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Abstract –Nonlinear equations /systems appear in most science and engineering models. For example, when 

solving eigen value problems, optimization problems, differential equations, in circuit analysis, analysis of state 

equations for a real gas, in mechanical motions /oscillations, weather forecasting, integral equations, image 

processing and many other fields of engineering designing processes. Nonlinear systems /problems are difficult 

to solve manually but they occur naturally in fluid motions, heat transfer, wave motions, chemical reactions, etc. 

This study deals with construction of iterative methods for nonlinear root finding, applying Taylor’s series 

approximation of a nonlinear function f(x) combined with a new correction term in a quadratic or cubic model. 

Competent iterative algorithms of higher order were investigated. For test of convergence and efficiency, we 

applied basic theorems and solved some equations in C++.  

 Keywords – nonlinear equations, Taylor’s approximation, iterative algorithms for roots, error correction  

 

1. Introduction 

Nonlinear problem solving with root finding is very common in science and engineering model applications. For 

example, in chemical and electrical engineering, environmental engineering, in physics, etc. The method can be 

direct /symbolic, graphical or numerical iterative. The iterative ones are derived using interpolations, 

perturbation method, variational technique, fixed point methods and so many others [1, 2].  

There are several existing root solving methods such as Bisection method, Secant method, Regula Falsi, 

Newton’s method and its variants /accelerators (Chebyshev’s method, Halley’s method, Super Halley’s 

method….) [1, 2, 4, 7, 8, 9, 10,11, 12, 13]. However, choice of initial guesses, interval selections, existences of 

derivatives and acceleration convergence are some common drawbacks connected with algorithmic 

complexities.  

 In this article, we apply Taylor’s approximation of )(xf by quadratic and cubic model to derive new iterative 

algorithms, using a new correction term. We also discuss extension to higher dimensions for solving nonlinear 

system.  

The article is organized as: introduction, basic methods based on Taylor’s series, extensions to 2D, convergence 

analysis, procedures for computer codes, test problems, result and discussion, conclusion and references. 

 
 1.2 Construction methods based on Taylor’s expansion    

Consider the Taylor’s approximation of a nonlinear function )(xf  about an approximate 

root hxr o   in 1D. 

...)('''6/1)(''2/1)(')()( 32  ooooo xfhxfhxhfxfhxf                       (1) 

If f = f(x,y) then the Taylor’s series expansion in 2D is expressed as 

f(x+h, y+k) = f(x, y)+hfx+kfy+1/2(h
2
fxx+2hkfxy+k

2
fyy)+…                                                  (1a) 

And if f = f(x, y, z) in 3D, then 

f(x+h, y+k, z+l) = f(x, y, z)+hfx+kfy+lfz+1/2(h
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fxx+2hkfxy+2hlfxz+ 2klfyz + h
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 The linear approximation from (1), 0)(')(  oo xhfxf  yields Newton’s method 
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From a modified Newton’s method for multiple root [12] one gets for simple roots   
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From the linear estimation of f(x) in (1), we can also derive a new method 
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Assuming that a combination (2c) of (2) & (2a) is of higher order, one has  

nk
xfxf

xf
w

xf

xf
wxx

kk

k

k

k
kk ,...,1,0:

)()('

)(
2

)('

)(
11 


                                         (2c) 

This satisfies  
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If we think about the quadratic interpolation approximation of (1) 

0)(''2/1)(')()( 2  oooo xfhxhfxfhxf , we obtain 
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Then with a new (error) correction term h = f/(f’-f) from (2a) in the right part of (2d), one gets the two 

methods  
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There are also Halley’s method (4a) and Chebyshev’s method (4b)  

.
)('')(2/1)]('[

)(')(
21

kkk

kk
kk

xfxfxf

xfxf
xx


                                                   (4a) 

.
)]('[

)('')]([
2/1

)('

)(
3

2

1

k

kk

k

k
kk

xf

xfxf

xf

xf
xx                                                                     (4b) 

And extended Newton (5) and Euler method (5b), see [1, 2, 4, 6, 8,9,10, 17, 19]. 
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Suppose one ponders now the cubic model of f(x) as  

.0)('''6/1)(''2/1)(')()( 32  ooooo xfhxfhxhfxfhxf   (6) 
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Using a correction term h=f/(f’-f) in the right part, we obtain  
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This yields an iteration function 
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Replacing the higher order derivative by
f

ff '''
, we get another algorithm 
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However some of these methods need high memory computer. 

 

1.3. Extensions to Higher Dimensions for Nonlinear Systems 

Let us start with Newton’s method to solve systems of nonlinear equations in 2D .   

Assume a nonlinear system of equations [1, 4, 5, 7,15],  
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We hope to get X = (x, y) that satisfies f. If X0 = (x0, y0) is an initial guess and X1 = (x1,y1)  is an enhanced 

approximation , then one can apply Taylor’s linear estimation as 

F( 1) ( 0) '( 0)( 1 0) 0X F X F X X X                                                              (8a) 

Where the Jacobean matrix of F is 
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The linear system (8a) can be solved by elimination. Or by Newton’s method 

11 0 ( 0)X X J F X  .                                                                                          (9a) 

 Provided that the inverse 
1 1J F'( 0)X  exists. And the iteration process repeats until convergence. 

 The convex acceleration of Newton’s method (9a) in 2D to solve F is [5] 

  )()()]()[(2/1 11

1 kkkkkk XFXJXLIXLIXX 

                  (10) 

With I is identity operator/matrix and 
1 1'( ) F''( ) J (X )F( )k k k kL F X X x  is called the logarithmic degree 

of convexity of F.  And the second partial derivative of F , F''  is a tensor whose elements are the partial 

derivatives 

2 ( )
(F''( )) i
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[16]. Equation (10) is super-Halley’s method to solve (8). And Halley’s 

method in 2D is  
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The Chebyshev’s method in 2D is 

  )()()(2/1 1

1 kkkkk XFXJXLIXX 

                                             (12) 

Note that if )(xx  is Newton’s iteration function in (2) then LLx f )('  in 1D. 

To extend the new methods in (3) and (4) , we first write (3) as below 

111

1 ]]'['''5.01))[(( 

  fffffxxxx kkkk                                   (13) 

And (4) as 

])]'('''5.01))[(( 31

1



  fffffxxxx kkkk                                     (14) 

Where )(x is Newton’s iteration function to solve 0)( xf  in 1D . 

3. CONVERGENCE ANALYSIS 

We shall use the following important definition and theorem. 

Definition 3.1 [1] A sequence (xn) generated by an iterative method is said to converge to a root r with order p 

 1 if there exists c > 0 such that 
p

nn cee 1 , ,onn  for some integer n0 0 and .nn xre   

 Theorem 3.1 (Order of Convergence) Assume that )(x  has sufficiently many derivatives at a root r of )(xf . 

The order of any one-point iteration function )(x  is a positive integer p, more especially )(x  has order p if 

and only if rr )(  and 0)()( rj  for 0 < j < p, 0)()( rp  [8], see also [1, 2, 4,8,17]. 

All the algorithms we presented need an appropriate choice of only one initial guess ox  in an interval Io = [a, b]. 

And random choices of ox  may lead us to unnecessary works. Notice that from Theorem 1.1 above and 

convergence of fixed point iteration method )(xx  [1, 2, 8, 18], 1)(' x  for all x in [a, b]. From which 

.1)(' ox The case )(' ox >1 is divergence. And 1)(' ox  needs especial treatment (reformulations or 

need for alternative methods) [1, 2]. 

Proof of the order of convergence (p) 
 The proof can be done applying theorem 3.1 and definition 3.1 or methods of proofs in [1, 2, 5, 6, 8]. 

1) Proof of order of convergence of algorithm in (3)  
111

1 ]]'['''5.01))[(( 

  fffffxxxx kkkk                      (15) 

 We can write (15) as 

.))(()( Hxxxx   Where H(x) = 
111 ]]'['''5.01[   fffff  

And )(xx  is Newton’s iteration function. 

Let r be a simple root of .0)( xf  We have ,)( rr   xx )( and .)( xx    

And 0)(' r  but 0)('' r .  

Differentiating Hxxxx ))(()(   , we find that 0)('')('  rr   but 0)(''' r . 

So 3p . Conversely, if p = 3, then we can show that 0)('')('  rr   but 0)(''' r . 

 Hence, (3) or (15) is third order convergent method.   

2) To prove order of convergence of algorithm in equation (4). We can write (4) as 

  .))(()( Txxxx     Where T= ])]'('''5.01[ 31 fffff . 
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And )(xx  is Newton’s iteration function. From which xx )(  and 0)(' r  but 0)('' r . 

Differentiating Txxxx ))(()(   , we find that 0)('')('  rr   but 0)(''' r . So 3p . On 

the other hand, if p = 3, then we can show that 0)('')('  rr   but 0)(''' r . Hence, (4) is third order 

convergent method. Similarly (2a) and (2b) are quadratic and (2c) is cubic convergent. The proofs for orders of 

the other algorithms can be done in a similar way. We shall make a detailed analysis in the future work. Related 

concepts are in [1, 2, 4, 5, 6, 7, 9, 10, 11, 17, 18, 19]. 

3.2. Procedure setting up for computer codes 
1. Define an equation to solve, f(x)                     5. output x 

2. Define derivatives, df, ddf, ….                       6. Set error = c [c is correction term] 

3. Enter Inputs; x0, tolerance, number (Iter=n)    7. if error < = tol 

4. For i= 1, I++                                                      output x, f(x) 

F = f(x0);                                                            end 

Df = df(x0), DDf=ddf(x0)                                      8.  else 

X = [define the method]                                            x0 = x 

i = i+1 

output“ no solution /root” , end 

 

4. TEST EQUATIONS, RESULTS &DISCUSSIONS  

We have chosen five equations for test of efficiency. 

   0222)( 3

1  xxxf , with 
ox = 1, 2, 3 and root r ≈ 1.324718 in (1, 2),  

  02cos26)(2  xxxf , ox
 = 0, 1, 2, r ≈ 0.607102,  

  0cos)( 3

3  xexxxf , with 
ox  = -2.5, -1, -0.5, r ≈ -0.649565 in (-1, 0). 

  0222)( 6

4  xxxf  , ox
= 1, 2, 3, r ≈ 1.134724 in (1, 2) 

   22)(log)( 105  xxxf , 
ox = 0.5, 1.5, 2.2, r =1.000000 in [1, 2). 

Comparisons were relative to Newton method (NM), Chebyshev’s method (CM), Halley’s method (HM), (3), 

(4), (2a), (2b). C++ implementation was done for each algorithms and the number of iterations taken to converge 

to a root r to six decimal places was recorded and written in the body of the next table-1 under each method. The 

stopping criteria were using the residual error such that )( ixf  ≤ , for chosen
810 . We also checked this 

by other stopping criteria in the literature.  

Hint: The triplets of numbers in each cells of table-1 correspond to the number of iterations needed for 

convergence with each of the three initial guesses of a root r of .5,...,2,1,0)(  ixfi  From the table, an 

algorithm (HM) for solving 0222)( 3

1  xxxf  converges at steps 4, 3, 4 for the initial guesses taken 

at 3,2,1ox  respectively and being 
810  given. And NM for solving 0222)( 3

2  xxxf  

converges at steps 5, 5, 6 taking the same initial guesses ox  1, 2, 3. In the first column, ´́Functions (f) ´́ 

refers to the number of functional evaluations up to derivatives, and ´́Efficiency (e) ´́ represents the 

computational efficiency index. “–“indicates slowness at the point. Algorithms are compared (may be ranked as 

fast, faster or very fast) relatively depending on their Nar values in the table being the uppermost, intermediate 

or the lowest respectively, see [3]. An algorithm with the least average number of iterations (Nar) to converge to 

a root r would be ranked very fast convergent. The higher the Nar value, the slower is an algorithm to converge. 

The lesser the Nar value, the faster is an algorithm to converge. Taking more initial guesses or more examples 

gives good ranking measure. In the table, the highest value of efficiency index is 1.442 (for third order).  We can 

observe that all methods presented in the table are better competent with 3 to 5 average number of iterations to 

converge from both directions at ox when an appropriate initial guess ox  is used. If ox  is not suitably chosen, 

then one can expect slow convergence and even divergence from a root. 
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Table 1 - Summary of comparison results 

f, x0 NM CH (3) (4) (2a) (2b) HM 

1f : 1, 2, 3 5, 5, 6 4, 3, 4 2, 2, - 2, 4, - 3, 3,- 3, 4,6 3,3,4 

:2f 0, 1, 2 3, 3, 3 3, 3, 3 2, 3, 3 2, 3, 3 5, 5, - 4, 3,3 2,2,3 

:3f -2.5,-1,-.5 7, 5, 4 4, 3, 4 4, 3, 3 4, 3, 3 6, 5, 4 6, 4,4 4,3,3 

4f ,1,2,3 5, 7,9 3, 4, 4 2, 2, - 2, 2, 3 3, 5, 6 3,6, 9 3,4,4 

2.2,5.1,5.:5f  3, 3, 3 3, 2, 3 3, 2, 3 3, 2, 2 4, 5, 6 4,5,6 3, 2,3 

Nar, average iter ≈ 4 ≈ 3 ≈ 3 ≈ 3 ≈ 4 ≈ 4 ≈ 3 

Order (p) 2 3 3 3 2 2 3 

Functions (f) 2 3 3 3 2 2 3 

Efficiency(e)      1.414 1.442 1.442 1.442 1.414 1.414 1.442 

 The new (error) correction might be fast convergence when it converges but does not affect the 

number of functional evaluations. 

 

6. Conclusions 

In this work, we have applied a new correction term in Taylor second and third order approximation to obtain 

some iterative methods for estimating simple roots of nonlinear equations. The correction technique does not 

affect the number of functional evaluations but convergence. We have shown possible extensions for solving 2D 

nonlinear systems. Competent methods were investigated. In the future, we will present further analyses of these 

algorithms and other higher order iterative algorithms with applications. We hope that this result will be very 

slyness and bring about one to perform further research.  
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