf  We develop third order methods for multiple roots based on some ideas in variational methods (Muhammad et al.,2011) with additional concepts. With an appropriate initial input, most of the new algorithms are better competent (in terms of speed of convergence) with some existing methods for multiple roots. The motivation comes from the author’s previous work on simple roots (Tekle, 2017). For related concepts refer to (Farooketal., 2016; Farook & Muhammad ,2014; Chungbum&Beny Neta, 2009). For applications of multiple roots, see: https://www.e-education.psu.edu/png520/m10_p2.html (PNG 520: Phase Relations in Reservoir Engineering, in a cubic equation of state).   
1.2. Discussions on some Existing Multiple Root Finding Consider the basic modified Newton’s iterative formula   .,...,2,1,0;)(' )(1 nk

xf
xfmxx

k

k
kk =−=+                                                                             (1) 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) Vol.7, No.10, 2017  

2 

to numerically approximate a root r of multiplicity m of a nonlinear equation )(xf = 0 (Alfio et al., 2000;  J. Stoer & R.Bulirsch, 1993). Where )(xf = )()( xgrx m− for some g(x). And )(')()/()()(' xgrxrxxgrxmf mm −+−−= , .0)( ≠rg                                                  (2) Assuming 0)(' ≈xg and applying Newton’s method to solve )(xf = 0, we have (1) which is quadratic convergent (Anthon &Philip, 1978). Some basic cubic convergent methods are Chun-Neta method (3), Halley’s method (4), Osada’s method (5), Euler-Chebyshev’s method (5b) and the fourth order (6) are as listed below (Muhammad et al.,2011; YI Jin & Bahman,2010;Janak&Rajni,2012). See also (Tekle, 2014). .)]('[)1()('')(')()3( )('')]([2)( 3222
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2. Construction of some Iterative Methods for Multiple Roots If r is a root of multiplicity m of ,0)( =xf then using (2) above, the Newton’s formula for multiple roots becomes (7b) as shown below. With linear estimation of f(x) around r, ,)]()(')[( )()()('/)()(
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(7b) is linear convergent with rate 0/11)(' >−= mrφ for all m > 1. And if m =1, then 0/11)(' =−= mrφand it is quadratic convergent (Alfio et al., 2000). Some kind of replacements may be used as follows. Suppose 'f
frxh −=−=  and we put 'vfg ≈ , then from (7b) we obtain .)()('')]('[ )(')()( 21
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Table-1: Comparisons of some methods for multiple roots (tol = 10-33) )( xf  Nm (8) (9) (10) (11b) (11c) )(1 xf  35, 36 90, 95 1, 1 39, 41 35, 36 1, 1 )(2 xf  23, 19 39, 33 3, 3 61, 53 22, 19 3, 3  
3. Some Second Order Methods for Multiple Roots  By deriving for the error-correction h from eqn.(2) above in different ways, we develop some iterative methods of order two. The aim is to show another way to modify the slow convergent methods in section-3 above and obtain better methods for multiple roots. Consider again the equation, ).(')()/()()(' xgrxrxxgrxmf mm −+−−=                                                            (12) 
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5. Convergence Analysis 
Theorem 5.1 Let )()( xx ϕφ = be an arbitrary iteration function of order p ≥1 at a multiple root r with multiplicity m of f(x). Suppose also that )(xφ is continuously differentiable at r, then )(xψ  in (33) has order at least p+1(Muhammad et al., 2011). See also proofs by (Muhammad et al., 2011).  
Theorem 5.2 (Order of Convergence) Assume that )(xφ  has sufficiently many derivatives at a root r of )(xf . The order of any one-point iteration function )(xφ  is a positive integer p, more especially )(xφ  has order p if and only if rr =)(φ  and 0)()( =rjφ  for 0 < j < p, 0)()( ≠rpφ  (Anthony &Philip, 1978; Alfio et al., 2000). All the algorithms in this paper need an appropriate choice of only one initial guess ox  in an interval Io = [a, b]. 
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And random choices of ox  may lead us to unnecessary works. So we need not do that. From theorem 6.2 above and convergence of fixed point iteration method )(xx φ= , 1)(' <xφ  for all x in [a, b]. From which h .1)(' <oxφ The case )(' oxφ >1 is divergence. And 1)(' =oxφ  needs especial treatment (reformulations or need for alternative methods; Germund & Ake, 2008). 
1) Proof of order of convergence p of (9) and (32b) One has two cases since both algorithms are used for solving simple and multiple roots. If m = 1(r is simple root of )(xf  ), then (9) can be written as ),(/))(()( xTxxxx θφ −−=  where 2)]('/[)('')(1)( xfxfxfxT −=  and )(xθ is Newton’s iteration function which has order p = 2. We see that .0)('',0)(',)( ≠== rrxx θθφ  Applying theorem 6.2, differentiating (9) or )(xφ , we have 0)(' =rφ and .0)('' ≠rφ  On the other hand, if p = 2, then we easily show that 0)(' =rφ but .0)('' ≠rφ  So p = 2 for (9) when m = 1. In case of m >1 ( r is multiple root), (9) can be written as ),(/))((/1)( xTxxmxx θφ −−=  where )(xθ is modified Newton’s iteration function of order p = 2 as proved by (Anthony&Philip,1978). Applying the same proof of )(xθ  here for )(xφ and adding concepts in theorem 5.2, one obtains p = 2. 2) If m = 1, then (32b) can be written as ),(/))(()( xBxxxx θφ −−= with 2)]('/[)('')()(' )(4/11)( xfxfxf

xf
xfxB −+= and )(xθ is Newton’s iteration function. Applying theorem 6.2 as in 1) above, we get p = 2 for m = 1. And if m > 1, then (32b) can be expressed as ),(/))((/1)( xBxxmxx θφ −−= with )(xθ is modified Newton’s method. Applying similar proofs as in the second case of 1), again we get  p = 2. 

3) Proof of order of convergence p of (17).  (17) can be expressed as ),(/))(()( xHxxxx θφ −−=  where )('/)]([1)( .2 xfxfkxH −= , and )(xθ is the modified Newton’s iteration function of p = 2. Applying the proof for order of )(xθ  now for )(xφ here, or by theorem 6.2 one obtains p = 2. Hence (17) and (18) are second order convergent. Similar proofs can be used to show that (11c), (23), (26), (28) and (32b) are all of order p = 2. Note also that (11c) holds very well for simple roots. From (11c) )(')12( )()1(2)(
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xfxx −=ϕ . Note that both (11c) and (1) could be obtained from (4). 4) By theorem 5.1, p = 2 and then (34b) become of order p+1 = 2+1 = 3. Similarly (34), (35) and (36) are cubic convergent.  Note that theorem 5.1 holds also for (33b) and (33c). The proofs for most of the first order methods in section-2 can be from the iteration function in (7b) which is linear. One can also use other way of proofs in the literatures.  

6. Test Equations and Numerical Results The following equations were selected for test of convergence.  0133)( 231 =−+−= xxxxf , with ox = 0, 2, 3, and r =1 in [1, 2), m = 3.  0]1cos3[)( 22 =−−= xxxf   
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with ox = 0, 1, 2 and r ≈ 0.607102 in (0,1), m = 2. 02)( 223 =+−= −− xx exexxf ,  with ox = 0, 1, 2 and r ≈ 0.567143 in (0,1), m = 2. 
xxxf +−= 21)(4 , ox = 0.5, 1.5, 2   and root =1.000000 in [1, 2), m = 2.  4325 4641)( xxxxxf ++++= ,  

ox = -1, 0, 1, and root =-1.000000 in [-1, 0), m = 4. ,3,2,5.1,5.0,0]/1[)( 216 ==−= −
o

x xxexf   and r = 1.000000 in [0, 1], m = 2. 
==−+= oxxxf ,0]1)9[log()( 27 0.5, 1.5, 2  and r = 1.000000 in [0, 1], m = 2. Comparisons were made relative to modified Newton method (MN), Halley’s method (HM), the algorithms in equations (9), (18), (23), (26), (27), (28), (32b)(34), (34b). C++ implementation was done for each algorithms and the number of iterations taken to converge to a root r was recorded and written in the body of the next table-

2 under each method. The stopping criteria were using the error iii xxE −= +1  such that iE  ≤ε , for chosen3310−=ε .  
Note: The numbers in each cells of table-2 on the next page correspond to the number of iterations needed for convergence at each of the three initial guesses of a root r of .7,...,2,1,0)( == ixf i  From the table Halley’s method (HM) for solving 02)( 223 =+−= −− xx exexxf  converges at steps 2, 2, 3 for the initial guesses taken at 2,1,5.0=ox  respectively and being ε  given. In the first column, ´´Functions (f) ´´ refers to the number of function evaluations up to derivatives and ´´Efficiency (e) ´´ represents the computational efficiency index calculated by p1/f. An algorithm with the least average number of iterations (Nar) to converge to a root r would be ranked the fastest convergent. Taking more initial guesses or more examples gives good average ranking measure. Note that average number of iteration was also used by Changbum Chun & Beny Neta (2009).  In the table, the highest value of efficiency index is 1.442 (for third order methods (34), (34b) and (HM) ) and the lowest value is 1.260 (for second order). Any fourth order with four function evaluations [p = 4, f = 4] and any second order with [ p = f = 2] have equal computational efficiency indices e = 1.4142. It may not be true that the higher the order is the better the efficiency or the method in general. We can observe that all methods presented in the table are better competent with 2 to 3 average number of iterations to converge from both directions at ox when an appropriate initial guess ox  is taken, especially near a unit length interval containing the root r.If ox  is not suitably chosen, then one can expect slow convergence and even divergence cases. As an example, we have checked that algorithm (9) and (32b) fail to converge to the desired root when ox  is not properly chosen for solving simple and multiple roots of some equations, but are fast convergent. See the table of results below. Note: in the table below use the following letters as follows.  Nar = average number of iterations f = number of function evaluations  p = order of convergence  e = computational efficiency indices    
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Table-2 Summary of numerical results The number of iterations needed to converge to a root r  for every triplets of initial guesses )( xf  MN (9) (18) HM (28) 34 34b (27) 32b )(1 xf  1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 :)(2 xf  3, 3, 3 3, 3, 3 3, 3, 3 2, 2, 3 3, 3, 3 2, 2, 2 2, 2, 2 3, 3, 3 3, 3, 3 :)(3 xf  3, 3, 4 3, 3, 4 3, 3, 4 2, 2, 3 3, 3, 4 2, 2, 4 2, 2, 4 3, 3, 4 3, 3, 3 )(4 xf  4, 3, 4 4, 3, 4 4, 3, 4 3, 2, 3 4, 3, 4 2, 3, 3 2, 3, 3 4, 3, 4 4, 3, 4 :)(5 xf  1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 )(6 xf  4, 3, 4 4, 3, 4 4, 3, 4 3, 3, 3 4, 3, 4 3, 3, 3 3, 3, 3 4, 3, 4 4, 3, 4 :)(7 xf  3,3,  4 3, 3, 3 3, 3, 4 3, 3, 4 3, 3, 4 3, 3, 4 3, 3, 3 3, 3, 4 3, 3, 3 Nar 3 3 3 2 3 2 2 3 3 Fun (f) 2 3 2 3 2 3 3 2 3 Ord(p) 2 2 2 3 2 3 3 2 2 Effi(e) 1.414 1.2560 1.4142 1.442 1.414 1.442 1.442 1.414 1.256 
 

 Fig 1: convergence of modified Newton’s method for solving f1[r = 1]   

 Fig 2: Convergence of method in (34) for solving f1[r = 1] 

0 0.5 1 1.5 2 2.5 3

1

1

1

1

1

x

Modified Newton for f1

ro
ot

s

0 0.5 1 1.5 2 2.5 3

1

1.1

1.2

1.3

1.4

x

Fixed point (34) for f1

Ro
ot

s



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) Vol.7, No.10, 2017  

11 

 Fig 3 : Graph of f1 for root location [r = 1]  Note that f1= x^3-3*x^2+3*x-1 is the polynomial of an identity matrix of order 3, with all Eigen values r = 1. I3 = 1 0 00 1 00 0 1 
 
 
  

  

 Fig 4: Tops (from above) of the graph show 3 identical Eigen values  
7. Conclusions 
� In this article, we have presented iterative methods of order 1, 2, 3, 4 both for multiple and simple roots. By deriving for the error-correction h from the derivative (s) of an expression of the equation to be solved, we obtained iterative methods of order two for estimating multiple roots of scalar nonlinear equations. We have developed third order methods based on variational techniques with additional concepts. We have also discussed some basic root finding methods such as the Newton method, Chun-Neta method, Halley’s method, Osada’s method, Chebyshev’s method and (6) for multiple roots. We have seen that there are modified methods in this paper that are second order (see (11c), (18), (23), (26), (27), (28), (32b)) and third order convergent (see (34), (34b), (35), (36)). They are better competent with some existing methods. We showed that there are modified methods of order two with only two function evaluations up to derivatives (see (18), (27), (28)). We presented two second order convergent algorithms which are independent of multiplicity m (see eqn.(9) an existing method and a new one eqn. (32b)).They are fast convergent both for simple and multiple roots. We have also done convergence analysis with proofs and graphs. In the future we will present further analyses of the topic and other higher order iterative algorithms. We hope that this result will be more commendable and commence one to perform further research in the area.  
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