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Some results on the Lomax distribution
with three parameters

Arbér Qoshja* and Llukan Pukaf

Abstract

In this paper, we consider a new way to see the three parameters Lomax distri-
bution and we study the main properties of this distribution, with special emphasis
on its expectation, variance, quantiles and some characteristics related to reliabil-
ity studies. We briefly describe different methods of estimations, namely maximum
likelihood estimators, least squares estimators, weighted least squares, maximum
product spacing estimates and method of Cramer-von-Misses and and compare
them using extensive numerical simulations. Applications reveals that the model
proposed can be very useful in fitting real data. Two applications are carried out
on real data to show the potentiality of the proposed family.

Keywords: exponential distribution, Lomax distribution, Order Statistics, Max-
imum Likelihood Estimation, Quantile function, Generating Function, Moments.

1 Introduction

In statistics hiterature we have many continuous univariate distributions. Some clas-
sical distributions have been used for modelling data in several areas such as engineering,
actuarial, environmental and medical sciences, biological studies, demography, economics,
finance and insurance. However, in many applied areas such as lifetime analysis, finance
and insurance, there is a clear need for extended forms of these distributions. The aim
of this paper 1s to consider Lomax distribution with three parameters.

Definition 1. [11] A continuous random variable X is said to have a Lomaz distribution
if it has probability density function
a\®

p(r.a,_B):m. z>0,a>073>0. (1)

The pdf of the Lomax distribution is a solution to the following differential equation:

{ (A+z)p/(z) + ( +1)p(x) =0, }
p(0) =%

The Lomax distribution is a Pareto Type I distribution shifted so that its support begins
at zero. Specifically: If Y ~ Pareto(zm = A, @), then Y — z, ~ Lomaz (A, a)[29).
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The Lomax distribution is a Pareto Type II distribution with z,, = A and p = 0[29].
If X ~ Lomaz(\,a) then X ~ P(II)(z,, = A, a, p = 0). [29]

Recently, Lomax distribution has received much attention. Ghitany et al. (2007) pro-
posed Marshall-Olkin extended Lomax distribution. Lemonte et al. (2013) proposed an
extended Lomax distribution. Abdul-Moniem and Abdel-Hameed (2012) generalized the
Lomax distribution by powering a positive real number a to the cumulative distribution
function (cdf). This new family of distributions called exponentiated Lomax distribution.
For any continuous baseline cumulative distribution function (cdf) G(z),the cumulative
distribution function of the Lomax generator distribution [16] is defined by:

B B g :
F(r,0,3,6)=1— { B[l -Gz €] (2)
The probability density function (pdf)associated with Equatlon (2) is given by

I, Q, ,3 9(1"&) . 3
A 5= [I—G(I &) {8 —n[l - G(z,&)}*" (3)

Definition 2. [8/ A continuous random variable X is said to have an exponential distri-
bution if it has probability density function

g(z,A) = Ae™7, z>0,A>0. (4)
where X > 0 is called the rate of the distribution.
The cdf of exponential distribution is given by:
ClzX) =1—e2, z>0,A>0. (5)

In this article we consider a new way of Lomax distribution with three parameters by
inserting (5) in (2).

Definition 3. [16/ A random variable X is said to have a Lomaz distribution with three
parameters if it has the density:

39\
f(;t,a,,B,/\):LMf, z>0,a>0,8>0,A>0. (6)
(B + Az]
The cumulative distribution function associated with Equation (6) is given by
F(r,a,ﬁ,A):l—[ﬂfAI] a>0,8>0M>0. (7
We can see that (6) is positive and
00 | ) Q’BO,\
/f(;l, ¥, ,3, A)d.’l? = | Wdﬂ
0 0
, & 1d.r
= |8+ Az =t, Mz =dt| = af /\/t“*‘

= aé’"‘t g
—a

:1.
B
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2 Reliability Analysis

2.1 Survival function

The rehability function (survival function) of Lomax distribution with three parame-
ters is given by

; ; | 2 | 7 { ”
R(z,a,5,A)=1—F(z,a,3,\) = [3-{_1\1] ya>0,8>0A>0. (8)

2.2 Hazard Rate Function

The hazard rate function(failure rate) of a life- time random variable X with Lomax
distribution with three parameters is given by

aS™\
. .
e, 5, s S EMEA) _ Brept o

" 1—-F(z,a,8,)) [Bi\r]" B4

a>0,>0A>0. (9)

From equation (9) it can be seen that the hazard rate function of Lomax distribution
with three parameters is decreasing.

The cumulative hazard rate function of a life- time random variable X with Lomax
distribution with three parameters is given by

H(t) = b/h(u)du. = —In(R(t)) = —1In ((,\fi- .-3)0)

2.3 DMean Residual Life

The mean residual life(MRL)([23]) function describes the aging process so, it is very
important in reliability and survival analysis. The mean residual life(MRL) function of
a lifetime random variable z is given by

1 o0
wlz) = ) /tf(t.)dt —z,2> 0.

where R(X) is given by (8).

Theorem 4. The MRL function of a lifetime random variable X with Lomazx distribution
with three parameters is given by

_alf+Ar) B
“(I)_/\(Q——I)—X-I' (10)
Proof.
/tf(t)dt - aﬁ“/\/m — |8+ At = u
_ape 7 du_ B, _af 1 B
~ A [u—a u,a+1] T [(a— 1)(B + Az)o ! a'(;’3+/\;r)°:| ‘
S+Ax
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Now, from defimtion of MRL, we get

1 o0
(z) = —— [ tf(t)dt — x
(o) = = [t
b o
_ (B4 Ax)” _ap® 1 B 3
N Ba A |la=1)(F+Az)*1 a8+ Az)>
_a(f+ M) B i
- Ma-=1) X 7
O
2.4 Quantiles
The quantile of any distribution is given by solving the equation
F(zp)=p, O0<p<l
Theorem 5. The quantile of Lomaz distribution with three parameters is given by
1.~ B°
IP:X[ (ﬁ)—g]. D<p<l. (11)
Proof.
1— B ' =p—1—p= B !
B+ Az, £ P= 1B+ Azp
’ " 7 , sl B*
— (B+ Azp) :I—J)H‘B‘F/\IP: 1’—1)
n{ Ba " ‘ _1 0’ B ;
>—>/\.1p— l—p_ﬁ lp—/\[ l—p ,3]
O

Theorem 6. Let X be a random variable with pdf (6) The expectation and variance are
given by:

1| aB

B(X)=r= |—==1]; 12
(x) =5 [a e ] (12)

and :

. 1 s [a(B—1)+1]"
Var(X) = —— [28° — 13
8.1( ) Ag(l—(l) [ / 1 —a ) ( )

respectively.
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Proof.

g T . r zrdx
BX) = [ of@)ds = apd [ Errds
0 0

— aﬁo/\i / (t_ﬁ)dt

X2 t0+1

/\I)a+1
as 1 c’o(t—,u-?)ldlf
=af ’\ﬁ/ ja+1
B
_
~X(1-))
. 1 " B—1)+1]2
Var(X) = E(X?) — [E(X)]? =El—a) [2-'3" = 1—)a+ ] ]

From equation (6) it can be seen that the probability density function of Lomax
distribution with three parameters is decreasing for all z > 0.

3 Order Statistics

The kth order statistic of a sample is its kth smallest value. For a sample of size n,
the nth order statistic (or largest order statistic) is the maximum, that is,

Xm = max{Xy,..., Xp}.

The sample range 1s the difference between the maximum and minimum. It is clearly a
function of the order statistics:

range{Xy,..., Xn} = Xm — Xy

We know that if X3y < --- < X(;, denotes the order statistic of a random sample
Xi...., X, from a continuous population with cdf Fx(z) and pdf fx(z) then the pdf of
X(j) 1s given by

fxop(8) =17 fx (2) (Fx (2)) ™ (1= Fx(2))"

j—Din—j)
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for j = 1,...,n. The pdf of the jth order statistic for a Lomax distribution with three
parameters is given by:

f ' (I) B nl 050/\ - 3 aqj—1 d a(n—j)
X TG =D n = ) [B + Az)* T B+ B+

Therefore, the pdf of the largest order statistic X, is

C!,BQA .3 oy n—1
o) = [ ]

and the pdf of the smallest order statistic Xy, is

B\ g ]e1 na 3"\
me(-T) —n (8¢ [ } ] _ ( nao,

B+ Az]*™ | B+ Az B + Az)emtl

4 Maximum likelihood estimation

The maximum likelihood estimates, MLE's, of the parameters that are inherent within
the Lomax distribution with three parameters is obtained as follows: The likelihood
function of the observed sample z = {zy,x9,...,2,} of size n drawn from the density

(6), 1s defined as

O,Tl ﬂ'jna /\ﬂ

1—[ [’34— /\Ii]a+1
i=1

L=]]/GaB.)) =
i=1
The corresponding Log-likelihood function is given by
(=InL=nlha+onhmp+nnA—(a+1)> In(8+Az;) (14)

i=1

Now setting

dln L dn L dn L
s =10, 3 =0, and ) = 0.

we have
Binl m , -
=— =—+n(in(8)) B - > In(Azi+8)=0

i=1

dlnL an 2 1
e Yot ] —_ =10
op — g Lot ); AT+ P

dinL n = T;
aA :X_(a'+l); Az;+ 3 =4
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The MLEs (d, [3 ] 5\) of (a, 3, A), respectively 1s obtained by solving this non-linear system
of equations. It is usually more convenient to use nonlinear optimization algorithms such
as the quasi-Newton algorithm to numerically maximize the sample likelihood function.
Applying the usual large sample approximation, the MLE ¢ = (d, B, /\) can be treated
as being approximately tri-variate normal with mean ¢ and variance-covariance matrix
equal to the inverse of the expected information matrix [17], i.e.

V(@ — @) = Ny (0,n17 ()

where 171(¢) is the limiting variance-covariance matrix of ¢». The elements of the 3 x 3
matrix /() can be estimated by I;;(¢) = —€y.0 |—p, 4,5 € {1,2,3}.

The elements of the Hessian matrix corresponding to the ¢ function in Equation (14)
are:

2InL n
h="%a="=

2Inl n = 1
he = dadp ,g_gm,-w

d‘lnL 2
hs = Z)\I,+,3

I 0?InL an+(a+1) 1§

Y e = =
- 0B B = (Azi+B)°
d*InL - T;

+
= Do\ ); (Azi + 3)~’

Pl n
1 -
BTN (ot )Z /\1‘¢+3)

4.1 Maximum product spacing estimates

The maximum product of spacings (MPS) method for estimating parameters in con-
tinuous univariate distributions was proposed by Cheng and Amin [10] and independently
by Ranneby [24]. This method is based on an idea that the differences (Spacings) of the
consecutive points should be identically distributed. Let zi,zs,...,z, be independent
identically distributed (i.i.d) random varibales with cumulative distribution function given

by (7) and denote the corresponding order statistics (1), z(a), ..., Z(n). Define
1 n+1
Sn(@,B,N) = — ;log [F(z@), @, 8,)) — F(zg-1), @, 3,\)] (15)

Definition 7. [26] Any @, 3 and A\ which mazimizes Sy(a, 8,\) is a mazimum product
spacings estimator of the unknown true parameters a, 3 and .
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The MPS estimators aps, S3ps and Apg of @, 3 and A can be obtained as the
simultaneous solution of the following non-linear equations:

0Su(@ BN _ 1 N [Falzw.® 8.0 — Falzen.aB V] _ (16)
Do B n+1 3=—1 F(I(i)’(], .‘31/\)_}:‘(1‘(1'—1)50'!.‘3'. /\) [ et
(95"(&, d- A) _ 1 A -FI;(I(i)'. @, ‘3! '\) B Fé(m(i_l)’ Q.."B’ /\)- =0 (17)
a3 " n +1 i—1 F('l"(i)r a, 3,A) — F(I(i—l)' a,3,A) o
and _ -
08.(a,8,)) 1 5[ Fi(za,a,8,0) — B(za-1,2,8,0) | _ 0 (18)
AN - n+ 14| Flag,a,8,) = Flzga,a,8,0) |7
where,
; o B iy B
FD(J’J(”,Q,'B, A) = — (m) In (—/\I(l) i ﬁ) s
, : adzq) B \°
Fs(z@w,a,B,) = — - %
B(T( )y @& Py ) ‘3 ()‘I(i) + 13) (/\I(z) + ,‘3)
and

' K QI d i
sy, @ 3. A) = i
Fz\(l(l)aa*-/\) /\1"(1‘)"'5 (/\I(f)"l"fs)

4.2 Least square estimates

The least square estimators and weighted least square estimators were proposed by
Swain, Venkataraman and Wilson [27] to estimate the parameters of Beta distribution.
The least square estimators of the unknown parameters a, 3 and A of Lomax distribution
with three parameters by using the same methodology as Swain et al., can be obtained

by minimizing
n

2 [F(T(i)) = H;H]"

i=1
with respect to unknown parameters a, 3 and \. Suppose F(x(;) denotes the distribution
function of the ordered random variables x(1) < z(9) < - -+ < Z(y) where {z}, 29, -, 7,}
1s a random sample of size n from a distribution function F(-). Therefore, in this case,

by using
B o
F(zg)=(1- [—3 +"\I(i):|

the least square estimators of e, 3 and ), say apsp, Srse and Apsp respectively, can be
obtained by minimizing

i l B »8 o B i 2
: B+ Az n+1

i=1

with respect to a, 3 and A.
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The least square estimates (LSEs) apsg, Brsk and A sg of a, 3 and A are obtained

by minimizing
2

. : B n ,(3 (2 l
LSE (o, 8,0) =) _ [1 = l;3+/\r(i)] - n-i—l] (19)

i=1

Therefore, ars, Br.s and Mg of a. 8 and A can be obtained as the solution of the following
system of equations:

aLSE 8| o
Cl 3 ZF 1‘(,), ~l3 /\) (F(I(fﬁamgs’\)_ﬂi_l)
=) |-|——=) h|+——
= Az + B Az + B
B “ 2
I [1 - [5 + /\I(i)] Cn+t 1J T =
OLSE (a,8,)) =, :
— L ;Fﬁ(rm.o.ﬂ.A) (F (210 B,A) — 1)
O/\l(;) Aj “
o : 21
Z, (Azgy + B) (/\I<i)+*'3) -
g 1° i
e [ - =0. 2
% [ [:3 + )\I(f)] n+ 1] ()

OLSE (a,B,)) <= v ,, , i
X :;F,\(I(,)‘OB./\) (F (I(,),Q.J, A) - n+1)

. ( - )a (23)
iX:l: A L) = J3 /\17(5) + ."3
B _1° ‘
L= = =1. 24

These non-linear can be routinely solved using Newton’s method or fixed point iteration
techniques. The subroutines to solve non-linear optimization problem are available in R
software namely.

4.3 The weighted least square estimators
The weighted least square estimators [27] of the unknown parameters can be obtained

by minimizing
Tt

roey - -2
Zu.J [F(AU)) -n—i—l]

i=1
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_ (n+1)3(n+2)
J(n—j+1)

in this case, the weighted least square estimators of a, 3 and A, say awrsg, Bwrse and
Aw sk respectively, can be obtained by minimizing

" (n+1)*(n+2) 8 1° i
Z n—j+1 [1_[3+Ax]_n+1]

Jj=1

with respect to a, 5 and A. The weights w; are equal to V(,(( 5= . Therefore,

2

with respect to a, 3 and A.
Therefore, awrsw, Bwrsw and Ay rsw of a, 3 and A can be obtained as the solution
of the following system of equations:

GWLS( Z (n+1)2(n+2) J¢) al A
& m—j+1) \rz+8) "\Xz+B

g 1* i
8 [1_[5+)\I] _n—*—l] -

OWLS (0,8,))  ~(n+17Pn+2) alz ( A )"
a8 N Z (n—j3j+1) B(Az+pB) \\z+75

B 1° i
= ‘ =0
* [1 [|3+/\1] n+1]

n

Bl'if’LS(a,IB,)\)_Z(n—i-l)?(n-}-‘Z) ar ( B )a
i)\ —i=] (n—j+1) Azx+3\\z+p

B_1"_ i
X[l_[ﬁ’—&-)\m] n+1] S

4.4 Method of Cramér-von-Mises

To motivate our choice of Cramer-von Mises type minimum distance estimators, Mac-
Donald [22] provided empirical evidence that the bias of the estimator is smaller than the

otheL minimum distance estimators. Thus, The Cramé-von Mises estimates acue, SoME
and Aoy of the parameters «, 3 and A are obtained by minimizing, with respect to a, 3
and A, the function:

C(a, B, A +Z( zg | A, 6) —%) : (25)

5 Application

In this section, we will check the performance of the proposed Lomax distribution
with three parameters. We use a real data set to show that the Lomax distribution with
three parameters is better model than the existing models which is studied before by
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Tahir et al.[12], such as Weibull Lomax [12], exponentiated Lomax and Lomax. We use
maximum likelihood method estimate the parameters and also their standard errors.

Aircraft Windshield data sets. The windshield on a large aircraft is a complex
plece of equipment, comprised basically of several layers of material, including a very
strong outer skin with a heated layer just beneath it, all laminated under high temperature
and pressure. Failures of these items are not structural failures. Instead, they typically
mvolve damage or delamination of the nonstructural outer ply or failure of the heating
system. These failures do not result in damage to the aircraft but do result in replacement
of the windshield. We consider the data on failure and service times for a particular model
windshield given in Table 16.11 of Murthy et al. [28]. These data were recently studied
by Ramos et al. [25]. The data consist of 153 observations, of which 88 are classified as
failed windshields, and the remaining 65 are service times of windshields that had not
failed at the time of observation. The unmt for measurement is 1000 h.

5.1 Data set 1: Failure times of 84 Aircraft Windshield

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.300, 1.899, 2.610, 3.478, 0.557,
1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981,
2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82.3, 4.035, 1.281, 2.085, 2.800,
4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255,
1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615,
9.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.220, 3.166, 4.570, 1.652, 2.300,
3.344, 4.602, 1.757, 2.324, 3.376, 4.663.

5.2 Data set 2: Service times of 63 Aircraft Windshield

0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 15
0.280, 1.794, 2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622,
1.978, 3.003, 0.900, 2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137,
3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015,
1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140.

In order to compare the distribution models, we consider criteria like —2¢, AIC (Akaike
information criterion), CAIC (corrected Akaike information criterion) and BIC for the
data set. The better distribution corresponds to smaller —2¢, AIC, CAIC and BIC values:

o AIC = —2log ¥ (£ a, A, g) +2p,

o AICC = AIC 4 Zpt))

n—p—1"

e BIC = —2log? (ra A,g) +plog (n),

where, p is the number of parameters are to be estimated from the data and n the
sample size.

Tables 1 and 2 shows the MLEs under both distributions, Tables land 2 shows the values
of —2¢, AIC, AICC, and BIC values. The values in Tables 1 and 2 indicate that the
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It

Lomax distribution with three parameters leads to a better fit than the Weibull Lomax
exponentiated Lomax and Lomax distribution.

Table 1: MLEs and comparison criterium for failure times of 84 Aircraft Windshield

data(Data set 1.)

Model Parameter Estimate —/£ AIC CAIC BIC
Lomax distribution & = 514.2598 092.4803 190.9607 191.2607 198.2887
with three parameters /3 = 130.0002

A =0.1082
Weibull a = 0.0128 127.8652 263.7303 264.2303 273.5009
Lomax b = 0.5969

a = 6.7753

B =1.5324
Exponentiated a = 3.6261 141.3997 288.7994 289.0957 296.1273
Lomax a = 20074.5097

3 = 26257.6808
Lomax & = 51425.3500 164.9884 333.9767 334.1230 338.8620

3 = 131789.7800

Table 2: MLEs and comparison criterium for service times of 63 Aircraft Windshield
data(Data set 2.)

Model Parameter Estimate —/ AIC CAIC BIC
Lomax distribution G = 994.0184 81.1431 168.2863 168.6931 174.7157
with three parameters 3 = 207019.3641

A =111.7893
Weibull a=0.1276 08.11712 204.2342 204.9239 212.8068
Lomax b= 0.9204

a = 3.9136

3 = 3.0067
Exponentiated a = 1.9145 103.5498 213.0995 213.5063 219.5289
Lomax a = 22971.1536

3 = 32881.9966
Lomax & = 99269.7800 109.2988 222.5976 222.7976 226.8839

3 = 207019.3700
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6

Simulation algorithms and study

To generate a random sample of size n from Lomax distribution with three parameters,
we follow the following steps:

1.
2.
3.

o

6.1

Set n, © = () and initial value z°.
Generate U ~ Unifrom (0, 1).

Update z° by using the Newton’s formula
=2 — R(z°,0)
Fx(200)-U

where, R(‘.I‘-O, )= FICT R Fx(.) and fx(.) are cdf and pdf of Lomax distribu-

tion with three parameters, respectively.

If | 0 — * |< €, (very small, € > 0 tolerance limit), then store z = z* as a sample
from Lomax distribution wth three parameters.

If | 2% — 2* |> ¢, then, set 2% = z* and go to step 3.

Repeat steps 3-5, n times for x1, z,. .., zn respectively.

Data set 3:Simulation data

R code for simuation random numbers from Lomax distribution with three parameters

F=function(x,alpha, beta,lambda)
{ 1-(beta/(lambda*x+beta))“alpha}

f=function(x,alpha, beta,lambda)
{(beta/(lambda*x+beta)) "alpha*alphaxlambda/(lambda*x+beta)}
n=500
alphal=2
betal=3
lambdai=0.5
=runif (n)
x=rep(0,n)
for(i in 1:n){

x0=1

xnew=x0-((F (x0,alphal,betal,lambdal)-uli])/f (x0,alphal,betal,lambdai))
while(abs (xnew-x0)>0.0001){

x0=xnew

xnew=x0- ((F(x0,alphal,betal,lambdal)-ulil)/f (x0,alphal,betal,lambdal))

}

x[i]l=xnew

}

x=sort (x)
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Figure 1: Empirical and fitted Lomax distribution with three parameters for simulated

data.

From table 3 Least squares estimator of parameters is superior than the others meth-

ods of estimation.

Table 3: Parameter estimation for simulated data and Kolmogorov-Smirnov test

Method a B A K-S Best method
MLE 1.8094188 2.9929555 0.5491803 0.9141862 5
Least Squares 1.5186251 2.9671346 0.6837718 0.9022503 1
Weighted Least Squares 1.7211664 2.9865430 0.5804955 0.910201 3
Cramer Von Mises 1.5263952 2.9686791 0.6780801 0.9023797 2
MPS 1.7365531 2.9867868 0.5790081 0.9117906 4

The fitted cumulative distribution function of the Lomax distribution with three pa-
rameters is plotted in Figure 1 for the simulated data.

7 Conclusion

In this paper we study Lomax distribution with three parameters. The CDF, PDF,
Hazard function and cumulative hazard function are derived. Additionally, some of the
mathematical and statistical properties like quantile function, expectation, variance, and
order statistic are also provided. The model parameters for real data sets are estimated
by using maximum likelihood estimation. We have considered different methods of esti-
mation of the unknown parameters of the Lomax distribution with three parameters. We
briefly describe different methods of estimations, namely maximum likelihood estimators,
least squares estimators, weighted least squares, maximum product spacing estimates and
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method of Cramer-von-Misses and and compare them using extensive numerical simula-
tions.
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