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Abstract   

For modeling Semicircular data, here we introduce Semicircular Logistic distribution 

by applying a Simple projection method on Logistic model. We extend it to the l -axial 

Logistic distribution by a Simple projection for modeling angular data on any arc of arbitrary 

length. Also derive the characteristic function and the first four trigonometric moments for the 

evaluation of population characteristics of proposed model. A bivariate version of l-axial 

Logistic distribution is also developed. 

Keywords: Circular model, Characteristic function, l-axial data, Projection, 

Trigonometric moments. 

1 Introduction 

Phani (2013) proposed new method of constructing circular and semicircular models 

by applying modified inverse stereographic projection on linear models. By inducing inverse 

stereographic projection on Weibull and Exponential distributions, Phani et al (2013) 

constructed Stereographic Semicircular versions of Weibull and Exponential models 

respectively, whose range spans in ( )0,p  as the corresponding linear models are in ( )0,¥  

and Girija et al (2014) have constructed Offset Arc Beta model and Offset Arc Exponential 

type models and this aspect of existence of semicircular/arc models can be viewed as "natural 

occurrence".  

The fact that in some practical situations full circular models are not required and it is 

noted in Guardiola (2004), Jones (1968) and Byoung et al(2008).  
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Taking this as cue, on the lines of Byoung et al (2008) the Semicircular Logistic 

distribution (SCLD) is constructed by projecting Logistic distribution over a semicircular 

segment. This paper is devoted in constructing Semicircular Logistic distribution, to derive 

results on the relationship between modality and parameter.  We plot the graphs of the density 

function and distribution function for various values of parameters. We consider the 

asymptotic behaviour of the Semicircular Logistic distribution, derive the characteristic 

function and first four trigonometric moments for proposed model. We extend this model for 

l -axial also. We concentrate on developing Bivariate Semicircular Logistic model.  

2 Semicircular Logistic distribution 

A random variable  X  on the real line is said to have Logistic Distribution with location 

parameter   and  scale  parameter  0  , if the probability density function and cumulative 

distribution function of  X   for , and 0x   ¡ are given by  
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respectively. 

Then by applying Simple projection defined by a one to one mapping
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¡ , which leads to a Semicircular Logistic distribution. 
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Definition: 

      A random variable  SCX  on the Semicircle is said to have the Semicircular Logistic 

distribution with location parameter   scale parameter 0  denoted by SCLD  ,  , if 

the probability density and the cumulative distribution functions are respectively given by  
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Hence the proposed new model SCLD  ,   is a Semicircular model.  

 

We consider the asymptotic behavior of the Semicircular Logistic distribution   when 0  . 

Suppose  follows  SCLD  ,   . Let y



  and then use the change of variable technique. 

For sufficiently small   , we have   tan y y ;   and    sec 1y ;     by first order 

approximation of the Taylor series expansion. Hence, the distribution of    becomes Logistic 

distribution (linear).  So, for sufficiently small  , the Semicircular Logistic distribution can 

be approximated by a linear Logistic distribution.
 

Theorem 5.2.1:  Semicircular logistic distribution is Symmetric about 0   and is 

unimodal if  0.5   and bimodal if 0.5 
 

Proof:  The probability density function of Semicircular logistic distribution is 
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Differentiating   g   with respect to   , we get  
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For Stationary points       0g    
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0, 2 , 4 ,...,      are the stationary points. 

0  is the only stationary point which lies in the domain of  g   

Differentiating  g   with respect to , we get   
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At   0   
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 g   has maximum value at  0    if and only if    0 0g  0.5   

 g   has minimum value at  0    if and only if    ' ' 0 0g  0.5   

Hence Stereographic logistic distribution is unimodal if  0.5   and bimodal if 0.5   

Graphs of the probability density and cumulative distribution function  of the 

Semicircular Logistic distribution for various values of   and   
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 3. The Characteristic function of Semicircular Logistic distribution: 
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             As the integral cannot be obtained analytically, MATLAB techniques are applied for 

the evaluation of the values of the characteristic function.

 

 

Trigonometric moments of the Semicircular Logistic distribution  

The trigonometric moments of the distribution are given by  p : p 1, 2, 3,... ,     where 

p p p ,i    with  p cospE    and  p sin pE    being the 
thp   order  

Cosine and sine moments of the random angle ,  respectively. Because the Semicircular 

logistic distribution is symmetric about 0  , it follows that the sine moments are zero. Thus 

p p  . 

 

Theorem 3.1   Under the pdf of Semicircular logistic distribution is symmetric with 0  , 

the first four    p cospE  , p 1,2,3,4 are given as follows 
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is called as Meijer’s G-

function (Gradshteyn and Ryzhik, 2007, formula no. 3.389.2). 

 

4.  Extension to l -axial distribution 

We extend the proposed model to the l  -axial distribution, which is applicable to any arc of 

arbitrary length say 2
l

 for 1,2,...,l   so it is desirable to extend the Semicircular Logistic 

distribution. To construct the l  -axial Logistic distribution, we consider the density function 

of Semicircular Logistic distribution and use the transformation 2 , 1,2,...,l
l

   . The 

probability density function of    is given by  
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Case (1) When 2l  , the probability density function (5.1) is the same as the probability 

density       

                 function of Semicircular Logistic distribution.  

Case (2) When 1l  , the probability density function (5.1) is  the same as that of 

Stereographic         

              Logistic Distribution[Dattatreyarao et al (2016)] which is circular distribution. 
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5. Bivariate Semicircular Logistic Distribution  

 

            We can construct a bivariate Semicircular Logistic distribution in a manner similar to 

the construction of a univariate Semicircular Logistic distribution. We shall use the same 

semicircular transformation applied in a bivariate case. The probability density function of the 

bivariate Semicircular Logistic distribution is defined as  

 
              

 

1 2 1 2

22 2 1 1 1
tan tan tan tan

1 2

1 2

2sec sec
, 1

, 1,2 5.1
2 2

i

g e e e

i

   
  

 
 



 



    

   
 

   

 

To construct this density, we begin with the bivariate Logistic density  
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Considering the transformation   tan , 1,2.i ix v i   The Jacobian is 

   2 2 2

1 2sec secJ v   . Consequently, the probability density function of a bivariate 

Semicircular distribution is obtained using simple algebra.   

 

Similar to the method of constructing univariate l - axial Logistic distribution, it is simple to 

construct bivariate l - axial Logistic distribution.   Let * 2
, 1,2 and 1,2,3,...,i

i i l
l


    then 

the probability function is given by  
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            

   
    

       
 
 

   
 

Case(1)  When 1l    in (5.3) we get  
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    
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     

 
 
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  
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We call it as bivariate circular Logistic distribution. 

 

Case(2)  When  2l  in (5.3) give the bivariate semicircular Logistic distribution. 
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