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Abstract 

In the present paper, we introduce and investigate some new subclasses of analytic functions associated with a family 

of Multiplier transformations . Such results as subordination and superordination properties, inclusion relationships, 

integral-preserving properties and convolution properties are proved. Several sandwich-type results are also derived. 
Keywords: Analytic functions, Hadamard product (or convolution), subordination and superordination between 

analytic functions, Multiplier transformations. 
 

1. Introduction 

Let �  denote  the class of functions of the form        

���� � � ��	
	�

�


�
					,																																																	�1.1� 

which are analytic in the open unit disk    � � �� ∶ � ∈ �			��		|�| � 1�. 
            Let  ���� be the linear space of all analytic functions in �. For a positive integer number � 

and 	 ∈ �, we let                                                        

  ��	, �� � �� ∈ ���� ∶ ���� � 	 � 	�	�� � 	� !�� !… �. 
  

           Let �, # ∈ �	, where � is given by (1.1) and # is defined by  

 

#��� � � ��$
	�
 							.
�


�
		 

 

Then the Hadamard product (or convolution)  � ∗ # of the functions � and # is defined by                                          

                                         

�� ∗ #���� � z ��	
 	$
	�

�


�
� �# ∗ �����. 

    For  two  functions  � and # , analytic  in �,  we  say  that  the function � is subordinate to # in �, and  write         

                                                                                ���� ≺ #���								�� ∈ ��, 
if  there exists a Schwarz function (, which is analytic in � with  (�0� � 0						��		|(���| � 1								�� ∈ �� 
such that  ���� � #*(���+							�� ∈ ��. 
Indeed , it is known that 

 

 ���� ≺ #���								�� ∈ �� 	⟹ ��0� � #�0� and 	���� ⊂ #���.     
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Furthermore , if the function # is univalent in � , then we have the following equivalence :                                          

                                                     

 ���� ≺ #���											�� ∈ �� ⟺ ��0� � #�0� and  ���� ⊂ #���.   
 

       For any real numbers /  , Kwon and Cho [4]  defined the multiplier transformations  012 of functions  � ∈ �  

by                                                                            

012	���� � � ��34 � 51 � 56
2 		
 	�
						�5 7 81�

�


�
. 

Obviously , we observe that  

012 9	01:	����; � 012 :	���� 
for all real numbers  / and <.   

           For 5 � 1 and any integer / , the operator  012 was studied  by Uralegaddi and  Somanathe   [14] . Also , for / � 81, the operator 012  is the integral operator studied by  Owa  and  Srivastava  [10] .  Moreover ,  the operator  012  is  closely  related   to 

 the  multiplier  transformation  studied  by  Jung et  al. [3]  ( also see [2] ) , and  the  differential operator defined by 

Salagean [11] .       
 

           Let   

�12��� � � ��34 � 51 � 56
2 		�
	�/ ∈ =	; 5 7 81�

�


�
 

and let  �1,?2  be defined such that 

�12��� ∗ �1,?2 ��� � �
�1 8 ��? 	�@ 7 0	; � ∈ ��,																																							�1.2� 

  

then , motivated essentially by the Choi - Saigo - Srivastava operator [1] ( see also [5] , [8] and [9]  ) , Kwon and  

Cho [4]  introduced  and investigated the operator  B1,?2 :� ⟶ �, 
 which are defined here by  

 B1,?2 	���� � *�1,?2 ∗ �+	���				�� ∈ �	; / ∈ =	; 	5 7 81	; 	@ 7 0�,						�1.3� 
In particular , we note  that  0F,�F 	���� � ��G���  and   0F,�! 	���� � ����.  

It is easily verified from (1.3) that  ��01,?2 	�����G � @	01,? !2 	���� 8 �@ 8 1�	01,?2 	����,																							�1.4� 
and  ��01,?2 !	�����G � �5 � 1�	01,?2 	���� 8 5	01,?2 !	����,																				�1.5� 
     By making use of the subordination between analytic functions and the operator 01,?2  , we now introduce the 

following subclasses of analytic functions . 

 

Definition 1.1 . A function � ∈ �  is said to be in the class 	J1,?2 �K; L� if it satisfies the subordination condition  

�1 8 K� 		01,?2 	����� � K 		01,? !2 	����
� ≺ L���		�� ∈ �; 	K ∈ �	; 	L ∈ ℙ�																			�1.6� 

 

Definition 1.2 . A function � ∈ � is said to be in the class 	�1,?2 �K; L� if it satisfies the subordination condition  
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�1 8 K� 		01,?2 !	����� � K 		01,?2 	����� ≺ L���		�� ∈ �	; 	K ∈ �	; 	L ∈ ℙ�													�1.7� 
          

In the present paper, we aim at proving some subordination and superordination properties, inclusion relationships, 

integral-preserving properties and convolution properties associated with the operator			01,?2 . Several sandwich-type 

results involving this operator are also derived. 

 

2. Preliminary results    

     In order to prove our main results , we need the following lemmas .        

Lemma 2.1. ( [6] )  Let the function P	be analytic and convex ( univalent ) in � with P�0� � 1	. Suppose also that 

the function Q given by  

Q��� � 1� R�	�� � R��1	���1 �⋯ 

is analytic in �. If 

Q���� �	Q
′���
U ≺ P���			�VW�U� 7 0	; 	U X 0	; � ∈ ��,																			�2.1� 

then  

Q��� ≺ Y��� � U��
8	U� 	Z <U�81						[�<��< ≺ P���			�� ∈ ��,

�

0
													 

and Y the best dominant of (2.1) . 

    Denote by \ the set of all functions � that are analytic and injective on 	�] 8 ^���, where       

^��� � �_ ∈ `� ∶ 	 limd→f ���� � ∞�,																 
and such that   �G�_� X 0   for    _ ∈ `� 8 ^���. 

 

Lemma 2.2 .( [7]) Let h be convex univalent in � and 4 ∈ �. Further assume that VW*4i+ 7 0	. 0� 

j ∈ ��h�0�, 1�⋂\,																							 
and    j � 4	�	jG   is univalent in �, then 

h��� � 4	�	hG��� ≺ j��� � 4	�	jG���																	 
implies h ≺ j	, and h is the best subdominant . 

Lemma 2.3 .( [12] ) Let h be  a convex univalent function in  �  and let  l, m ∈ �  with  
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VW n1 � �hGG���hG��� o 7 p	q r0	, 8VW 3
l
m6s	.																 

If  j is analytic in �	 and  

l	j���� m�	j′��� ≺ lh���� m�	j′���,																			 
then 	j ≺ h	, and 	h is the best dominant . 

Lemma 2.4 .( [13])  Let the function t be analytic in � with 

 t�0� � 1     and    VW*t���+ 7 !
� 										�� ∈ ��.         

Then , for any function  u  analytic in �	, �t ∗ u���� is contained in the convex hull of  u���. 

  

 

3. Properties of the function class  J1,?2 	�K	; 	L�  
       We begin by proving our first subordination property given by Theorem 3.1 below . 

Theorem 3.1 . Let � ∈ J1,?2 	�K	; 	L�  with  VW�K� 7 0	. Then  

01,?2 	����� ≺ @K	�v
?wZ<?wv!	ϕ�t�dt ≺ L�z�			�z ∈ ��		.																																	�3.1�

d

F
 

Proof. Let � ∈ J1,?2 	�K	; 	∅� and suppose that  

[��� � 	01,?2 	����� 								�� ∈ ��.																																																							�3.2� 
Then [ is analytic in �. Combining (1.4) , (1.6) and (3.2) , we easily find that  

[��� � K@ �[G��� � �1 8 K�
01,?2 	����� � K 01,? !2 	����

� ≺ L���				�� ∈ ��	.												�3.3� 
Therefore , an application of Lemma 2.1 for  � � 1  to (3.3)  yields the assertion of Theorem 3.1 .  

          

          By virtue of Theorem 3.1 , we easily get the following inclusion relationship .    

Corollary 3.1 . Let VW�K� 7 0	. Then J1,?2 	�K	; 	L� ⊂ J1,?2 	�0	; 	L�. 
Theorem 3.2 . Let K� 7 K! | 0	. Then J1,?2 	�K�	; 	L� ⊂ J1,?2 	�K!	; 	L�	. 
Proof . Suppose that  � ∈ J1,?2 	�K�	; 	L� . It follows that  

�1 8 K�� 01,?
2
� � K� 	01,? !

2
� ≺ L���			�� ∈ ��.																												�3.4� 

Since  

0 } K!K� � 1 

and  the function  L is  convex and univalent  in �,  we deduce  from (3.1) and (3.4) that  

				�1 8 K!� 01,?
2
� � K! 	01,? !	

2 ����
�  
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																				� K!K� ~�1 8 K!�
01,?	2 	����� � K! 	01,? !	

2 ����
� � � 31 8 K!K�6

01,?	2 	�����  

																			≺ L���				�� ∈ ��, 
which implies that 	� ∈ J1,?2 	�K!	; 	L�.  The proof of Theorem 3.3  is evidently completed . 

 

Theorem 3.3 . Let � ∈ J1,?2 	�K	; 	L�. If the integral operator � is defined by  

���� � � � 1�� Z<�v!	��<��<					�� ∈ �	; 	� 7 81�,																													�3.5�
d

F
 

then  01,?	2 	����� ≺ L���							�� ∈ ��.																																																				�3.6� 
Proof. Let � ∈ J1,?2 	�K	; 	L�. Suppose also that  

���� � 01,?	2 	����� 							�� ∈ ��.																																															�3.7� 
From (3.5) , we deduce that �	�01,?	2 	�����G � �	01,?	2 	���� � �� � 1�01,?	2 	����	.																																					�3.8� 
Combining (3.1) , (3.7) and (3.8) , we easily gat   

	���� � 1
�1 � ��	��G��� �

01,?	2 	����� ≺ L���		�� ∈ ��		.																					�3.9� 
Thus , by Lemma 2.1 and (3.9), we conclude that the assertion (3.6) of Theorem 3.3 holds . 

 

Theorem 3.4 . Let  �1,?	2 	�U	; 	L�  and 	# ∈ �  with   VW 9��d�d ; 7 !
�	.   Suppose   also that 

���� � �1 8 K� 01,?	2 	����� � K 01,? !	2 	����
� ≺ L���			�� ∈ ��					.							�3.10� 

 It follows from (3.10) that  

�1 8 K� 01,?	2 	�� ∗ #����� � 01,? !	2 	�� ∗ #����
� � ���� ∗ #���� 			�� ∈ ��		.							�3.11� 

Since the function L is convex and univalent in �, by virtue of (3.10) , (3.11) and Lemma 2.2 ,  

we conclude that  

�1 8 K� 01,?	2 	�� ∗ #����� � K 01,? !	2 	�� ∗ #����
� 	≺ L���			�� ∈ ��,																								�3.12� 

which implies that the assertion of Theorem 3.5 holds  . 

 

Theorem 3.5 . Let h! be univalent in  � and VW�K� 7 0	. Suppose also that h! satisfies  

VW n1 � �h!GG���h!G ��� o 7 max �0	, 8VW	 9
@
K;�	.																																							�3.13� 

If � ∈ � satisfies the subordination  

�1 8 K� 01,?	2 	�� ∗ #����� � K 01,? !	2 	�� ∗ #����
� ≺ h!��� � K@ 	�h!G ���,																				�3.14� 

then  01,?	2 	����� ≺ h!G 	���, 
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and h! is the best dominant . 

Proof . Let the function [ be defined by (3.2). We know that (3.3) holds. Combining (3.3) and  (3.14) , we find that  

[��� � K@ �[G��� ≺ h!��� �
@
K �h!G ���		.																											�3.15� 

By Lemma 2.3 and (3.15) , we readily get the assertion of Theorem 3.5 .  

 

   If � is subordinate to J, then J is superordinate to � . We now derive the following superordination result for the 

class J1,?	2 	�K	; 	L�. 
 

Theorem 3.6 . Let  h� be convex univalent in �	, K ∈ �		with  VW�K� 7 0	. also let  01,?	2 	����� 	∈ 	��h��0�, 1� ∩ \			 
and 

�1 8 K�	01,?	2 	����� � α	 01,? !	2 	����
�  

be univalent in �. If 

h���� � K@ �	h�G ��� ≺ �1 8 K�
01,?	2 	����� � α 01,? !	2 	����

� , 
then  

h���� ≺ 01,?
	2 	����
� 	,																				 

and h� is the best subdominant . 

Proof . Let the function [ be defined by (3.2) . Then 

h���� � K@ �	h�G 	��� ≺ �1 8 K�	
01,?	2 	����� � α 01,? !	2 	����

� � [��� � K@ 	�	[′	��� 
An application of Lemma 2.4 yields the desired assertion of Theorem 3.6 . 

          Combining  the above results of subordination and superordination , we easily get the following  " Sandwich – 

type result " . 

  

Theorem 3.7 . Let h� be convex univalent and h� be univalent in �	, K ∈ � with VW�K� 7 0 . Suppose also that h� satisfies 

VW n1 � �	h�GG���h�G ��� o 7 max �0	, 8	VW 9
@
K;� . 

If  

0 X 01,?	2 	����� ∈ �	�h��0�, 1	� ∩ \, 
and 

�1 8 K�	01,?	2 	����� � α	 01,? !	2 	����
�  

 is univalent in �, also 

h���� � K@ �	h�G 	��� ≺ �1 8 K�	
01,?	2 	����� � α 01,? !	2 	����

� ≺ h���� � K@ �	h�G 	���, 
Then 

h���� ≺ 01,?
	2 	����
� ≺ h����	, 

and h� and h� are , respectively , the best subordinant and the best dominant . 
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4. Properties of the function class  �1,?2 �K	; 	L� 
         By means of (1.5) , and by similarly applying  the methods used in the proofs Theorem 3.1 – 3.7 ,  respectively , 

we easily  get  the  following  properties  for  the  function class  �1,?2 �K	; 	L�  .Here we choose to omit the details 

involved . 

Corollary 4.1 . Let � ∈ �1,?2 �K	; 	L� with V�K� 7 0	.	Then 

01,?	2 !	����� ≺ 5 � 1K 	�v1 !w Z<1 !w v!	L�<��< ≺ L���					�� ∈ ��.
d

F
 

Corollary 4.2 . Let K� 7 K! | 0	. Then   �1,?2 �K�	; 	L� ⊂ �1,?2 �K!	; 	L�.  
Corollary 4.3 . Let � ∈ �1,?2 �K	; 	L�. If the integral operator � is defined by (3.5) , then 

01,?	2 !	����� ≺ L���								�� ∈ ��. 
Corollary 4.4 . Let � ∈ �1,?2 �K	; 	L�. And # ∈ � with    VW 9��d�d ; 7 !

�	. Then 

�� ∗ #���� ∈ �1,?2 �K	; 	L�.												 
Corollary 4.5 . Let h� be univalent in � and VW�K� 7 0	. Suppose also that h� satisfies  

VW n1 � �h�GG���h�G o 7 p	q r0	, 8VW 3λ � 1α 6s	, 
If � ∈ � satisfies the subordination 

�1 8 K� 01,?	2 !	����� � K 01,?	2 	����� ≺ h���� � K
5 � 1 	�h�G ���, 

then  01,?	2 !	����� ≺ h�G ���	, 
and h� is the best dominant . 

Corollary 4.6 . Let h� be convex univalent in �	, K ∈ � with VW�K� 7 0	. Also Let 01,?	2 !	����� ∈ ��h��0�, 1� ∩ \ 

and  

�1 8 K� 01,?	2 !	����� � K 01,?	2 	�����  

   

be univalent in � .If 

h���� � K
5 � 1 �h�G ��� ≺ �1 8 K�

01,?	2 !	����� � K 01,?	2 	�����  

then 

h���� ≺ 01,?
	2 !	����
� 		, 

and h� is the best subdominant . 

 

Corollary 4.7 . Let h� be convex univalent and h� be univalent in �	, K ∈ � with VW�K� 7 0. Suppose also that h� satisfies 
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VW n1 � �	h�GG���h�G � o 7 p	q r0	, 8VW 35 � 1K 6s	. 
If  

0 X 01,?	2 !	����� ∈ ��h��0�, 1� ∩ \. 
and  

�1 8 K� 01,?	2 !	����� � K 01,?	2 	�����  

is univalent in �, also 

h���� � K
5 � 1 �h�G ��� ≺ �1 8 K�

01,?	2 !	����� � K 01,?	2 	����� ≺ h���� � K
5 � 1 �h�G ���. 

then 

h���� ≺ 01,?
	2 !	����
� ≺ h����	, 

and h� and h� are , respectively , the best subordinant and the best dominant . 
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