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Abstract 

In this paper, the stability of a class of nonlinear integro-differential equation is investigated and analyzed. By 

defining a suitable Lyapunov functional we establish necessary and sufficient condition -for the stability of the 

zero solution. Our results extends known results in the literature.   
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1. Introduction 

Volterra integro-differential equations have wide applications in biology, ecology, medicine, physics and other 

scientific areas and thus has been extensively studied. The equilibrium or the steady state of a linear or nonlinear 

equation can either be stable or unstable. The steady state is called a stable system if after been disturbed by 

some physical phenomenon returns to its uniform state of rest or its normal position. When a system tends to a 

new position after a slight displacement, such equilibrium is called unstable equilibrium. 

The origin of stability in science and engineering can be track down to the work of Aristotle and Archimedes 

(Magnus 1959). Alexander Lyapunov was the first to define the notion of stable system in Mathematical form in 

1892, in his book on “the general problem of stability”.  

The stability theorem for motion studied by A.M Lyapunov has proven to be highly useful and applicable in the 

field of science and engineering. The notion of stability is studied in the literature under three classes, namely; 

Bounded input and bounded output (BIBO), Zero-input stability and Input-state Stability. Over the years, 

Lyapunov method for the stability of integro-differential equation have been proposed by different researcher 

(Stamove and Stomov (2001, 2013), Tunc (2016), Tunc and Sizar (2017) Vanulailai and Nakagiri (2003), 

Carabollo et al. (2007), Segeev (2007)). 

In particular Stamova and Stomov (2001) worked on the stability of the zero state solution of impulsive function 

differential equation. They applied the Lyapunov-Razumikhin method and Piecewise continuous function to 

check the behavioral solution of equation. Vanualailai and Nakagiri (2003) established stability of systems of 

Volterra integro-differential equation. They used a known form of Lyapunov functional to establish the stability 

condition for the system. Carabollo et al. (2007) worked on construction of lyapunov functionals to check and 
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investigate the stability for hereditary system.  Cemil (2016) studied certain nonlinear Volterra integro 

differential equations with delay. He established stability and boundedness condition of the solution by defining 

a suitable Lyapunov functional used to prove the result.  

Sergeev (2007) establishes the stability of the solutions of a class of integro-differential equations of Volterra 

type whose nonlinear term is assumed to be holomorphic function of variables and possible some integral form 

in a small neighborhood of zero. Stability in Lyapunov’s sense of single zero root and of pair of pure imaginary 

roots for the unperturbed equation is analyzed by relying on functional in integral form represented by Frechet 

series. 

2. Preliminaries 

Our aim in this paper is to use a suitable Lyapunov functional and determine necessary and sufficient condition 

for the stability of the zero solution of the nonlinear integro – differential equation of Volterra type defined by  

                          𝑦′(𝑡) = 𝐵(𝑡)𝑔(𝑦(𝑡)) +  ∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠)) 
𝑡

0
                               (2.1) 

Where ,Ry the functions G is continuous in (𝑡, 𝑠, 𝑦) 𝑓𝑜𝑟 0 ≤ 𝑠 ≤ 𝑡 < ∞, B(t) continuous for 0 ≤ 𝑡 < ∞, 

𝑔(𝑦(𝑡)) 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑜𝑛 (−∞, ∞) and 

             ∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠)) 𝑑𝑠 < ∞,   ∫ 𝑡𝐺(𝑡, 𝑠, 𝑦(𝑠)) 𝑑𝑠 < ∞
𝑡

0

𝑡

0
                               (2.2) 

We use the following notation and basic information throughout this paper. For any 00 t and initial function 

 tt ,0 , let    ,, 0ttyty  denote the solution of eq. (2.1) on  tt ,0
 such that    tty  . Let 

  ittC ,0
 and   ,0tC  denote the continuous of real valued functions on  10 , tt  and  ,0t  respectively. 

For     00 0:sup,0, tttytC   . 

Definition 2.1: The zero solution of eq. (2.1) is stable if for each 0 and each 00 t , there exist 𝛿(𝜀) > 0 

such that   
0t

 which implies that   0,, 0  tfortty   where  ,ty is a solution of eq. (2.1) 

which is defined for 𝑡 ≥ 𝑡0 . 

Definition 2.2: The zero solution of eq. (2.1) is uniformly stable if for each 0  there exist 𝛿 =  𝛿(𝜀) > 0 

such that  0,0 t  with   (any 00 t ) implies that    ,ty  for all 
0tt   

Definition 2.3: The function   XXRytf :,  is called Lipchitz in y if ∀ 𝑛 > 0, ∃ 𝐿 ≥ 0 such that 

‖𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2‖ ≤ ∟‖𝑦1 − 𝑦2‖, for all 𝑦1, 𝑦2 ∈ 𝐵𝑛 , 𝑡 ≥ 0 𝑤ℎ𝑒𝑟𝑒 ∟ is called Lipschitz constant and 𝐵𝑛 is a 

close ball with radius n. 

Definition 2.4: The zero solution of eq. (2.1) is said to be asymptotically stable if it is stable and there is a 

number 0  such that any solution  ty  with   satisfies   0lim  tyt . 
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Definition 2.5: Suppose 𝜙 ∈ 𝑅𝑛 for each solution 𝑦(𝑡, 𝜙) and if ∃   𝐵(𝑦0) such that |𝑦(𝑡, 𝑦0)| ≤ 𝐵(𝑦0) 𝑓𝑜𝑟 𝑡 ≥

0. Then the solution of eq. (2.1) is bounded. 

The following theorem is essential for stability result and is a basic tool for our results. 

Theorem 2.1 [Driver (1962)]. If there exists a functional   .,tV , defined whenever 00  tt and 

  nRtC ,,0  such that  

i.   VotV ,0,  is continuous in t and locally Lipschitz in   

ii.       ),0[),0[:,,  WtWttV   is a continuous function with     0,0,00  ifrrWW

and W is strictly increasing (positive definiteness), and 

iii.    0.,  tV  

then the zero solution of eq. (2.1) is stable and  

      tsstVtV  0:,.,   

Is called a Lyapunov function of eq. (2.1) 

3. Main result 

Theorem 3.1 𝐼𝑓 𝐵(𝑡) < 0 , 𝐺(𝑡, 𝑠, 𝑦(𝑠)) > 0 𝑎𝑛𝑑  

                        𝐵(𝑡)𝑔(𝑦(𝑡)) + ∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠)) 𝑑𝑠 ≠ 0
𝑡

0
                                      (3.1) 

Then the statements below are equivalent. 

i. The solution of eq. (2.1) tends to zero. 

ii. 𝐵(𝑡)𝑔(𝑦(𝑡)) + ∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠)) 𝑑𝑠 < −𝜉, 𝜉 > 0                                                     
𝑡

0
 

iii. Every solution of (2.1) is a Lebesgue integrable function with respect to the vector space 𝑅𝑛. 

Proof 

We shall adopt the method of Lakshmikantan (1995) to show that (iii) ⇒ (i), (i) ⇒ (ii) and (ii) ⇒ (iii).  

Given that 𝑞 ∈ 𝐿′(𝑅+), the zero solution 𝑦 = 0 of eq. (2.1) is uniformly stable if and only if the two positive 

functions 𝑚(𝑡)𝑎𝑛𝑑 𝑛(𝑡) are uniformly bounded on 𝑅+, it is uniformly asymptotically stable if and only if it is 

uniformly stable and both 𝑚(𝑡)𝑎𝑛𝑑 𝑛(𝑡) tend to zero as 𝑡 → ∞. 

We are going to show that (i) ⇒ (ii) and (ii) ⇒ (iii) and we are done. 

Let 𝑦(𝑡, 𝑡0,1) > 1 be any solution of (2.1) with initial function 𝛳(𝑡) = 0 on the interval [0, 𝑡0]. We claim that 

𝑦(𝑡) = 𝑦(𝑡, 𝑡0, 1) > 0 on [0, 𝑡0], if not, there exists a 𝑡1 > 𝑡0 with 𝑦(𝑡1) = 1. Hence 

𝑦′(𝑡1) < 0, thus it follows from (i) that  

𝑦′(𝑡) = 𝐵(𝑡)𝑔(𝑦(𝑡)) +  ∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠)) 𝑑𝑠
𝑡1

0

> 𝐵(𝑡)𝑔(𝑦(𝑡)) 

                                    + ∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠)) 𝑑𝑠 ≥ 0
𝑡0

0
                                     (3.2) 

This is contradiction. Thus, (i) ⇒ (ii), then we are left to prove that (ii) ⇒ (iii). 
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Choosing a functional candidates 

      𝑉 (𝑡, 𝑠, 𝑔(𝑦(𝑡))) = 𝑦(𝑡) + ∫ ∫ 𝐺(𝛽, 𝑠, 𝑦(𝑠))
∞

0
 𝑑𝛽 𝑔(𝑦(𝑠)) 𝑑𝑠        

𝑡

0
          (3.3) 

Then for all 𝑦 ≠ 0, assuming 𝑦(𝑡) is a solution of (2.1), differentiating (3.3) along the solution of (2.1), we have 

𝑉′ (𝑡, 𝑠, 𝑔(𝑦(𝑡))) ≤ 𝐵(𝑡)𝑔(𝑦(𝑡)) + ∫
𝐺(𝑡, 𝑠, 𝑦(𝑠))𝑔(𝑦(𝑠)) 𝑑𝑠

𝑡

0

 

+ ∫ 𝐺(𝛽, 𝑠, 𝑦(𝑠))
∞

0

 𝑑𝛽 𝑔(𝑦(𝑡)) − ∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠))𝑔(𝑦(𝑠)) 𝑑𝑠
𝑡

0

 

                                    = 𝐵(𝑡)𝑔(𝑦(𝑡)) + ∫ 𝐺(𝛽, 𝑠, 𝑦(𝑠))
∞

0
 𝑑𝛽 𝑔(𝑦(𝑡)) 

                                    = 𝑔(𝑦(𝑡))[𝐵(𝑡) + ∫ 𝐺(𝛽, 𝑠, 𝑦(𝑠))
∞

0
 𝑑𝛽] 

               𝑉′ (𝑡, 𝑠, 𝑔(𝑦(𝑡))) = −𝑔(𝑦(𝑡))𝜉 

Where, 

𝜉 > 0, 𝑔(𝑦(𝑡)) > 0, 𝑡ℎ𝑒𝑛 ∫ 𝑔(𝑦(𝑠)) 𝑑𝑠 < ∞ 𝑎𝑛𝑑 ∫ 𝐺(𝛽, 𝑠, 𝑦(𝑠))
∞

0

𝑑𝛽 < ∞
∞

0

 

Thus the solution of eq. (2.1) is Lebesgue integrable having satisfy the conditions of a Lebesgue integral. 

Theorem 3.2  

Suppose  

i) ∅ ∶  𝑅+ → 𝑅 is continuous and 𝐺(𝑡, 𝑠, 𝑦) is continuous for 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞ and satisfy the Lipchitz condition. 

‖𝐵(𝑡)𝑔(𝑦1(𝑠)) − 𝐵(𝑡)𝑔(𝑦2(𝑠))‖ + ‖∫ 𝐺(𝑡, 𝑠, 𝑦1)𝑑𝑠
𝑡

0

− ∫ 𝐺(𝑡, 𝑠, 𝑦2)𝑑𝑠
𝑡

0

‖ 

≤ 𝐿1‖𝑦1 − 𝑦2‖ + ∅𝐿2‖𝑦1 − 𝑦2‖                              

For all ‖𝑡 − 𝑡0‖ ≤ ∝, ‖𝑦1‖ < ∞ , ‖𝑦2‖ < ∞ 𝑎𝑛𝑑 ∅ > 0. Then eq. (2.1) is unique. 

ii) If the integral ∫ |𝐺(𝛽, 𝑠, 𝑦(𝑠))| 𝑑𝑠
𝑡

0
 is defined and continuous for 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞ and given positive number 𝜉 

such that 

2|𝐵(𝑡)| + ∫ 𝐺(𝑡, 𝑠, 𝑦1)𝑑𝑠
𝑡

0

− ∫ 𝐺(𝑡, 𝑠, 𝑦2)𝑑𝑠 ≤ −𝜉
𝑡

0

                                          

Then the zero solution is stable if and only if 𝐺(𝑡) < 0. 

 Proof: 

Taking 𝑦(𝑡0) = 𝑦0, and integrating eq. (2.1), we have 

  

𝑦 = 𝑦0 + ∫ 𝐵(𝑡)𝑔(𝑦(𝑡))𝑑𝑡
𝑡

0

+ ∫ (∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠
𝑡

0

)
𝑡

0

 𝑑𝑡 

where 𝑦0 is constant. 

𝑦 = 𝑦0 + ∫ (𝐵(𝑡)𝑔(𝑦(𝑡))𝑑𝑡 + ∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠
𝑡

0

)
𝑡

0

 𝑑𝑡 

𝑦 = 𝑦0 + ∫ 𝐹(𝑡, 𝑠, 𝑦)
𝑡

0
 𝑑𝑡 𝑤ℎ𝑒𝑟𝑒 𝐹(𝑡, 𝑠, 𝑦) = 𝐵(𝑡)𝑔(𝑦(𝑡))𝑑𝑡 + ∫ 𝐺(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠

𝑡

0
. 

We observe that 𝑦0 is contact and always continuous. 𝐹(𝑡, 𝑠, 𝑦) is continuous for 0 ≤ 𝑠 ≤ 𝑡 < ∞ and B is 

continuous in 0 ≤ 𝑡 ≤ ∞. Again we are to show that the function satisfies the libschitz condition. 
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‖𝐹(𝑡, 𝑠, 𝑦1) − 𝐹(𝑡, 𝑠, 𝑦2)‖ 

= ‖𝐵(𝑡)𝑔(𝑦1) + ∫ 𝐺(𝑡, 𝑠, 𝑦1(𝑠))𝑑𝑠 −  𝐵(𝑡)𝑔(𝑦2(𝑡)) + ∫ 𝐺(𝑡, 𝑠, 𝑦2(𝑠))𝑑𝑠
𝑡

0

𝑡

0

‖ 

≤ ‖𝐵(𝑡)𝑔(𝑦1(𝑡)) − 𝐵(𝑡)𝑔(𝑦2(𝑡))‖ + ‖∫ 𝐺(𝑡, 𝑠, 𝑦1(𝑠))𝑑𝑠
𝑡

0

− ∫ 𝐺(𝑡, 𝑠, 𝑦2(𝑠))𝑑𝑠
𝑡

0

‖ 

             ≤ 𝐿1‖𝑦1 − 𝑦2‖ + ∅𝐿2‖𝑦1 − 𝑦2‖ 

             ≤ ‖𝑦1 − 𝑦2‖(𝐿1 + ∅𝐿2) 

Here F satisfies the Lipchitz condition, B and G are continuous and eq. (2.1) has a unique solution. 

Assuming 𝐺(𝑡) < 0, choosing a lyapunov functional candidate. 

𝑉 (𝑡, 𝑠, 𝑔(𝑦(𝑡))) = 𝑔(𝑦2(𝑡)) + ∫ ∫ |𝐺(𝛽, 𝑠, 𝑦(𝑠))𝑑𝑠 𝑔(𝑦2(𝑠))| 𝑑𝑠       
∞

0

𝑡

0
       (3.4) 

Differentiating the Lyapunov functional along the solution of equation (2.1) with respect to time, we have  

𝑉′ (𝑡, 𝑠, 𝑔(𝑦(𝑡))) ≤ 2𝐵(𝑡)𝑔(𝑦2(𝑡)) + 2 ∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))||𝑔(𝑦(𝑠))| 𝑑𝑠
𝑡

0

 

+ ∫ 𝐺(𝛽, 𝑡, 𝑦(𝑠))𝑑𝛽 𝑔(𝑦2(𝑠)) 𝑑𝑠 −
∞

0

∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|𝑔(𝑦2(𝑠)) 𝑑𝑠
𝑡

0

 

Since 

2|𝑔(𝑦(𝑠))| ≤ 𝑔(𝑦2(𝑠)) + 𝑔(𝑦2), 

it then follow that  

𝑉′ ≤ 2𝐵(𝑡)𝑔(𝑦2(𝑡)) + ∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|[𝑔(𝑦2(𝑠)) + 𝑔(𝑦2)]
𝑡

0

 

+ ∫ |𝐺(𝛽, 𝑡, 𝑦(𝑠))|𝑑𝛽 𝑔(𝑦2(𝑠)) 𝑑𝑠 −
∞

𝑡

∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|𝑔(𝑦2) 𝑑𝑠
𝑡

0

 

≤ 2𝐵(𝑡)𝑔(𝑦2(𝑡)) + ∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|𝑔(𝑦2(𝑠))𝑑𝑠 + ∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|
∞

𝑡

𝑔(𝑦2)𝑑𝑠
𝑡

0

 

+ ∫ |𝐺(𝛽, 𝑡, 𝑦(𝑠))|𝑑𝛽 𝑔(𝑦2(𝑠)) 𝑑𝑠 −
∞

𝑡

∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|𝑔(𝑦2) 𝑑𝑠
𝑡

0

 

≤ 2𝐵(𝑡)𝑔(𝑦2(𝑡)) + ∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|𝑔(𝑦2(𝑠))𝑑𝑠 +
𝑡

0

∫ |𝐺(𝛽, 𝑡, 𝑦(𝑠))| 𝑔(𝑦2(𝑠))𝑑𝛽 
∞

𝑡

 

= [2𝐵(𝑡) + ∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|𝑑𝑠 +
𝑡

0

∫ |𝐺(𝛽, 𝑡, 𝑦(𝑠))|𝑑𝛽 
∞

𝑡

] 𝑔(𝑦2(𝑠)) 

≤ −𝜉𝑔(𝑦2(𝑠))                                                                                    (3.5) 

Hence, 

𝑉′ (𝑡, 𝑠, 𝑔(𝑦(𝑡))) ≤ −𝜉 𝑔(𝑦2(𝑠)) where   𝜉 > 0. 

Thus, the zero solution of (2.1) is stable if V is positive definite and 𝑉′ (𝑡, 𝑠, 𝑔(𝑦(𝑡))) ≤ 0. Now suppose that 

𝐺(𝑡) > 0 and define the lyapunov functional 

𝑉 (𝑡, 𝑠, 𝑔(𝑦(𝑡))) = 𝑔(𝑦2(𝑡)) + ∫ ∫ |𝐺(𝛽, 𝑠, 𝑦(𝑠))|𝑑𝛽 𝑔(𝑦2(𝑠)) 𝑑𝑠         
∞

0

𝑡

0
  (3.6) 

𝑉′ (𝑡, 𝑠, 𝑔(𝑦(𝑡))) ≥ 2𝐵(𝑡)𝑔(𝑦2(𝑡)) − 2 ∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))||𝑔(𝑦(𝑠))| 𝑑𝑠 +
𝑡

0
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∫ 𝐺(𝛽, 𝑡, 𝑦(𝑠))𝑑𝛽 𝑔(𝑦2(𝑠)) 𝑑𝑠 +
∞

0

∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|𝑔(𝑦2(𝑠)) 𝑑𝑠
𝑡

0

 

= [2𝐵(𝑡) − ∫ |𝐺(𝑡, 𝑠, 𝑦(𝑠))|𝑑𝑠 −
𝑡

0

∫ |𝐺(𝛽, 𝑡, 𝑦(𝑠))|𝑑𝛽 
∞

𝑡

] 𝑔(𝑦2(𝑠)) 

hence,   

             𝑉′ (𝑡, 𝑠, 𝑔(𝑦(𝑡))) ≥ 𝜉 𝑔(𝑦2(𝑠))                                                                (3.7) 

Now given any 𝑡0 ≥ 0 and δ≥ 0, 𝑔(𝑦(𝑡)): [0, 𝑡0] → 𝑅 is continuous with 

‖𝑔(𝑦(𝑡))‖ < δ and V(𝑡𝑜, 𝑠0, g(y(t)) > 0 

such that if  

𝑦(𝑡) = 𝑦(𝑡0, 𝑡, 𝑔(𝑦(𝑡))) 

is a solution of (2.1), then we obtain (3.6) and (3.7) such that 

𝑔(𝑦(𝑡)) ≥ 𝑉 (𝑡, 𝑠, 𝑔(𝑦(𝑡))) ≥ V(𝑡𝑜, s, g(y(t)) + ξ ∫ 𝑔(𝑦(𝑠))
𝑡

0

 

= V(𝑡𝑜, s, g(y(t)) + 𝜉V(𝑡𝑜, s, g(y(t))(𝑡 − 𝑡0) 

Hence 

|𝑔(𝑦(𝑡))| → ∞ 𝑎𝑠 𝑡 → ∞ 

and the proof is complete. 

 

Conclusion 

The behavior of integro-differential equation is frequently described by the construction of lyapunov functional. 

The method of lyapunov functional construction has a wide range of application in investigating the stability of 

functional differential equation, difference equation with continous or discrete time etc. In this paper by 

constructing a suitable Lyapunov function we proved necessary and sufficient condition for the stability of the 

zero solution of a class of nonlinear integro-differential equation. 
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